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Abstract 
Accurate understanding of the biological functions of enzymes is vital for various tasks in both pathologies and industrial biotechnology. 
However, the existing methods are usually not fast enough and lack explanations on the prediction results, which severely limits their 
real-world applications. Following our previous work, DEEPre, we propose a new interpretable and fast version (ifDEEPre) by designing 
novel self-guided attention and incorporating biological knowledge learned via large protein language models to accurately predict 
the commission numbers of enzymes and confirm their functions. Novel self-guided attention is designed to optimize the unique 
contributions of representations, automatically detecting key protein motifs to provide meaningful interpretations. Representations 
learned from raw protein sequences are strictly screened to improve the running speed of the framework, 50 times faster than DEEPre 
while requiring 12.89 times smaller storage space. Large language modules are incorporated to learn physical properties from hundreds 
of millions of proteins, extending biological knowledge of the whole network. Extensive experiments indicate that ifDEEPre outperforms 
all the current methods, achieving more than 14.22% larger F1-score on the NEW dataset. Furthermore, the trained ifDEEPre models 
accurately capture multi-level protein biological patterns and infer evolutionary trends of enzymes by taking only raw sequences 
without label information. Meanwhile, ifDEEPre predicts the evolutionary relationships between different yeast sub-species, which are 
highly consistent with the ground truth. Case studies indicate that ifDEEPre can detect key amino acid motifs, which have important 
implications for designing novel enzymes. A web server running ifDEEPre is available at https://proj.cse.cuhk.edu.hk/aihlab/ifdeepre/ 
to provide convenient services to the public. Meanwhile, ifDEEPre is freely available on GitHub at https://github.com/ml4bio/ifDEEPre/. 

Keywords: enzyme prediction; large language model; evolutionary inference; protein motif detection; interpretability analysis; self-guided attentive 
learning 

INTRODUCTION 
Enzymes are essential catalysts in every species, known to 
increase chemical reactions under biological conditions and play 
key roles in many biological processes, e.g. energy conversion, 
nutrition and metabolism [1, 2]. Annotating the functions 
of enzymes is vital because it can promote their real-world 
applications, e.g. the diagnosis of enzyme-related diseases, and 
the design of new effective enzymes [3]. Any malfunction of 
enzymes, no matter underproduction or overproduction, may 

lead to a series of severe diseases and damages. The deficiency 
of Phenylalanine Hydroxylase often causes Phenylketonuria, 
which destabilizes protein structures and could lead to Attention-
Deficit/Hyperactivity disorder problems if no treatment is given 
[4]. Conversely, high-level Transaminase causes the failure in 
maintaining normal cell functions of the liver for breaking 
down substances and removing toxins from bodies, illustrating 
potential liver damages [5]. Accurate understanding of enzyme 
biological functions is crucial for identifying triggers of these 
diseases and developing enzyme-based effective treatments [6].
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Traditional methods often conduct wet laboratory-based 
experiments to confirm enzyme functions, e.g. enzymatic assays 
[7], which require large domains of expertise and are very time-
consuming. Thus, these methods are often used for small-sized 
protein databases. Because the abundance and near-exponential 
growth of new enzymes, e.g. structures of enzymes registered in 
Protein Data Bank are over 186 000, laboratory-based methods are 
becoming less practical. The most well-known way of annotating 
enzyme functions is the enzyme commission (EC) system, which 
is a tree structure consisting of four digits that most specifically 
describe the main classes, the chemical bond, the chemical 
reactions and the substrates of enzymes [8]. The first digit to 
the fourth digit of EC, respectively, indicates whether a protein 
is an enzyme, and provides its sub-class, sub-sub-class and 
sub-sub-sub-class if it is an enzyme. By precisely predicting EC 
numbers, the functions of enzymes can be annotated accordingly, 
associating the protein with specific chemical reactions [9]. 

Computational methods have been used for EC number predic-
tion for decades. Based on the belief that the functions of proteins 
are often determined by their structures, several methods first 
predict protein structures and then obtain the EC numbers, e.g. I-
TASSER [10]. Specifically, after the structure prediction stage, the 
protein databases that contain the entire EC numbers, confirmed 
via experiments, are scanned. Thus, each protein sequence is 
assigned with the EC numbers of the sequences in the databases 
that have the most similar structure. However, the structure pre-
dictions of these methods are usually slow and time-consuming, 
which thus are not suitable for large protein databases. Even 
worse, there are errors at both the structure prediction and the EC 
number confirmation stages, which would be accumulated and 
thus significantly limit the final prediction performances. 

Secondly, some models are built by considering similarities 
between proteins. Their common assumption is that sequences 
of enzymes with highly similar biological functions should 
meanwhile have large similarities. They first select the enzyme 
sequences with a given EC number and then achieve the 
goal of dividing sequences in a target protein database into 
different sub-groups by considering their similarity with the 
known enzyme [11]. However, these models require significant 
homologies in current databases for each input protein sequence 
that needs to be estimated. As a result, they may fail to perform 
accurate function predictions for protein sequences without such 
homologies in the known databases, which however is a very 
common issue for newly discovered enzyme proteins. 

Machine learning models [12–15] are widely built to first 
extract features from raw sequences and then predict EC 
numbers. Typical methods include Ezypred [16], Svm-prot [17], 
ABLE [8] and ProPythia [18]. However, they often need to use 
manually crafted features as inputs, requiring the devotion of a 
large volume of time and energy of experts, which may fail to meet 
the needs of handling large quantities of proteins [17]. Although 
recent methods can extract features from raw sequences in an 
automatic way, most of them rely heavily on usages of PSI-BLAST 
from BLAST+ to extract Position-Specific Scoring Matrix (PSSM) 
features through multiple iterations, e.g. DEEPre [9]. Thus, they 
still need long time to obtain PSSM features, failing to meet 
the needs of handling a large quantity of proteins in the post-
genomic era. 

Another two issues severely limit further applications of these 
methods. First, the existing methods are not able to provide mean-
ingful interpretations on their results, which makes them hard to 
be applied in reality to promote public health. This is because 
protein sequences are typically complex and difficult to analyze. 

Thus, when models perform predictions without providing any 
interpretation, it would be difficult for bio-engineering scientists 
to have a good understanding of the results and accordingly 
improve their designs. The absence of interpretations meanwhile 
reduces the reliability of obtained results, further limiting their 
applications. Secondly, current enzyme prediction models often 
fail to fully utilize important biological knowledge of proteins con-
tained in super quantities of unlabeled protein sequences to improve 
their results. There are already hundreds of millions of proteins 
in current databases and an increasing number of new sequences 
are being discovered each day, which contain vital information on 
the physical properties of proteins spanning evolutionary diver-
sity and are crucial for enzyme predictions. However, such crucial 
biological knowledge is often ignored by the existing methods, 
which severely impacts their prediction performances. 

To tackle the above challenges, following our previous work 
DEEPre, we  propose  a  new  interpretable and fast version, ifDEEPre, 
for accurate EC number predictions by designing novel self-guided 
attention and incorporating vital protein biological knowledge 
learned from hundreds of millions of proteins. To effectively opti-
mize the contribution weights of different representations accord-
ing to the unique properties of tasks, we design new self-guided 
attention to dynamically adjust the weights of all the elements. 
This mechanism automatically reinforces the roles of key ele-
ments and detects important motifs to provide meaningful inter-
pretations, assisting biological scientists in designing more effec-
tive strategies. Meanwhile, to meet the needs of modeling millions 
of proteins in the post-genomic era, representations learned from 
raw sequences are strictly screened to improve the speed of the 
framework, e.g. excluding manually crafted features [17] and  
PSSM [9], which take long to extract. Signal channel of each repre-
sentation is constructed under a residual learning structure via 
short-cut connection units, further facilitating the information 
propagation and stabilizing the network training. Furthermore, 
to fully utilize the advantages of the big data era, we introduce 
a large language module [19] into this framework to capture 
vital biological knowledge from hundreds of millions of proteins. 
This design incorporates rich types of biological knowledge into 
ifDEEPre, e.g. function information, mutational effects and folding 
knowledge, not only boosting performances but also promot-
ing downstream applications. Extensive experimental results and 
analysis suggest the superiority of the proposed ifDEEPre method 
in various tasks, including enzyme function predictions, model 
interpretability analysis, multi-level protein knowledge learning 
and evolutionary relationship inferences. 

MATERIALS AND METHODS 
The architecture of the proposed method is presented in Figure 1. 
Sequence-length-dependent and -independent embeddings are 
simultaneously learned to capture rich protein knowledge. Self-
guided attentive residual learning structures are designed to 
dynamically optimize contributions of different representations 
while stabilizing the training of the framework. Embeddings 
extracted from various aspects are then injected into a learnable 
fusion layer to obtain final enzyme prediction results. We first 
introduce the data collection and pre-processing process. 

Data collection and pre-processing 
In this study, we conduct experiments on several benchmark 
datasets, i.e. NEW dataset from [9], KNN dataset from [16] and  
COFACTOR dataset from [20]. NEW dataset is constructed from 
SWISS-PROT database by Li et al. [9], which excludes sequences
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Figure 1. Architecture of ifDEEPre for accurate enzyme predictions. Both sequence-length-dependent and -independent embeddings are automatically 
learned to capture rich knowledge from raw sequences for enzyme predictions. Self-guided attention and short-cut connections are simultaneously 
introduced into convolution layers for sequence-length-dependent features, dynamically optimizing contributions of various elements and stabilizing 
training of the whole network. Meanwhile, fully connected layers with self-guided attention and short-cut connections are designed for sequence-
length-independent features to adjust the weights of all the representations, which effectively promotes the distillation of global biological knowledge 
learned from millions of proteins to improve accuracy. Learnable fusion classifiers finally concatenate all the refined embeddings to obtain final results. 

with incomplete or more than one set of EC numbers and limits 
sequence similarities at 40% to remove redundancy bias, resulting 
in 22 168 non-enzymes and 22 168 enzymes with 3343 Oxidore-
ductases, 8517 Transferases, 5917 Hydrolases, 1532 Lyases, 1193 
Isomerases and 1666 Ligases. For KNN dataset, conditions in [ 16] 
are used to process data, obtaining 9850 non-enzymes and 9832 
enzymes that consist of 1618 Oxidoreductases, 3450 Transferases, 
2791 Hydrolases, 679 Lyases, 518 Isomerases and 776 Ligases. For 
both datasets, we randomly split 80%, 10% and 10% of sequences 
into training data, validation data and testing data. 

Besides, a third-party independent and non-overlapping pro-
tein dataset is used to evaluate the generalization capacity of 
the proposed ifDEEPre model. Therefore, the non-homologous 
dataset, i.e. the COFACTOR dataset from [20], is utilized for the 
cross-dataset validation experiments, which meets the following 
three requirements: (a) the similarities of protein sequences in 
this dataset are smaller than 30%; (b) this dataset does not contain 
any self-BLAST hit and has no homologous enzymes; (c) the over-
lap sequences between the training data (the NEW dataset) and 
test dataset are removed from COFACTOR. Finally, 281 enzymes 
are obtained. 

