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Abstract

Nitrogen is essential for life and its transformations are an important part of the global biogeochemical cycle. Being an essential
nutrient, nitrogen exists in a range of oxidation states from +5 (nitrate) to −3 (ammonium and amino-nitrogen), and its oxidation
and reduction reactions catalyzed by microbial enzymes determine its environmental fate. The functional annotation of the genes
encoding the core nitrogen network enzymes has a broad range of applications in metagenomics, agriculture, wastewater treatment
and industrial biotechnology. This study developed an alignment-free computational approach to determine the predicted nitrogen
biochemical network-related enzymes from the sequence itself. We propose deepNEC, a novel end-to-end feature selection and
classification model training approach for nitrogen biochemical network-related enzyme prediction. The algorithm was developed
using Deep Learning, a class of machine learning algorithms that uses multiple layers to extract higher-level features from the raw
input data. The derived protein sequence is used as an input, extracting sequential and convolutional features from raw encoded
protein sequences based on classification rather than traditional alignment-based methods for enzyme prediction. Two large datasets
of protein sequences, enzymes and non-enzymes were used to train the models with protein sequence features like amino acid
composition, dipeptide composition (DPC), conformation transition and distribution, normalized Moreau–Broto (NMBroto), conjoint
and quasi order, etc. The k-fold cross-validation and independent testing were performed to validate our model training. deepNEC
uses a four-tier approach for prediction; in the first phase, it will predict a query sequence as enzyme or non-enzyme; in the second
phase, it will further predict and classify enzymes into nitrogen biochemical network-related enzymes or non-nitrogen metabolism
enzymes; in the third phase, it classifies predicted enzymes into nine nitrogen metabolism classes; and in the fourth phase, it predicts
the enzyme commission number out of 20 classes for nitrogen metabolism. Among all, the DPC + NMBroto hybrid feature gave the
best prediction performance (accuracy of 96.15% in k-fold training and 93.43% in independent testing) with an Matthews correlation
coefficient (0.92 training and 0.87 independent testing) in phase I; phase II (accuracy of 99.71% in k-fold training and 98.30% in
independent testing); phase III (overall accuracy of 99.03% in k-fold training and 98.98% in independent testing); phase IV (overall
accuracy of 99.05% in k-fold training and 98.18% in independent testing), the DPC feature gave the best prediction performance. We
have also implemented a homology-based method to remove false negatives. All the models have been implemented on a web server
(prediction tool), which is freely available at http://bioinfo.usu.edu/deepNEC/.

Keywords: CNN, computational modeling, deep learning, enzyme classification, metagenomics, N-biochemical network, neural
networks, prediction, nitrogen cycle, nitrification, denitrification

Introduction
Nitrogen (N) is an essential element of all life and
is cycled throughout ecosystems through a number
of interconnected biochemical reactions catalyzed by
microbial enzymes. The biogeochemical processes which
transform nitrogen between its many chemical forms,
both living and non-living, are collectively termed
as the nitrogen cycle [1, 2]. There are a number of
microorganisms involved in the nitrogen cycle, and

nitrogen is present in a range of oxidation states, from +5
in nitrate to −3 in ammonia and amino acids. There are
four main nitrogen reducing processes: nitrogen fixation,
assimilatory nitrate reduction, dissimilatory nitrate
reduction and denitrification and two main oxidation
pathways: nitrification and anaerobic ammonia oxida-
tion in the N-biochemical network [3, 4]. The nitrogen
cycle is a particularly complicated biochemical network
as one reaction’s end product is frequently the substrate
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for another reaction [5]. Enzymes from microbes engaged
in the N-cycle also have various regulatory effects,
including either feedback or feed-forward controls,
which is a fascinating aspect of the cycle [6, 7]. To better
understand the nitrogen cycle in natural environments,
understanding these feedback/feed-forward regulatory
mechanisms, as well as their evolutionary dynamics, is
critical. Recent advances in microbial genomics have
revealed information on the whole range of genes
encoding these enzymes involved in the nitrogen cycle
[8–10].

With the advent of next-generation sequencing
technologies, many environmental metagenomes are
being sequenced. The functional annotation of these
metagenomes plays a vital role in deciphering the
functions of the microbial community and its associated
enzymes. The classical approach uses experimental
methods such as protein purification and enzymatic
assays [11]. Conducting these focused biochemical
experiments, however, requires significant time and
expertise that cannot cope with the rapid increase
in the metagenomic data volume. Advancements in
computational methods may assist biologists in charac-
terizing the diversity and complexity of the metagenomic
data and give further insights prior to experimental
validation.

According to Swiss-Prot [12, 13] latest release, a total
of 258 733 enzymes are present among all 565 254 man-
ually annotated proteins. These enzymes are classified
into seven classes using the Enzyme Commission (EC)
number [14], the most accepted numerical enzyme clas-
sification scheme.