Large protein language module 
We learn two types of representations, i.e. sequence-length-
dependent (sequence encoding, secondary structure and solvent 
accessibility) and independent features (functional domain 

and transformer features). Among them, sequence encoding, 
secondary structure, solvent accessibility and functional domain 
are obtained via techniques in [9], which merely consider 
biological properties in small-scaled training samples, limiting 
the width and depth of knowledge. Although millions of proteins 
are available and provide a large volume of valuable information 
on protein properties, learning biological knowledge from such a 
giant number of sequences is challenging. This is because existing 
models are often built upon supervised learning, requiring label 
information for model training, which however is not available 
for most protein sequences. 

To tackle this issue, we incorporate a large language model, 
ESM-1b [19], as a key module for accurate enzyme predictions by 
learning valuable biological properties from millions of proteins, 
obtaining transformer features to effectively extend knowledge of 
the neural network. This module is built upon the unsupervised 
learning mechanism, which outperforms traditional models 
and has become a powerful network architecture for learning 
informative representations. It consists of several self-attention 
and feed-forward blocks, which consider context across inputs. 
A large protein database UniParc with 250 million sequences 
and 86 billion amino acids across life is used to optimize 
this language module. The masked language modeling (MLM) 
objective is built to optimize parameters, which improves the 
capacity of the network in predicting token amino acids by 
capturing global sequential information from corrupted protein
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sequences: 

LMLM = Ex∼XEM

∑
i∈M 

log p(xi|x/M), (1)  

where X denotes the whole dataset; x is a sequence in X; M rep-
resents the indices of the token mask; xi and x/M denote the true 
amino acid and the masked sequence, which are the prediction 
targets and the inputs of this module. 

When training, errors between truly masked amino acids 
and predicted ones are fed back to this module, guiding it to 
adjust parameters by precisely capturing sequential patterns of 
proteins. The learned transformer embeddings reflect multi-
scale protein biological properties, e.g. secondary structure, 
evolutionary information, function information and mutational 
effects, effectively extending biological knowledge of the whole 
network and enhancing its generalization ability. This language 
module runs fast, needing much less time than manually crafted 
[17] and PSSM features [9], so this module can effectively improve 
prediction accuracy while avoiding increasing the computational 
burden of the whole framework. 

Self-guided attention mechanism 
Since these representations are learned from diverse aspects, 
e.g. sequence encoding conveys sequential information of pro-
teins while secondary structure indicates local folding patterns of 
sequences, they may possess different degrees of importance for 
enzyme function predictions. We hence design novel self-guided 
attention and introduce this learning mechanism into each chan-
nel to dynamically optimize the contributions of different fea-
tures and motifs while providing interpretations on the prediction 
results. To tackle the shape diversity issue, 1D self-guided atten-
tion is designed for sequence encoding, functional domain and 
transformer features, while the 2D version of attention is adopted 
for secondary structure and solvent accessibility. We denote the 
1D representation as R1D,1t = [R1D,1t 

1 , R1D,1t 
2 , · · ·  , R1D,1t 

L ], where  1t is 
seqd, fund or traf , respectively, representing sequence encoding, 
functional domain or transformer features; L is length of the 
representation. Different from vanilla attention, which learns 
weights from random status and may fail to achieve the global 
optimum, the proposed self-guided attention mechanism learns 
more accurate weights by fully considering the unique properties 
of data in each representation. 1D self-guided attention weights 
α1D,1t are thus learned from R1D,1t via 

α1D,1t = σ(W1D,1t ∗ R1D,1t + b1D,1t 
), (2)  

where W1D,1t ∈ RL×L denotes a trainable weight matrix; b1D,1t ∈ RL 

is a trainable bias vector. 
The learned attention weights α1D,1t are then applied to adjust 

the contribution score of every element in the feature represen-
tation R1D,1t via the expression 

R1D,1t 
att = α1D,1t · R1D,1t , (3)  

where · represents the elementwise multiplication operation. 
Attention weights α1D,1t are globally optimized accord-

ing to unique properties of data in the representation R1D,1t 

and the back-propagation information of current prediction 
errors, which provides larger space to search for better opti-
mal solutions. Meanwhile, α1D,1t dynamically optimizes the 
contributions of elements in R1D,1t to improve weights of 

key fragments. We denote a 2D representation as R2D,2t = 
[R2D,2t 

1,1 , R2D,2t 
1,2 , · · ·  , R2D,2t 

1,L ; · · ·  ; R2D,2t 
m,1 , R2D,2t 

m,2 , · · ·  , R2D,2t 
m,L ], where  2t is 

ss or acc, respectively, representing secondary structure or 
solvent accessibility; L is length of the 2D representation; m 
is the dimension of the vertical axis. 2D self-guided attention 
weights α2D,2t are learned from R2D,2t and meanwhile utilized 
to adjust contribution scores of different elements in this 
representation: 

α2D,2t = σ(W2D,2t ∗ R2D,2t + b2D,2t 
), (4)  

R2D,2t 
att = α2D,2t · R2D,2t , (5)  

where W2D,2t ∈ Rm×m and b1D,1t ∈ Rm , respectively, denote trainable 
weight matrix and bias vector. 

Note that the self-guided attention modules introduced into 
different signal channels are trained jointly to achieve global 
optimal. This is because they can effectively learn accurate and 
reliable attention weights from the unique characteristics of data 
properties while closely exchanging their learned key information 
through the back-propagation mechanism, dynamically adjusting 
their learning status according to the status of other channels 
and the whole neural network to achieve better results. More 
importantly, the learned attention weights can illustrate the 
contribution score of every element in the sequences of all the 
representations, providing meaningful interpretations on the 
prediction results. This is vital for promoting the real-world 
applications of the proposed method because such capacity 
helps researchers and doctors to have a good understanding of 
the input protein sequences and identify key fragments from a 
whole long protein sequence, assisting them in improving their 
designs. 

Channel-wise learning in residual structure 
Sequence-length-dependent features and sequence-length-
independent features exhibit diverse properties, i.e. the former 
type changes along lengths of input sequences while lengths of 
the latter one are fixed, so we adopt different machine learning 
components to handle them, learning dimension-unified features 
that can be conveniently modeled by any type of standard 
classifier. To tackle these diversities, CNN components are 
designed to learn convolutional information from the sequence-
length-dependent features, e.g. sequence encoding, secondary 
structure and solvent accessibility, while FNN components 
are simultaneously introduced to analyze sequence-length-
independent features, e.g. functional domain and transformer 
features. Thus, multiple CNN layers are introduced into each 
signal channel of sequence-length-dependent features to jointly 
model them. 

Among all the sequence-length-dependent features, the 
shapes of secondary structure and solvent accessibility are 2D, 
while those of sequence encoding are 1D. For 2D representations, 
their features after being processed by the self-guided attention 
mechanism are obtained via Eq.(5), R2D,2t 

att , where  2t could be 
ss or acc, which, respectively, denotes secondary structure or 
solvent accessibility. For sequence encoding, the features after 
being processed by the self-guided attention mechanism are 
calculated via Eq.(3), R1D,1t 

att , where  1t is seqd, which represents 
sequence encoding. Each type of sequence-length-dependent 
feature is then reshaped into 3D to meet the shape requirement of 
convolutional units and is further modeled by CNN components
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to learn dimension-unified features R3t 
unified: 

R3t 
att,re = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

Rseqd 
att,re = RS1D→3D 

(R1D,1t 
att ), if  1t = seqd, 

Rss 
att,re = RS2D→3D 

(R2D,2t 
att ), if  2t = ss, 

Racc 
att,re = RS2D→3D 

(R2D,2t 
att ), if  2t = acc, 

(6) 

R3t 
unified = CNN(R3t 

att,re), (7)  

where 3t is seqd, ss or acc; Reshape1D→3D and Reshape2D→3D are 
operations of reshaping feature from 1D to 3D and from 2D to 3D; 
CNN represents the CNN components. 

Because all the sequence-length-independent features are 1D 
representations, i.e. functional domain and transformer features, 
FNN components are thus introduced to each signal channel 
of these features to analyze them jointly. The sequence-length-
independent features after being processed by the self-guided 
attention module is obtained via Eq.(3) R1D,1t 

att , where  1t could be 
fund or traf , which, respectively, represents functional domain 
features or transformer features. Since the shapes of these two 
sequence-length-independent features already meet the require-
ment of FNN units, we directly utilize FNN components to model 
them without any adjustments on shapes: 

R1t 
unified = FNN(R1D,1t 

att ), (8)  

where 1t is fund or traf ; FNN is the FNN component. 
However, these channels are constructed upon the deep learn-

ing theories containing many layers, which may potentially impair 
the propagation of information along the whole signal channel 
and limit the prediction accuracy of the final results. To tackle 
this issue, we perform channel-wise learning in residual structure 
to effectively facilitate the propagation of important information 
and stabilize the training of the deep neural network by intro-
ducing a short-cut connection structure into each channel, fur-
ther improving enzyme predictions. Due to the diversity between 
shapes of extracted dimension-unified features and that of orig-
inal representations, traditional short-cut connections cannot be 
applied. We hence adopt a one-layer fully connected network to 
transform the shape of the short-cut branch to the same with 
that of unified features. In CNN and FNN modules, several batch 
normalization operations are adopted to limit the value of learned 
features in the range [0, 1]. To keep the value unity of features 
in the short-cut branches and the main channel, we connect 
a batch normalization layer to the one-layer fully connected 
short-cut network. The reshaping operations are conducted for 
feature representations in all the CNN channels. Specifically, 2D 
representations, i.e. secondary structure and solvent accessibility, 
are flattened to 1D, while this operation is not performed for 1D 
features, i.e. sequence encoding. The short-cut features are thus 
learned and then combined with reshaped features via 

Rf latten,3t 
att = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

Rf latten,seqd 
att = R1D,1t 

att , if  1t = seqd, 
Rf latten,ss 

att = f latten(R2D,2t 
att ), if  2t = ss, 

Rf latten, acc 
att = f latten(R2D, 2t 

att ), if  2t = acc, 

(9) 

Rshort, 3t = BN(relu(Wshort, 3t ∗ Rf latten, 3t 
att + bshort, 3t 

)), (10) 

Rcombined, 3t = R3t 
unified + Rshort, 3t , (11) 

where 3t is seqd, ss or acc; f latten denotes flatten operation; for ss 
and acc, Wshort, 3t ∈ RL2∗m×du is a trainable weight matrix, where L2 

denotes the length of the representation and m equals to 3; for 
seqd, Wshort, 3t ∈ RL1×du is a trainable weight matrix, where L1 is the 
length of the representation; du represents the dimension of the 
unified features, including both R1t 

unified and R3t 
unified; bshort, 3t ∈ Rdu is a 

trainable bias vector; batchNorm represents the batch normaliza-
tion operation; relu denotes the Relu activation function. 

Similar structures except for flatten operations are also 
designed and adopted for the FNN channels. This is because the 
functional domain or transformer input features and their FNN 
outputs have the same dimension, i.e. 1D representations: 

Rshort, 1t = BN(relu(Wshort, 1t ∗ R1d, 1t 
att + bshort, 1t 

)), (12)  

Rcombined, 1t = R1t 
unified + Rshort, 1t , (13)  

where 1t is fund or traf ; Wshort, 1t ∈ RL1×du is a trainable weight 
matrix; L1 is feature length; du is dimension of unified features; 
bshort, 1t ∈ Rdu is a trainable bias vector; batchNorm denotes batch 
normalization; relu is Relu activation function. 

Embeddings and outputs 
Embeddings learned from different channels are projected to the 
same dimensionality, i.e. dimension du of unified features is set as 
256, and can be conveniently concatenated. Specifically, signals 
in the three-dimensional channel outputted by the convolution 
layers are flattened to one-dimensional, which are then injected 
into several fully connected layers and obtain a one-dimensional 
feature with 256 elements. As for the one-dimensional channel, 
these representations are further refined by several fully con-
nected layers and finally obtain a one-dimensional representation 
with 256 elements. We also tried other numbers of elements for 
the unified features, e.g. 64, 128,and 512, but their results are very 
similar. 

These embeddings learned from various aspects are finally 
concatenated as an embedding yemb of dimension 1024 through 
another trainable neural network, which is expected to contain a 
large volume of valuable biological knowledge and can be applied 
to perform various downstream tasks. The embedding yemb is 
finally injected into a fully connected classifier to obtain the EC 
number prediction result ypred: 

yemb = BN(relu(Wseqd ∗ Remb, seqd + Wss ∗ Remb, ss+ 

Wacc ∗ Remb, acc + Wfund ∗ Remb, fund+ 

Wtraf ∗ Remb, traf + bemb 
)), 

(14) 

ypred = softmax(Wpred ∗ yemb + bpred 
), (15)  

where Wseqd ∈ Rdu×1024 , Wss ∈ Rdu×1024 , Wacc ∈ Rdu×1024 , Wfund ∈ 
Rdu×1024 and Wtraf ∈ Rdu×1024 denote trainable weight matrices 
for seqd, ss, acc, fund and traf; bemb ∈ R1024 is a trainable bias 
vector; relu is Relu activation function; batchNorm represents the 
batch normalization operation; Wpred ∈ R1024×c is the trainable 
weight matrix used in the classifier network; c is the number of 
output classes; bpred ∈ Rc indicates the trainable bias vector in the 
classifier. 

The contributions of embeddings in different channels are 
equally considered at the beginning because their weights are 
randomly initialized. During the training process, errors between
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predicted EC numbers and the true labels are evaluated, which are 
further back propagated to modules in different signal channels, 
adjusting their weights. Through multiple interactions of train-
ing, parameters and contribution weights of different channels 
are adaptively optimized, improving the final enzyme prediction 
results. 

EXPERIMENTAL RESULTS 
To the best of our knowledge, this is the first attempt to incorpo-
rate large language models into deep frameworks as key modules 
to learn valuable physical properties for accurate enzyme pre-
dictions while providing meaningful interpretations. To evaluate 
the utility of ifDEEPre, we compare it with the state-of-the-art 
methods in predicting various levels of EC number, e.g. Support 
Vector Machine (SVM), Logistic Regression (LR), Random Forest 
(RF), AdaBoost, NN, ResNet, LSTM, EzyPred [16], SVM-Prot [21], 
ProPythia [18] and  ABLE  [8]. Accuracy, Precision, Recall, F1-score 
and Kappa Score are used to evaluate the prediction results. We 
further analyze protein biological patterns and key motifs learned 
by ifDEEPre and compare them with the ground truth to examine 
its implications for downstream applications. 

Automatic detection of enzyme proteins 
Enzymes and non-enzyme proteins have apparent differences in 
catalyzing biochemical reactions. Therefore, level 0 EC number 
predictions are performed to automatically detect the enzyme 
proteins from the whole database. We first compare the perfor-
mances of ifDEEPre with that of the state-of-the-art methods. 
Experimental results on the NEW and the KNN datasets indicate 
that ifDEEPre significantly outperforms the state-of-the-art meth-
ods, as illustrated in Table 1 and Table 2. ifDEEPre achieves at least 
15.55%, 16.36% and 14.22% improvements in Precision, Recall and 
F1-score for this task on the NEW dataset, compared with the 
highest scores obtained by the state-of-the-art methods. Mean-
while, on the KNN dataset, ifDEEPre again obtains more accurate 
results than other methods, e.g. achieving at least 9.79% and 
12.33% increases in F1-score and Recall over the state-of-the-art 
models. Among the baseline models that take sequence encoding 
(RAW) as inputs, for the NEW dataset, LSTM-RAW achieves the 
best results in Accuracy and Recall, with scores of 0.861 and 0.853, 
which however are still, respectively, 15.68% and 16.76% smaller 
than that of ifDEEPre. We see from Table 1 that for this dataset, 
ResNet-RAW and AdaBoost-RAW, respectively, achieve the highest 
F1-score and precision among baseline methods, i.e. 0.854 and 
0.824, which are surpassed by ifDEEPre with margins of 16.63% 
and 20.87%, suggesting strong prediction capacities of ifDEEPre. 

Furthermore, even when compared with the most recent 
state-of-the-art enzyme prediction methods, e.g. ABLE [8] built 
upon LSTM neural networks and the attention mechanism, and 
ProPythia [18] constructed through the combinations of both 
shallow and deep learning techniques, the proposed ifDEEPre 
method still achieves more accurate results with large margins 
on both datasets. For the NEW dataset, among the state-of-the-
art methods, ABLE achieves the highest precision, i.e. 0.862, which 
however is still 15.55% smaller than that of ifDEEPre, i.e. 0.996, as 
shown in Table 1. For the same dataset, in Recall and F1-score, 
the prediction results of ProPythia are the best among the state-
of-the-art methods with scores of 0.856 and 0.872, which however 
are, respectively, 16.36% and 14.22% smaller than the scores 
obtained by ifDEEPre. On the KNN dataset, for the same task, 
we observe from Table 2 that ABLE and ProPythia, respectively, 
obtain the highest scores in Recall and F1-score among the 

state-of-the-art methods with scores of 0.819 and 0.838, which 
are still much smaller than the scores of 0.920 and 0.920 achieved 
by ifDEEPre. These results indicate that ifDEEPre can accurately 
detect enzymes from the whole protein database. 

Annotations on main classes of enzymes 
The biocatalytic properties of enzyme proteins vary significantly 
with their classes. Level 1 EC number prediction experiments 
are hence conducted to evaluate the capacity of the proposed 
ifDEEPre method and the state-of-the-art methods in correctly 
annotating the main classes of the enzyme proteins. The exper-
imental results on the NEW dataset and the KNN dataset are, 
respectively, demonstrated in Table 3 and Table 4. We observe that 
the prediction results of ifDEEPre are significantly better than the 
performances achieved by all the state-of-the-art methods. As 
shown in Table 3, the Recall and F1-score of ifDEEPre are 0.934 
and 0.934, which are, respectively, 13.21% and 8.35% higher than 
that of ProPythia, and meanwhile are 8.48% and 6.02% higher than 
that of ABLE, the top two methods in existing enzyme EC number 
prediction tools. 

Meanwhile, we observe from Table 4 that ifDEEPre again sig-
nificantly outperforms all the rest methods on the KNN dataset, 
achieving much larger scores in all the evaluation criteria than 
all the existing methods. For this task on the KNN dataset, the 
largest accuracy score among all the state-of-the-art methods is 
0.838, achieved by EzyPred, which however is 13.48% smaller than 
that of ifDEEPre, i.e. 0.941. ProPythia obtains the highest precision 
value of 0.839 among the state-of-the-art methods, which is still 
much smaller than the score of 0.938 obtained by ifDEEPre, with a 
giant 11.44% difference. For the same task, the F1-score achieved 
by ifDEEPre is 0.920, which is 12.80% larger than the highest F1-
score of 0.828 among all the state-of-the-art methods, obtained by 
ABLE. All these results suggest the strong capacity of the proposed 
ifDEEPre method in correctly annotating the main classes of 
various enzyme sequences and confirming their functions. 

Annotation on subclasses of various enzymes 
Even within a same type of enzyme, different subclasses of 
enzymes often have diverse functions. Level 2 EC number 
predictions aim at annotating subclasses of enzymes, given their 
main classes. The experimental results on the NEW and the 
KNN datasets are provided in Figure 2. We observe from these 
figures that ifDEEPre significantly and consistently outperforms 
the state-of-the-art methods in all the evaluation criteria for both 
datasets, which indicates the strong prediction capacity of the 
proposed ifDEEPre method. On the NEW dataset, for the level 
2 prediction task, we observe from Figure 2A that the colors of 
ifDEEPre are much redder than that of others, which indicates that 
ifDEEPre achieves the highest scores in all the evaluation criteria. 
The average recall and F1-score values of ifDEEPre achieved for 
various types of enzyme proteins are 0.890 and 0.890, which are, 
respectively, 16.19% and 15.14% larger than the highest recall and 
F1-score values among all the state-of-the-art methods, i.e. 0.766 
and 0.773, obtained by ProPythia. This conclusion is also true 
for the KNN dataset, as demonstrated in Figure 2B. For  the  KNN  
dataset, ProPythia obtains the highest accuracy of 0.829, while 
ABLE achieves the largest Kappa Score and precision of 0.823 
and 0.795 among all the comparing models, which however are, 
respectively, 12.91%, 11.42% and 11.45% smaller than the scores 
of ifDEEPre, i.e. 0.936, 0.917 and 0.886. 

There are several possible reasons. First, ifDEEPre can auto-
matically learn rich representations from raw sequences, which 
provide wide aspects of key information for capturing protein
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Table 1: Experimental results in detecting whether a protein is an enzyme on the NEW dataset 

Model Accuracy Kappa score Precision Recall F1-score 

SVM-RAW 0.740 0.759 0.730 0.730 0.830 
LR-RAW 0.719 0.738 0.719 0.719 0.719 
RF-RAW 0.783 0.792 0.700 0.773 0.793 
AdaBoost-RAW 0.802 0.802 0.824 0.853 0.791 
NN-RAW 0.849 0.833 0.802 0.830 0.839 
ResNet-RAW 0.840 0.893 0.822 0.813 0.854 
LSTM-RAW 0.861 0.803 0.819 0.853 0.824 
EzyPred 0.913 0.848 0.810 0.801 0.814 
SVM-Prot 0.752 0.504 0.754 0.752 0.752 
ProPythia 0.901 0.903 0.840 0.856 0.872 
ABLE 0.912 0.909 0.862 0.853 0.806 
DEEPre 0.965 0.929 0.965 0.965 0.965 
ifDEEPre 0.996 0.991 0.996 0.996 0.996 

Table 2: Experimental results in detecting whether a protein is an enzyme on the KNN dataset 

Model Accuracy Kappa score Precision Recall F1-score 

SVM-RAW 0.793 0.803 0.773 0.772 0.783 
LR-RAW 0.772 0.783 0.753 0.759 0.796 
RF-RAW 0.703 0.703 0.784 0.760 0.685 
AdaBoost-RAW 0.700 0.681 0.696 0.653 0.702 
NN-RAW 0.803 0.913 0.813 0.797 0.803 
ResNet-RAW 0.800 0.792 0.792 0.762 0.811 
LSTM-RAW 0.822 0.767 0.808 0.789 0.813 
EzyPred 0.806 0.823 0.820 0.803 0.827 
SVM-Prot 0.703 0.406 0.723 0.657 0.689 
ProPythia 0.841 0.811 0.849 0.806 0.838 
ABLE 0.849 0.801 0.821 0.819 0.834 
DEEPre 0.884 0.767 0.879 0.890 0.885 
ifDEEPre 0.920 0.841 0.921 0.920 0.920 

Table 3: Annotation performance comparisons of different predictive tools on the main classes of enzymes on the NEW dataset 

Model Accuracy Kappa score Precision Recall F1-score 

SVM-RAW 0.739 0.718 0.711 0.740 0.725 
LR-RAW 0.799 0.752 0.756 0.792 0.773 
RF-RAW 0.701 0.713 0.713 0.797 0.703 
AdaBoost-RAW 0.794 0.730 0.784 0.791 0.702 
NN-RAW 0.843 0.813 0.814 0.826 0.796 
ResNet-RAW 0.847 0.813 0.809 0.832 0.802 
LSTM-RAW 0.825 0.831 0.822 0.810 0.821 
EzyPred 0.853 0.832 0.893 0.846 0.838 
SVM-Prot 0.493 0.258 0.504 0.332 0.349 
ProPythia 0.895 0.895 0.905 0.825 0.862 
ABLE 0.912 0.905 0.916 0.861 0.881 
DEEPre 0.912 0.882 0.913 0.882 0.895 
ifDEEPre 0.951 0.934 0.935 0.934 0.934 

biological properties. Conversely, baseline methods that only con-
sider sequence encoding often obtain poor results. This suggests 
that extracting rich valuable information from raw sequences is 
vital for accurate predictions of enzyme functions. Secondly, novel  
self-guided attention is designed to dynamically adjust contribu-
tions of representations and fragments according to properties of 
tasks. Comparing the results of ifDEEPre and ABLE, we find that 
although both models are constructed upon deep learning, the 
performances of ifDEEPre are much better. One key difference is 

that ABLE uses vanilla attention, which learns attention weights 
from random status and thus may fall into a local optimal solu-
tion. Conversely, we design novel self-guided attention to fully 
consider the diversity in the importance of different elements 
by dynamically detecting key elements and adjusting their roles, 
hence learning more accurate weights to promote performances. 
Lastly, by introducing a large protein language model trained 
through hundreds of millions of proteins into our deep frame-
work, ifDEEPre can effectively incorporate valuable expertise on 
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Table 4: Annotation performance comparisons of different predictive tools on the main classes of enzymes on the KNN dataset 

Model Accuracy Kappa score Precision Recall F1-score 

SVM-RAW 0.712 0.753 0.683 0.689 0.712 
LR-RAW 0.763 0.763 0.758 0.789 0.772 
RF-RAW 0.782 0.771 0.789 0.770 0.782 
AdaBoost-RAW 0.801 0.789 0.779 0.782 0.759 
NN-RAW 0.821 0.809 0.812 0.801 0.812 
ResNet-RAW 0.812 0.813 0.801 0.802 0.802 
LSTM-RAW 0.820 0.796 0.781 0.803 0.790 
EzyPred 0.838 0.821 0.825 0.817 0.824 
SVM-Prot 0.445 0.198 0.506 0.277 0.278 
ProPythia 0.835 0.847 0.839 0.847 0.811 
ABLE 0.815 0.836 0.803 0.802 0.828 
DEEPre 0.903 0.870 0.918 0.862 0.886 
ifDEEPre 0.941 0.921 0.938 0.907 0.920 

Figure 2. Annotation performance comparisons of ifDEEPre and the state-of-the-art methods on the subclass of various enzymes. (A) Annotation results 
on the NEW dataset. (B) Annotation results on the KNN dataset. 

biological properties of proteins, e.g. contact patterns, function 
information and mutational effects. Such important information 
spans the evolutionary diversity of tremendous protein data and 
thus effectively extends biological knowledge of the entire neural 
network, further improving the final enzyme prediction perfor-
mances. 

Influences of learned representations 
To explore the influences of learned features on enzyme predic-
tions, we conduct ablation studies on the variants of ifDEEPre by 
sequentially excluding each representation. The ablation study 
results on the NEW dataset are shown in Figure 3, evaluated via 
accuracy. Some interesting phenomena are observed. Significant 
effectiveness of transformer features is discovered, whose exclu-
sion makes results drop apparently. When transformer features 
are removed, the magnitudes in accuracy declines caused by 
this factor are the most apparent among all the ablation studies. 
The exclusion of the transformer features makes the accuracy 
in detecting enzymes decrease from 0.996 to 0.942 on the NEW 
dataset, as shown in Figure 3A. Meanwhile, we see from Figure 3B 
that this operation makes accuracy drop from 0.949 to 0.879 in the 
task of enzyme subclass annotations. These results indicate the 
importance of transformer features for accurate enzyme function 
predictions. This is because transformer features are extracted via 
a large language module, which is trained via hundreds of millions 
of proteins and covers different aspects of biological information. 
Therefore, the incorporation of such valuable expertise effectively 
extends biological knowledge of the whole neural network, 

capturing vital protein biological knowledge spanning evolution-
ary diversities, e.g. secondary structure, contact patterns, function 
information and mutational effects, which significantly enhances 
the generalization ability of ifDEEPre for new protein sequences. 

Functional domain is vital for the precise predictions of enzyme 
functions, the exclusion of which causes significant decreases 
in the performances. For the NEW dataset, when the functional 
domain is excluded, the accuracy for annotating subclasses of 
enzymes drops from 0.949 to 0.895, as shown in Figure 3B. These  
experimental results indicate the vital roles of functional domain 
plays in enzyme predictions. This is because such representation 
provides key information for specifying the start and the end 
positions for each domain, which is quite useful for the accurate 
analysis of proteins. Sequence encoding has moderate influences 
on enzyme function predictions, the exclusion of which leads 
to a certain drop in the prediction performances. For the NEW 
dataset, we observe from Figure 3A that when sequence encoding 
is excluded, the accuracy in detecting enzymes decreases from 
0.996 to 0.967. These results indicate that sequence encoding, 
which contains sequential patterns of proteins, reflects certain 
key information for improving the enzyme prediction results. 

Minor influence of secondary structure is observed, which 
reflects structure information of proteins and its exclusion 
causes certain decreases in enzyme predictions. For the NEW 
dataset, excluding secondary structure causes slight drops in 
prediction accuracy, e.g. decrease from 0.949 to 0.939 for the 
task of annotating enzyme subclasses, as shown in Figure 3B. 
These results suggest that local folding information contained in
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Figure 3. Influences of each automatically learned representation on various enzyme function prediction tasks of the NEW dataset. (A) Enzyme protein  
detection results. (B) Annotation results of enzyme subclass. 

the secondary structure representations of proteins can provide 
certain properties of protein functions. However, secondary 
structure information might have been already included in the 
transformer features learned from millions of proteins, so its 
exclusion has minor influences. Solvent accessibility also has 
limited influences. When solvent accessibility is not considered, 
the accuracy for the NEW dataset drops from 0.949 to 0.921 on the 
task of enzyme subclass annotation, as shown in Figure 3B. We see  
that the influences of solvent accessibility are also minor, which 
is probably because transformer features extracted from massive 
proteins reflect complete knowledge of protein properties, 
including information on the openness of a local region of 
proteins, thus weakening the impacts of solvent accessibility. 

Please note that the main target of this study is to build an 
accurate and fast framework to provide convenient enzyme 
prediction services to the public. The extraction of the PSSM 
features through PSI-BLAST takes a relatively long time for 
each sequence [9], around 14 s, which would be huge when 
the number of proteins is large. Conversely, the use of HMMER 
to acquire functional domains and RaptorX Toolbox to obtain 
secondary structure features is much faster, respectively, 
around 0.47 and 2.22 s for each sequence. Therefore, when 
constructing this deep framework, we exclude PSI-BLAST while 
keeping HMMER and RaptorX. In addition, the choice of the 
comparative database in HMMER searches may influence the 
model’s performance. Thus, to exactly evaluate the influences 

of the protein language module, we utilize the same HMMER 
searching database as that used in our previous work DEEPre [9]. 
Meanwhile, to provide fast and convenient enzyme prediction 
servers to the public, we further exclude RaptorX Toolbox when 
building the web server of ifDEEPre, significantly decreasing 
the average scanning time per sequence with very minor drops 
in performance. 

Impacts of designed structure and attention 
To explore the effectiveness of the designed channel-wise short-
cut connection structure and self-guided attention for EC num-
ber predictions, we compare the performances of ifDEEPre with 
its two variants, ifDEEPre-no-shortCut and ifDEEPre-no-attention, 
which take the same representations as inputs with ifDEEPre. 
Therefore, the differences between the results of ifDEEPre and 
its two variants are caused by the designed attention mecha-
nism and short-cut learning structures. The designed short-cut 
learning structure is effective for improving enzyme function 
predictions, the removal of which causes large drops in perfor-
mances for both the NEW and the KNN datasets, as shown in 
Figure 4A, B, C, D, E, and F. For the task of detecting enzymes in the 
NEW dataset, removing this structure leads to a decrease in the 
accuracy from 0.996 to 0.963, which illustrates the importance of 
the designed channel-wise short-cut connection. For annotating 
the main classes of enzymes in the KNN dataset, when the short-
cut structure is excluded from the whole network, the accuracy
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Figure 4. Importance of the designed network structure and attentive learning for various enzyme prediction tasks. (A–C) Level  0,  1 and 2 results  on  
NEW dataset. (D–F) Level 0, 1 and 2 results on the KNN dataset. 

experiences a large decline from 0.941 to 0.916, as shown in 
Figure 4E. These results indicate the removal of the channel-
wise short-cut structures from the network causes significant 
decreases in performances even when inputs and the rest mod-
ules remain the same, proving the importance of this structure for 
accurate enzyme predictions. This is because signal channels in 
the designed framework are constructed via deep learning tech-
niques that contain a large number of neural layers to increase 
learning capacities, which however may potentially impair infor-
mation propagation along long channels and severely impact 
final results. By introducing the residual learning structure into 
each signal channel, short-cut connections provide highways for 
the smooth passage of crucial information, effectively facilitating 
information propagation and stabilizing the training of the deep 
network to improve final results. 

The incorporation of the designed self-guided attentive 
learning mechanism meanwhile significantly promotes various 
enzyme function prediction performances. The removal of this 
mechanism causes giant decreases in the results for both 
datasets. For the level 0 task of the NEW dataset, the accuracy 
drops from 0.996 to 0.939 after removing self-guided attention 
from the ifDEEPre neural network, as illustrated in Figure 4A. 
This attention mechanism has significant influences on the KNN 
dataset as well. This removal operation on the KNN dataset leads 
to an apparent decrease in the accuracy for the task of annotating 
the main classes of various enzymes, dropping from 0.941 to 
0.910, as demonstrated in Figure 4E. These experimental results 
indicate that the proposed self-guided attention mechanism 

plays an important role in achieving accurate analysis for 
enzyme functions, the removal of which could cause significant 
decreases in the prediction performances. The reason is that 
this mechanism can effectively learn accurate and personalized 
attention weights by fully considering the biological properties 
of different sequence representations. Thus, it can dynamically 
adjust the contributions of different representations, optimizing 
their influences according to the unique characteristic of the 
prediction task to improve final results. Furthermore, this 
mechanism demonstrates the contribution weights of all the 
amino acid fragments, indicating their unique influence scores 
and improving the understanding on protein data to promote 
real-world applications. 

Cross-dataset test on third-party dataset 
To evaluate the generalization ability of the proposed method, we 
compare the performances of various servers in predicting the 
level 1 and level 2 EC numbers of a third-party independent and 
non-overlapping dataset. We conduct such cross-dataset experi-
ments on the COFACTOR benchmark dataset, which is considered 
to be a difficult dataset in the field of enzyme function predictions 
[20]. To ensure the test data have enough diversity with the 
training data and there is no bias in the results, we eliminate 
the sequences in the COFACTOR dataset that overlap with the 
training data of ifDEEPre (the NEW dataset). Please note that 
the ifDEEPre model trained through the NEW dataset is used 
as the final version to construct the web server and perform
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Figure 5. The performance comparisons of different servers on various levels of EC number prediction tasks of the third-party independent and non-
overlapping dataset, i.e. the COFACTOR dataset. ifDEEPre again significantly outperforms all the existing servers under the cross-dataset setting. (A) 
Level 1 of EC number prediction results on the COFACTOR dataset. (B) Level 2 of EC number prediction results on the COFACTOR dataset. 

predictions for the COFACTOR dataset because the KNN dataset 
does not contain the third digit EC number and cannot be used 
to train the sub-sub-class models to predict the full four EC 
number digits. Since it takes about 4 h to run COFACTOR for 
one sequence to get the prediction results, we directly report the 
original experimental results from their paper. The first-digit and 
the second-digit EC number prediction results are provided in 
Figure 5, which suggest the significant superiority of ifDEEPre over 
the existing enzyme function prediction tools. For the level 1 task, 
ifDEEPre achieves a 16.92% increase over COFACTOR in accuracy, 
as shown in Figure 5A. Considering that COFACTOR requires the 
3D structures of enzymes, while ifDEEPre only needs sequence 
information, this improvement is significant. Meanwhile, ifDEEPre 
achieves at least 9.22% and 12.83% improvements in F1-score and 
Recall compared with the best results among all these enzyme 
function prediction servers. 

Meanwhile, ifDEEPre significantly outperforms all the existing 
methods in the level 2 EC number predictions of the COFACTOR 
dataset, as illustrated in Figure 5B. The F1-score of ifDEEPre for 
this task is 0.852, which is, respectively, 10.64%, 15.28%, 15.72% 
and 34.77% larger than the scores of 0.770, 0.739, 0.736 and 0.632, 
obtained by the top four models among the state-of-the-art meth-
ods, i.e. DEEPre, EzyPred, SVM-PrePssm and NN-Raw. At the same 
time, DEEPre, EzyPred, SVM-PrePssm and NN-Raw, respectively, 
achieve the four highest recall scores among the state-of-the-
art methods, i.e. 0.761, 0.713, 0.682 and 0.619, which however are 
still 13.52%, 21.04%, 26.60% and 39.46% smaller than the recall 
score of 0.864, achieved by ifDEEPre. These results indicate that 
ifDEEPre keeps its powerful enzyme function prediction capacities 
even for unseen sequences in a third-party independent and non-
overlapping dataset, suggesting its strong robustness and gener-
alization ability. This is probably because ifDEEPre incorporates 
a large language module trained via hundreds of millions of 
proteins into the designed framework as a key component. Such 
modules introduce vital protein biological knowledge on contact 
patterns, structure knowledge and function information spanning 
evolutionary and species diversities. As a result, even when tested 
on new and previously unseen protein sequences, ifDEEPre still 
achieves much more accurate EC number prediction results than 
all the state-of-the-art methods. 

Robustness of ifDEEPre against similarity 
The limitation on the redundancy between the test data and the 
training data is vital for evaluating the utility of the designed 
enzyme prediction framework. Therefore, we perform similarity 
analysis on the COFACTOR dataset to evaluate the robustness of 
ifDEEPre toward different degrees of sequence similarities. There 
are two popular tools for reducing sequence redundancy between 
two protein datasets, i.e. MMseqs2 [22] and  CD-HIT [23]. Because 
the lowest similarity allowed by CD-HIT for reducing sequence 
redundancy between protein datasets is 40% [23], this tool cannot 
be used to remove all the sequences that exceed the similarity 
30%. Therefore, we use MMseqs2 [22] to remove the redundant 
sequences in the COFACTOR dataset by successively reducing the 
similarity threshold from 80% to 30% with the interval of 10%, 
through the similarity comparisons with the training data (the 
NEW dataset). 

The number of the proteins left in the COFACTOR dataset under 
different similarity thresholds with the training data is shown 
in Figure 6. We see that as the similarity threshold decreases 
gradually, proteins left in the COFACTOR dataset become fewer, 
because the conditions used to reduce sequence redundancy 
become increasingly strict. For the very small similarity threshold 
30%, because this data processing condition is very strict, there 
are only three proteins left. Therefore, although ifDEEPre achieves 
very accurate results for enzyme predictions under this similarity, 
e.g. obtaining scores of 1.0, 1.0, 1.0, 1.0 and 1.0 in Accuracy, Kappa 
Score, Precision, Recall and F1-score for annotating the main 
classes of enzymes, which are much larger than other methods, 
e.g. 0.667, 0.400, 0.333, 0.333 and 0.333 obtained by DEEPre, this 
result is not included to avoid the biased results caused by such 
few protein samples. 

The comparisons of the enzyme prediction results obtained 
by ifDEEPre and the state-of-the-art methods under similarity 
thresholds from 40% to 80% are shown in Figure 7, which suggest 
the superiority of ifDEEPre over the existing methods. Please note 
that although the training data of the state-of-the-art method 
EzyPred [16] are not the NEW dataset, to exactly compare the 
prediction performances of ifDEEPre and EzyPred, we still use the 
final version of EzyPred to perform enzyme predictions for the 
same left sequences under each similarity threshold. Therefore,
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Figure 6. Number of proteins in the COFACTOR dataset under different sequence similarity thresholds with the training data. 

the prediction results of EzyPred may not drop with the decreases 
in the similarity threshold of the COFACTOR dataset with the 
NEW dataset. Figure 7A demonstrates the changes of the F1-
scores of ifDEEPre, DEEPre and EzyPred with the similarity thresh-
olds for annotating the main class of enzymes. We see that the 

F1-score of ifDEEPre is consistently and significantly larger than 
that of other models under various similarities, which suggests 
the strong prediction power and robustness of ifDEEPre. The com-
parisons of the Kappa score among these models in annotating 
the main class of enzymes under various similarity thresholds

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/4/bbae225/7701117 by guest on 25 April 2025



ifDEEPre | 13

Figure 7. The performances of the proposed ifDEEPre method and the state-of-the-art methods in annotating the main class and the sub-class of 
enzymes in the COFACTOR dataset under different sequence similarity thresholds with the NEW dataset, which suggests that ifDEEPre outperforms 
the existing methods under various similarities. (A) The changes of F1-scores of different methods along with sequence similarities in annotating the 
main class of enzymes. (B) The Kappa score of the enzyme main class annotations achieved by different methods under various sequence similarities. 
(C) The changes in the Accuracy scores of different methods along with sequence similarities in annotating the sub-class of enzymes. 

again suggest the superiority of ifDEEPre, as shown in Figure 7B. 
The annotation results of ifDEEPre, DEEPre and EzyPred for the 
sub-class of enzyme proteins in the COFACTOR dataset under 
various levels of similarity thresholds are provided in Figure 7C. 
We observe that the enzyme prediction results of ifDEEPre are 
again consistently better than those of other models under differ-
ent similarities in predicting enzyme sub-classes. These results 
demonstrate the strong prediction capacities and robustness of 
ifDEEPre under various similarity settings. 

ifDEEPre captures multi-level protein biological 
knowledge 
To demystify what biological information has been learned by the 
proposed ifDEEPre method and the physical meanings of model 
outputs, we take a further look at the protein biological knowledge 
contained in the ifDEEPre embedding. 

Functions of enzymes vary along with the biological types, typ-
ically determined by the physical properties. ifDEEPre is expected 
to capture such vital biological properties in the embeddings 
generated from protein sequences. We construct the enzyme 
Atlas using the embeddings of different levels to evaluate the 
effectiveness of ifDEEPre in capturing multi-level protein patterns. 
UMAP [24] is used to project the embeddings to 2D plane by 
reducing their dimensions. First, to explore the effectiveness of the 
proposed framework in shaping the representations, we  compare  the  
visualization results of ifDEEPre with the one-hot encoding model 
(OneHot) as well as the one-hot encoding and functional domain 
model (OneHot+FunD), as shown in Figure 8A. We see that the 
projections of OneHot are only roughly grouped, while elements 
of different enzyme types are severely mixed, which indicates that 
the OneHot model can barely learn accurate protein information. 
Although the results of OneHot+FunD improve to some extent, 
its embeddings still have no clear boundaries while some groups 
still have the issue of jumbled elements, e.g. non-enzyme group 
and Hydrolases enzyme. In contrast, the results of ifDEEPre are 
well grouped for different enzymes with clear boundaries, which 
suggests that embeddings generated by ifDEEPre well distinguish 
the biological properties of different enzymes and thus can make 
precise inferences on their functions. This is probably because 
ifDEEPre seamlessly learns valuable protein biological properties 
from hundreds of millions of protein data by introducing a large 
language model as a key module. The incorporation of such vital 
biological information effectively extends the physical knowledge 

of the whole neural network, e.g. secondary structures, contact 
patterns and function information, significantly promoting the 
inference of unique characteristics of each enzyme group and the 
learning of meaningful embeddings. 

Secondly, we explore the inf luences of the learning process in shap-
ing the representations. The visualization results of the embeddings 
generated by ifDEEPre and the randomly initialized ifDEEPre (Ran-
dom) are provided in Figure 8A. We observe that the projections of 
embeddings for different types of enzymes generated by the Ran-
dom model are mixed, which indicates that the representations of 
the Random model can hardly capture useful enzyme biological 
knowledge. As a consequence, the Random model fails to 
distinguish the physical properties of different enzyme sequences. 
In contrast, after the optimization process, the embeddings of 
ifDEEPre can be easily grouped with very clear boundaries, which 
proves the effectiveness of the designed end-to-end learning 
mechanism adopted in the proposed deep prediction framework. 
This is because in the training process, all the parameters in 
different components of ifDEEPre are jointly optimized in an 
end-to-end way, which allows parameters to be timely adjusted 
according to the biological properties in the tasks until reaching a 
very small negligible prediction error. Therefore, the embeddings 
generated by ifDEEPre can capture the biological properties 
of different protein groups and accordingly build very precise 
enzyme Atlas based on the learned useful physical knowledge. 

Atlas of enzyme sub-groups are meanwhile explored. To take 
a closer look at the performances of ifDEEPre in learning biological 
knowledge on the unique properties of different sub-groups under 
each enzyme type, we further visualize projections results of 
embeddings generated by ifDEEPre, OneHot, OneHot+FunD and 
Random for all the sub-groups within each enzyme. Learning 
useful representations for enzyme sub-groups is much harder 
because the number of samples in each enzyme sub-group is 
smaller than that in the main group, which may cause difficul-
ties in the optimization of model parameters. The visualization 
results of all the sub-groups under each enzyme group are pro-
vided in Figure 8B. We observe that the projections of ifDEEPre 
embeddings are much clearer than those of other models, indi-
cating that ifDEEPre successfully learns accurate representations 
that reflect the unique biological properties of enzymes in each 
sub-group. Even for Phosphorus-oxygen lyases under the Lyase 
enzyme group, which have very small data size and are diffi-
cult to learn accurate representation from such few samples,
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Figure 8. ifDEEPre encodes multi-level protein biological patterns and successfully infers the evolutionary directions of enzymes and the evolutionary 
trajectories of yeast sub-specie. (A) Enzyme Atlas with all the enzyme families obtained via different embedding ways. (B) Detailed distributions of 
each enzyme family (i.e., Oxidoreductase, Transferase, Hydrolase, Lyase, Isomerase, and Ligase) all suggest the effectiveness of the designed ifDEEPre 
framework in shaping the representations of various enzyme families. (C-E) ifDEEPre provides rich knowledge in inferring the evolutionary directions of 
enzymes, which positively contributes to the design of new effective enzyme products. (F-H) ifDEEPre accurately predicts the evolutionary trajectories 
of yeast sub-species, which are highly consistent with the ground-truth discovered by expensive and time-consuming lab-based biological experiments. 
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ifDEEPre still achieves projection that shows clear boundaries 
with other sub-groups (Figure 8B4). In contrast, the projection 
results of Lyase obtained by other models have either severely 
the mixed-samples issues (e.g. OneHot and Random) or very 
unclear boundaries (e.g. OneHot+FunD). These results suggest the 
successful learning of useful biological knowledge in the embed-
dings of the designed ifDEEPre framework. Such key biological 
information is learned from hundreds of millions of proteins, 
which effectively improves the capacity of ifDEEPre to capture the 
high-level structure and function properties of various enzyme 
groups and sub-groups. Thus, even for enzyme sub-groups with 
few samples, ifDEEPre still learns precise biological knowledge, 
successfully establishing accurate Atlas for different enzyme sub-
groups. 

Enzyme evolutionary trajectories are meanwhile studied. We 
utilize a popular single-cell transcriptomics trajectory inference 
technique, VIA [25], to capture the evolutionary directions of 
enzymes by taking ifDEEPre embeddings as inputs. To provide a 
complete and accurate evolutionary map of the trajectories of 
enzymes, we perform such analysis on the whole enzyme dataset, 
which can be grouped into different categories by considering 
the unique biological properties of each type of enzyme. First, 
ifDEEPre embeddings are generated for different types of enzyme 
sequences. Then, VIA is utilized to infer the evolutionary trajec-
tory of enzymes based on ifDEEPre embeddings (Figures 8C–E). 
We see from stream-plot that ifDEEPre can distinguish enzyme 
proteins of different families (Figure 8C), which is consistent with 
the conclusions of the strong prediction ability of ifDEEPre, drawn 
from above enzyme Atlas analysis. 

Furthermore, the embeddings generated by ifDEEPre can 
present the evolutionary relationships among different enzyme 
families. One interesting phenomenon is observed between 
Transferases and Lyases, i.e. parts of evolutionary directions of 
Transferases are the same with that of Lyases (bottom right of 
Figure 8E). Considering that several Transferases enzymes, e.g. 
Nu-class glutathione S-transferase, can act as Lyase enzymes 
under certain conditions, e.g. glutathione lyase, they may 
share some similar properties in catalytic chemical reactions 
[26], suggesting correctness of the learned evolutionary map. 
Meanwhile, we observe from this map that the distance between 
the Hydrolase family and the Isomerase family is relatively 
small, as shown in the bottom middle of Figure 8E. The possible 
reason is that Hydrolases and Isomerases contain subunits with 
similar sizes and they can act upon substrates with similar 
structures [27]. Lastly, we see that the distances between non-
enzyme proteins and enzyme proteins are giant, which suggests 
that ifDEEPre precisely distinguishes the biological properties 
of enzymes from that of non-enzymes in catalyzing chemical 
reactions. These results indicate that ifDEEPre captures the 
biological patterns of non-enzyme and enzyme proteins, hence 
correctly grouping them into correct families. Furthermore, the 
embeddings generated by ifDEEPre reflect the unique physical 
properties of various enzyme families, which provide rich 
information in inferring the evolutionary directions of enzymes 
and can positively contribute to the design of novel effective 
enzymes. 

ifDEEPre facilitates yeast evolutionary study. As an important 
microbial species, yeast provides many enzymes, vital for medical 
and industrial applications. Detailed studies on the chemical 
properties of enzymes from different yeasts and their evolution-
ary trends are crucial for the wider usage of yeasts. Hence, we 
investigate the extended application of utilizing ifDEEPre to pre-
dict the evolutionary directions of different yeast sub-species. The 

trained ifDEEPre model is first used to generate embeddings for 
different yeast sub-species. Since our ifDEEPre framework incor-
porates valuable knowledge on the physical properties of proteins 
learned from hundreds of millions of sequences, we assume 
that ifDEEPre embeddings extracted from protein sequences of 
various yeast sub-species can reflect their unique biological char-
acteristics, effectively promoting the studies of yeast sub-species 
evolution. 

Evolutionary trends of yeast sub-species predicted by ifDEEPre 
are shown in Figures 8F–H, highly consistent with the ground-
truth. We see that the evolutionary trends between two very 
ancient yeast sub-species, i.e. Saccharomyces cerevisiae and 
Schizosaccharomyces pombe, are relatively independent because 
they are located at two distant positions on the map with different 
evolutionary directions. This is consistent with existing findings 
that although Saccharomyces cerevisiae and Schizosaccha-
romyces pombe diverged from a common ancestor about 1000 
million years ago, they evolved toward two different directions 
[28, 29]. As another distant clade in the yeast evolutionary map, 
the last common ancestor of Yarrowia lipolytica existed with 
Saccharomyces cerevisiae over 300 million years ago [30]. As a 
result, there are many differences between the properties and 
functions of Yarrowia lipolytica and Saccharomyces cerevisiae, 
e.g. the antisense gene widely exists in Saccharomyces cerevisiae 
and its progenies, but such genes are not found in Yarrowia 
lipolytica [30]. As illustrated in Figure 8H, the large genetic 
differences between these two yeast sub-species are successfully 
captured by the yeast evolutionary map inferred by our method. 

In contrast, the evolutionary relationships of Saccharomyces 
cerevisiae and the rest three yeast sub-species, i.e. Candida 
glabrata, Kluyveromyces lactis and Ashbya gossypii, are much 
closer, as illustrated in Figure 8H. This is probably because 
these sub-species originated from a common ancestor shared 
by Saccharomyces cerevisiae at a more recent time than 
Schizosaccharomyces pombe and Saccharomyces cerevisiae, e.g. 
the common ancestor of Ashbya gossypii and Saccharomyces 
cerevisiae existed about 100 million years ago, 90% more recent 
than that of Schizosaccharomyces pombe [31]. This suggests that 
sub-species that started to evolve toward different directions 
at more recent time tend to have more common genomes and 
closer evolutionary relationships. We observe that the trajectory 
relationships between Saccharomyces cerevisiae and Candida 
glabrata are also close. Although they have totally different real-
world application values and influences, e.g. Saccharomyces 
cerevisiae is often used for winemaking and baking while Candida 
glabrata causes diseases, e.g. Candida infections, their close 
phylogenetic relationships are proved [32, 33]. Such discovery 
is useful because it identifies potential drug resistance properties 
shared by these two sub-species, assisting doctors in designing 
effective treatments to heal Candida infections [34]. These 
results indicate that ifDEEPre embeddings contain rich valuable 
evolutionary information on different sub-types of yeasts, 
which improves the accurate inferences of yeast sub-species 
evolutionary trends and potentially promotes the discovery of 
novel yeast subspecies. 

ifDEEPre detects key amino acid motifs of a 
peroxidase in the NEW dataset 
To evaluate the advantages of using ifDEEPre for protein analysis, 
we visualize attention weights learned for all the representa-
tions, which demonstrate the contributions of all the elements, 
improving understanding on the results to increase interpreta-
tions. The interpretability analysis for a peroxidase sequence in
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Figure 9. ifDEEPre detects key protein motifs of a peroxidase enzyme in NEW dataset and provides meaningful explanations on the contributions of 
different fragments and structures, which are highly consistent with the knowledge discovered by biomedical experts. (A) Detected key motifs and 
fragments from the whole peroxidase sequence. (B) Motif analysis in 3D protein structure. (C) Attention weights learned for secondary structure. (D) 
Attention weights learned for solvent accessibility. (E) Attention weights learned for sequence encoding. (F) Attention weights learned for functional 
domains. (G) Attention weights learned for transformer embedding. (H) Location of the analyzed peroxidase in the whole confidence distribution of 
enzyme prediction results on the NEW dataset. 

the NEW dataset is shown in Figure 9. The amino acid sequence of 
the studied enzyme is ‘DNTAKEKDSPANLSLRTCAAGDNAEQPLDP-
SRNTFDNAYYIALQRQAGFSDQV LSLFTSAR’, which is a peroxidase 
with the EC number 1.11.1.7 (Figure 9A). This enzyme catalyzes 
redox reactions, playing key roles in biomedical and industrial 
applications, e.g. energy production, drug delivery devices and 
bioremediation [35]. Peroxidase enzymes are mainly collected 
from plant tissue, e.g. the cells of vitis rotundifolia. The 3D struc-
ture of the peroxidase enzyme generated by AlphaFold [36] is  
provided in Figure 9B, which significantly catalyzes reactions that 
break up peroxides via a free radical mechanism. In biological 
processes, peroxidases donate electrons to ascorbic acid and fer-
ricyanides, hence transforming them into harmless products [37]. 
Our ifDEEPre method correctly predicts the main class of this 
protein enzyme with a confidence score of 0.99999833 by only 
taking the amino acid sequence as input. The location of this 
score in the confidence score distributions of the whole prediction 
results is given in Figure 9H, which belongs to the most frequent 
range of all the scores. 

Attention weights learned for secondary structure indicate that 
alpha-helix is vital for accurate analysis of peroxidase sequences 
and predictions of their functions (Figure 9C), which is consistent 
with existing studies [38]. This suggests that when analyzing the 
structures and functions of protein, more attention is suggested 
to be paid to alpha-helix information, which helps obtain more 
precise results. Figure 9D provides the attention weights learned 
for solvent accessibility of the peroxidase, which shows that the 
top two largest scores are given to the bury and the exposed 
states. This is reasonable because both states have been proven 
to be key factors in describing the openness of local regions of 
proteins, which significantly impact their functions [39]. This indi-
cates that specific descriptions on the openness of a local region 
about a protein (buried or exposed) often convey more valuable 
information on the structure and functions of proteins than a 
vague one (medium). The attention weights learned for sequence 
encoding of the protein are shown in Figure 9E, which indicates 
that different amino acid fragments often possess diverse degrees 

of importance in determining the catalytic activity of the perox-
idase. This is reasonable because many studies have proved that 
the modifications of certain regions in peroxidase proteins can 
significantly improve the catalytic efficiency while the modifica-
tions of other fragments have very minor influence [40, 41]. 

Furthermore, to evaluate whether ifDEEPre can detect key 
amino acid fragments in protein sequences, we utilize MEME 
[42] to identify motifs and compare the locations of these motifs 
with that of important regions detected by our model. The motifs 
identified by MEME are given in Figure 9A and the corresponding 
3D structure is shown in Figure 9B. First, by comparing Figures 9A 
and 9C, we see that locations of key regions identified for the 
most important secondary structure information, i.e. alpha-helix, 
match well with that of motifs, e.g. the most vital region learned 
for alpha-helix is on the right side, which perfectly matches the 
position of motif ’QSLFTS’. Meanwhile, vital regions learned for 
random coil and beta-sheet are located at center right, which 
corresponds to the position of motif ’DNAYYI’ well. Secondly, 
important regions identified for solvent accessibility match well 
with the positions of key motifs, e.g. the top two vital regions of 
the bury state, center and center left are the same with loca-
tions of motifs ‘EQPLDPSRNTF’ and ‘LSLRTC’ (Figures 9A and 9D). 
Thirdly, important fragments identified for sequence encoding, 
which locate on the center left and center right, also match with 
that of motifs ’LSLRTC’, ’QAGVLF’ and ’QSLFTS’, as indicated in 
Figures 9A and 9E. Furthermore, compared with the relatively 
simple motif analysis tools, ifDEEPre provides richer information 
on the roles of every element. Specifically, by clearly illustrating 
the contributions of all the fragments, ifDEEPre provides vital 
information for selecting suitable candidates of segments for edit-
ing operations, significantly improving the efficiency in designing 
more effective enzymes. 

We then visualize attention weights learned for the functional 
domain, which is a 16306D vector. For the convenience of visu-
alization, zeros are appended to this vector until it reaches the 
length of 16 384, which is reshaped to a 128 × 128 matrix, as 
shown in Figure 9F. We see that different regions of the weights
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Figure 10. ifDEEPre detects key motifs of an exonuclease in the KNN dataset and provides meaningful explanations on the contributions of different 
fragments and structures, which are highly consistent with the knowledge discovered by biomedical experts. (A) Detected key motifs and fragments 
from the whole exonuclease sequence. (B) Motif analysis in the 3D protein structure. (C) Attention weights learned for secondary structure. (D) Attention 
weights learned for solvent accessibility. (E) Attention weights learned for sequence encoding. (F) Attention weights learned for functional domains. (G) 
Attention weights learned for transformer embedding. (H) Location of the studied exonuclease in the whole confidence distribution of the enzyme 
prediction results on the KNN dataset. 

learned for functional domain have diverse degrees of impor-
tance. Therefore, to achieve accurate enzyme function predic-
tions, it is important to focus attention on important regions. 
Attention weights learned for transformer features are provided 
in Figure 9G, which indicates that many learned weights are in 
color RED, suggesting that the majority of transformer features 
are crucial for the enzyme function prediction tasks. This is 
consistent with the previous analysis that transformer features 
contain rich valuable protein biological knowledge, which can 
well distinguish the unique physical characteristics of various 
enzyme groups and improve the function prediction results. 

ifDEEPre detects key amino acid motifs of an 
exonuclease in the KNN dataset 
The amino acid sequence of the studied protein in the KNN 
dataset is ‘MAGRKKAADFEQQLARLQEIVDALEGGDLPLEKSVA-
LYKEGLGLARASREQLAKARNEIRLFTEGEVRDFDP EEGDDGDDR’, 
which is an exonuclease enzyme with EC number 3.1.11.6 
(Figure 10A). This type of enzyme is mainly collected from 
the cells of desulfovibrio vulgaris subsp. The 3D structure of 
this enzyme obtained via AlphaFold is given in Figure 10B, 
which can degrade single-stranded DNA into several large acid-
insoluble oligonucleotides and further degrade them into small 
oligonucleotides [43]. ifDEEPre correctly predicts the main class 
of this exonuclease protein by only taking its raw sequence as 
input, achieving a large confidence score of 0.9999974, which is 
located in the most frequent score range of the distributions of 
confidences (Figure 10H). 

The attention weights learned for the secondary structure 
features of the exonuclease are provided in Figure 10C, which 
again indicates that alpha-helix is important for the analysis of 
proteins. As shown in Figure 10D, the attention weights learned 
for solvent accessibility of the exonuclease demonstrate that the 
exposed state is more concerned, which is consistent with existing 
discoveries [44]. The attention weights learned for the encoding 
features of the exonuclease show that ifDEEPre distinguishes the 

diversity in the importance of different amino acid fragments 
(Figure 10E). Meanwhile, we see that there are some differences 
between important fragments of exonuclease and peroxidase, 
which indicates that different enzymes may play their unique 
functions via diverse segments. Vital motifs identified by MEME 
are given in Figures 10A and B, which are highly consistent with 
the locations of the important fragments automatically detected 
by ifDEEPre. The most important regions identified by ifDEEPre for 
alpha-helix of secondary structure are located close to that of key 
motifs ‘EQQLARLQEIV’, ’EGGDLP’ and ’IRLFTE’. Meanwhile, the 
positions of the detected vital fragments in the exposed state of 
solvent accessibility are very close to that of the motifs ‘MAGRKK’ 
and ‘DFDPEE’. Figure 10F shows weights learned for functional 
domain, which also indicates that different regions have diverse 
importance, suggesting that more attention should be paid to 
regions assigned with large weights to achieve accurate analysis. 
Attention weights learned for transformer features of the exonu-
clease also indicate the importance of this type of representation 
for the function prediction of exonuclease (Figure 10G). These 
results again suggest the effectiveness of ifDEEPre in detecting key 
motifs from long sequences, further improving the interpretability 
of the results. 

Superiority of ifDEEPre over DEEPre 
We further build a practical website version of ifDEEPre only using 
transformer features and functional domain, termed ifDEEPre-
web, and develop it into an easy-to-use web server to provide 
convenient enzyme prediction services to the public, available 
at https://proj.cse.cuhk.edu.hk/aihlab/ifdeepre/. This web server 
provides detailed descriptions about the architecture of ifDEEPre, 
sample input and sample outputs. Meanwhile, definitions of dif-
ferent enzyme main classes and sub-classes are provided to map 
each EC number with the biological functions. In addition, predic-
tion results of all the proteins in the input file are displayed one 
by one with gray lines as separations, where external links are 
provided for describing the functions of the predicted EC number,
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making the results easy to understand. Last but not least, the 
enzyme prediction results of our webserver can be conveniently 
downloaded for future studies of users. 

The comparisons between ifDEEPre, ifDEEPre-web and the orig-
inal version DEEPre [9] in various levels of EC number predic-
tions, running speed and storage space requirement are demon-
strated in Figure 11. The prediction performances of ifDEEPre and 
ifDEEPre-web on various EC number predictions are significantly 
better than the results of DEEPre (Figures 11A–H). In the task of 
detecting enzymes in the KNN dataset, Kappa scores of ifDEEPre 
and ifDEEPre-web are 0.841 and 0.823, which are, respectively, 
9.65% and 7.30% larger than the score of 0.767 obtained by DEEPre 
(Figure 11B). Meanwhile, in the task of annotating main classes 
of enzymes for this dataset, the Kappa score of DEEPre is 0.870, 
which is also smaller than that of ifDEEPre and ifDEEPre-web, 
i.e. 0.921 and 0.902 (Figure 11F). We observe from Figure 11G that 
ifDEEPre and ifDEEPre-web obtain the F1-score of 0.871 and 0.856 
for the joint level 0 and 1 task, which, respectively, outperform 
DEEPre with 10.06% and 8.16% improvements. For the task of 
annotating subclasses of enzymes in this dataset, ifDEEPre and 
ifDEEPre-web also, respectively, achieve 7.97% and 7.61% higher 
precision scores than DEEPre (Figure 11H). These results suggest 
the effectiveness of the designed novel network structure and 
learning mechanism in improving the prediction capacity for 
enzyme functions. 

The comparisons between running speed of ifDEEPre-web 
and DEEPre in scanning proteins are given in Figure 11I, which 
indicates that the time needed by ifDEEPre-web for each sequence 
is about 58.96 times smaller than that of DEEPre. This is 
because DEEPre is designed to perform this task in serial ways, 
which repeats the operations of loading large trained models 
to extract features and perform enzyme predictions for every 
single sequence, which is slow when handling a large number of 
proteins. Meanwhile, DEEPre relies on PSSM features, which take 
long time to extract. Average time of DEEPre for scanning each 
protein is around 78 s, which rapidly increases with the number 
of query sequences. Conversely, ifDEEPre-web scans databases 
in fast parallel ways, which learns features of sequences with 
equal length in batches, saving much time spent in repeatedly 
loading trained models when scanning large protein databases. 
The prediction stages of ifDEEPre-web are meanwhile designed 
in parallel ways to jointly perform function predictions for 
sequences in each class, which again saves much time. Therefore, 
with the increases in the data sizes of protein databases, the 
average time needed by ifDEEPre-web for scanning per sequence 
will further decrease because of the increases in the number of 
sequences in each batch. This can be verified from Figure 11I, 
i.e. average scanning time of ifDEEPre-web for a database with 
1650 proteins is 1.636 s and will further decrease to 1.323 s for a 
database with 9839 proteins, respectively, 47.68 and 58.96 times 
smaller than that of DEEPre. These results indicate the significant 
advantages of ifDEEPre-web in scanning large protein databases. 

Furthermore, ifDEEPre-web needs a much smaller storage 
space requirement than DEEPre. For each protein, DEEPre needs 
a storage space of around 1.65 million bytes (MB) to store the 
extracted features, while that required by ifDEEPre-web is only 
about 0.126 MB, 13.10 times smaller (Figure 11J). This is vital 
for the function predictions of large-scale protein databases, e.g. 
for 10 million proteins, the storage space required by DEEPre is 
16.5 T, which however is only 1.269 T for ifDEEPre-web. Based on 
the above analysis, we can conclude that the proposed method 
significantly outperforms the original version DEEPre in various 
aspects, including prediction accuracy, speed and storage space 

requirement. In short, this method achieves more accurate results 
than DEEPre and is 58.96 times faster while only needing 7.64% 
of the storage space of DEEPre, which significantly increases the 
capacity to analyze large protein databases. 

To evaluate the utility of ifDEEPre-web in enzyme function 
predictions, we further utilize it to perform level 3 and level  4 EC  
number predictions, providing the full four digits of the EC system 
to specify complete functions of proteins. We first analyze the per-
formances of ifDEEPre-web in the level 3 EC number predictions, 
which aim at annotating the sub-subclass of the input enzymes 
when given the main class and subclass. The results of ifDEEPre-
web for this task of the NEW dataset are shown in Figure 11K, 
which indicates that ifDEEPre-web achieves scores of 0.972, 0.934, 
0.943, 0.931 and 0.933 in accuracy, Kappa score, precision, recall 
and F1-score. These results indicate that the proposed method 
can also achieve accurate predictions for the third digit of EC 
numbers, e.g. the F1-score and Recall of ifDEEPre-web are, respec-
tively, 7.68% and 8.51% larger than that of DEEPre. Regarding the 
level 4 EC annotation task, i.e. predicting the sub-sub-subclass 
of input sequences, more data are needed to train models. This 
is because the number of samples in each sub-sub-subclass of 
the dataset is too few, not enough to optimize the parameters of 
models and may cause unreliable results. Therefore, we utilize 
phmmer [45] to search for the fourth digit from the database, 
thus obtaining the full four EC numbers by combining it with the 
previously predicted three digits. 

DISCUSSION AND CONCLUSIONS 
In this study, we present ifDEEPre, a new deep learning-powered 
framework for the interpretable, accurate and fast predictions of 
EC numbers. Extensive experimental results on various levels of 
enzyme function predictions on multiple datasets demonstrate 
that ifDEEPre outperforms the state-of-the-art methods by a large 
margin in all the evaluation metrics. In the task of detecting 
the enzymes from all the proteins in the NEW dataset, ifDEEPre 
achieves more than 15.55%, 16.36% and 14.22% improvements in 
Precision, Recall and F1-score, compared with the best prediction 
results among all the state-of-the-art methods. Meanwhile, when 
annotating the main classes of proteins in the KNN dataset, the 
accuracy of ifDEEPre is 0.941, which is 12.29% larger than the 
score of 0.838 obtained by EzyPred, the highest accuracy among 
all the state-of-the-art methods. For the joint level 0 and 1 task, 
and the annotation task of the subclasses of enzymes, ifDEEPre 
also significantly outperforms the state-of-the-art methods, e.g. 
achieving at least 12.82% improvements in Kappa score on the 
KNN dataset and 18.06% increases in F1-score on the class 2 
enzyme of the NEW dataset, compared with the best results in 
the existing models. These experimental results indicate that 
ifDEEPre can consistently and significantly outperform the state-
of-the-art methods in various enzyme function prediction tasks. 
The proposed ifDEEPre method has some significant advantages 
over the existing models. 

To the best of our knowledge, this is the first attempt to 
introduce a large language model into deep enzyme function 
prediction frameworks as a key computational module to learn 
valuable physical properties of proteins from hundreds of millions 
of sequences, effectively extending biological knowledge of the 
whole neural network while avoiding increasing computational 
burden. This design effectively incorporates rich types of bio-
logical knowledge spanning evolutionary diversity into ifDEEPre, 
including secondary structure, contact patterns, function infor-
mation, mutational effects and folding information, which boost
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Figure 11. Superiority of ifDEEPre and ifDEEPre-web over DEEPre. (A–E) Performance comparisons of DEEPre, ifDEEPre-web and ifDEEPre on level 0 task 
of KNN dataset. (F) Comparisons of DEEPre, ifDEEPre-web and ifDEEPre on level 1 task of KNN dataset. (G) Comparisons of DEEPre, ifDEEPre-web and 
ifDEEPre on joint level 0 and 1 task of KNN dataset. (H) Comparisons of DEEPre, ifDEEPre-web and ifDEEPre on level 2 task of KNN dataset. (I) Comparisons 
of time needed for scanning protein database between ifDEEPre-web and DEEPre, where the unit of time is second/per sequence (s/per s). (J) Comparisons 
storage space needed for scanning protein database between ifDEEPre-web and DEEPre, where the unit for storage space is million bytes/per sequence 
(MB/per s). (K) Performance comparisons of DEEPre and ifDEEPre-web on level 3 task of NEW dataset. 

the final EC number prediction results. The incorporation of 
this large protein language module significantly improves the 
prediction accuracy from 0.942 to 0.996 in the task of detecting 
enzymes from the KNN dataset and from 0.879 to 0.952 in the 
level 2 EC number prediction task of the NEW dataset. More 
importantly, this module effectively promotes the evolutionary 
inference performances of many enzymes and species. Mean-
while, we demonstrate the effectiveness of ifDEEPre in predicting 
the evolutionary relationships between various yeast sub-species, 
which are highly consistent with the ground truth discovered by 
expensive and time-consuming lab-based biological experiments. 

To effectively optimize the contributions of different represen-
tations and motifs according to unique characteristics of predic-
tion tasks, we design a novel self-guided attention mechanism 
to dynamically adjust the attention weights of all the elements 
in the whole training stage. This mechanism can automatically 
reinforce the roles of key elements and detect important motifs 
from protein sequences to provide meaningful interpretations, 
assisting biological scientists in designing more effective strate-
gies. Experimental results demonstrate that the designed self-
guided attention mechanism significantly increases the accuracy 

in the enzyme detection task on the NEW dataset from 0.939 
to 0.996 and meanwhile improves the joint level 0 and 1 EC 
number prediction accuracy on the KNN dataset from 0.865 to 
0.898. Furthermore, interpretability analysis studies on a perox-
idase from the NEW dataset and an exonuclease from the KNN 
dataset both indicate that the proposed method can successfully 
detect key amino acid motifs and fragments from the whole long 
protein sequence in a learnable way, which are highly consistent 
with existing discoveries while providing some novel discoveries 
for researchers to further explore. These analyses illustrate that 
ifDEEPre can clearly demonstrate the roles of all the amino acid 
elements, which provides valuable information for choosing suit-
able segments for editing operations, improving the efficiency in 
designing novel enzyme products. 

Furthermore, to meet the needs of modeling large number 
of proteins in the post-genomic era, we carefully screen repre-
sentations learned from raw protein sequences to ensure the 
running speed of the entire framework, thus excluding all the 
manually crafted features and the PSSM features, which take 
a long time to extract. In addition, we design ifDEEPre-web for 
scanning databases in fast parallel ways, which learns features
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of sequences with equal length in batches and performs function 
predictions for sequences of one class simultaneously. As a result, 
the average time of using ifDEEPre-web to scan a database with 
1650 sequences is only 1.636 s and such time further decreases to 
1.323 for a database with 9839 sequences, which are, respectively, 
47.68 and 58.96 times smaller than the time needed by the DEEPre 
model. This design meanwhile significantly decreases the stor-
age space requirement of ifDEEPre-web. To be specific, for each 
protein sequence, DEEPre needs a storage space of around 1.65 
million bytes (MB) to store the extracted features, while the space 
required by ifDEEPre-web is only about 0.126 MB, which is 13.10 
times smaller. In short, this method achieves much better results 
than DEEPre, but only needs about 1.70% of the running time 
and 7.64% of the storage space, which significantly increases its 
capacity in analyzing large protein databases and mining valuable 
biological knowledge to promote its applications. 

We believe that the proposed ifDEEPre method and its faster 
version ifDEEPre-web can serve as powerful tools for the accu-
rate, interpretable and fast analysis of large-scale proteins, which 
positively contributes to the tasks of detecting enzymes, annotat-
ing their class, capturing protein knowledge and identifying key 
amino acid motifs. This framework can promote the discovery 
of novel and more effective enzymes to improve public health 
and industrial production. There are four possible future research 
directions. First, we will expand ifDEEPre by integrating more 
protein knowledge, e.g. 3D structures of proteins [46]. This would 
further improve the prediction results and promote the biological 
learned by this framework to promote downstream tasks. Sec-
ondly, we intend to introduce the small-sample learning theory 
[47] to perform accurate and robust predictions of the fourth digit 
of the EC number in a data-driven and learnable way. Thirdly, the 
relationships between the amino acid motifs of enzymes detected 
in this framework and their enzymatic reactions will be explored. 
This research direction would meanwhile promote the develop-
ment of protein designs [48]. Lastly, we will further optimize the 
HMMER and the RaptorX components. We may further design 
new modules, e.g. Graph Neural Networks, to replace HMMER 
and RaptorX to extract functional domain and protein structure 
knowledge in machine learning ways, developing even faster and 
more accurate enzyme prediction tools. 

Key Points 
• We propose a novel tool named ifDEEPre that can 

achieve more accurate enzyme function predictions 
than existing methods while automatically detecting key 
motifs to provide meaningful interpretations. 

• We strictly screen representations learned from raw 
sequences to improve the running speed of the whole 
deep framework, 50 times faster than DEEPre while 
requiring 12.89 times smaller storage space. 

• Extensive experimental results and analysis are pre-
sented to illustrate the superiority and the Interpretabil-
ity of the proposed ifDEEPre method for enzyme function 
predictions. 

• We illustrate that trained ifDEEPre models can capture 
multi-level protein biological patterns and accurately 
infer the evolutionary trends of enzymes by only taking 
raw sequences without label information. 

• Meanwhile, ifDEEPre accurately predicts the evolution-
ary relationships between different yeast sub-species, 

which are highly consistent with the ground-truth dis-
covered by expensive and time-consuming biological 
experiments. 
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