Many computational methods have already been
proposed to classify enzymes based on their EC numbers.
As the first report addresses this problem with machine
learning and sequence information [15], this problem has
been investigated in three different ways. Researchers
[16–20] generally predicted enzyme function by pre-
dicting the enzyme structure first because generally
the function of protein is determined by its structure.
Upon structure prediction, a database or library was
searched for EC numbers and assigned to the template
structure. Structure prediction is still relatively time-
consuming, however. Another common assumption is
that similar protein sequences tend to have similar
functions. Therefore, several studies have been reported
that utilize sequence similarities [21–25]. Homology-
based methods are widely used to decipher the function
of an enzyme, but they fail when there is no significant
similarity found. Alignment-based methods have been
widely used to determine the role of a protein sequence
in an N-biochemical network. Currently, the most widely
used methods are to extract features from protein
sequences and then train and classify using machine
learning approaches [26–44]. Although machine learning
methods have been applied for two decades to address
this problem with several web servers and software
available, no methods have been developed that focus

specifically on predicting nitrogen biochemical network-
related enzymes. In this study, we present an alignment-
free computational tool using deep learning, a class
of machine learning, for the prediction of nitrogen
biochemical network-related enzymes from raw protein
sequences. We propose a web server deepNEC for that
purpose.

Materials and methods
We have implemented deepNEC in four phases: Phase
I identifies a query protein sequence as enzyme or
non-enzyme; Phase II classifies the predicted enzyme
sequence into nitrogen metabolism or non-nitrogen
metabolism enzymes; Phase III classifies enzymes into
nine nitrogen metabolism enzyme classes (four reduc-
tion, one oxidation and four hybrid) and Phase IV predicts
the EC number associated with the nitrogen biochemical
network class predicted in Phase III (Figure 1).

Preparation of deepNEC datasets
The phase I dataset was prepared by processing 563 972
enzyme protein sequences from the Swiss-Prot dataset
available in February 2020 [12]. The dataset was sep-
arated into enzymes and non-enzymes based on their
annotation downloaded from UniProt. Enzyme sequences
of fragments with less than 50 amino acids annotated
were omitted to prevent fragment data. We have used
CD-HIT [45] with a 40% similarity threshold to sift the
raw dataset to eradicate redundancy biases resulting
in 28 287 enzyme sequences with low homology. For
the non-enzyme part, 28 287 non-enzyme sequences
were randomly extracted from Swiss-Prot non-enzyme
sequences using a custom python script. These datasets
(56 574 protein sequences) were separated into a
training dataset (26 787 enzyme and 26 787 non-
enzyme sequences) and an independent dataset (1500
enzyme and 1500 non-enzyme sequences) to test the
generalization accuracy of the method proposed.

The phase II dataset was prepared by separating
the nitrogen biochemical network-related enzymes
and non-nitrogen biochemical network-related protein
sequences. The sequences with >80% similarity were
removed using CD-HIT [45] to eradicate redundancy bias
resulting in 24 996 nitrogen biochemical network-related
enzyme sequences with low homology and 27 884 non-
nitrogen metabolism sequences. Finally, a dataset with
these sequences was prepared by separating them into
training and independent testing sets.

The phase III dataset was generated by categorizing
nitrogen biochemical network enzymes into nine groups
using KEGG pathways map00910 (https://www.genome.
jp/pathway/map00910). The N-biochemical network
has six sub-pathways (nitrogen fixation, assimilatory
nitrate reduction, dissimilatory nitrate reduction, deni-
trification, nitrification and anammox). We downloaded
the enzymes associated with these sub-pathways
from NCBI (https://www.ncbi.nlm.nih.gov/) and UniProt
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Figure 1. An overall workflow design of deepNEC.

Table 1. Nitrogen metabolism-related nine classes used in the
study

Class Train Test

Nitrogen fixation 16 305 200
Assimilatory 24 466 200
Dissimilatory 15 253 200
Denitrification 9518 200
Nitrification 26 344 200
Assimila-
tory + dissimilatory + denitrification + nitrification

12 494 200

Dissimila-
tory + denitrification + nitrification

14 423 200

Denitrification + nitrification 24 895 200
Dissimilatory + denitrification 4323 200

(https://www.uniprot.org/) and classified them accord-
ingly. We established four hybrid classes for enzymes
that are engaged in several sub-pathways. The dataset
was then divided into training and independent testing
datasets. These nine nitrogen biochemical network
classes are presented in Table 1.

The phase IV dataset was prepared by separating nitro-
gen biochemical network enzymes with their EC number.
That resulted in 20 classes with EC numbers. Then these
sequences were separated into training and independent
testing datasets. These 20 ECs are presented in Table 2.

Sequence representation in deepNEC
In general, input data with a fixed size are accepted by
the machine learning methods. The deep learning system

eliminates the need for uniformity of manual dimension-
ing and manually built features which are impossible to
support with the increasing quantity and sophistication
of data by simultaneously carrying out feature recon-
struction and classifier training. We have tried multi-
ple sequence representations for training models for all
phases. Best sequence representation is discussed below,
and the training statistics of other sequence representa-
tions tried are presented in Supplementary File 1.

In Phase I, we have converted the protein sequence
into a 640-length vector by combining two protein
features [dipeptide composition (DPC) and normalized
Moreau–Broto (NMBroto)]. The DPC has been determined
to encapsulate the worldwide details on each protein
sequence using the sequence order effects. This number,
which has a fixed pattern of 400 (20 × 20), provides
information on the structure of the amino acid and the
local amino acid order. The following equation was used
to measure the fraction of each dipeptide:

f (r, s) = Nrs

N − 1
r, s = 1, 2, . . . , 20

where Nrs is the number of dipeptides represented by
the amino acid type r and type s, N is the length of
the sequence. NMBroto is an autocorrelation-based fea-
ture that describes the degree of association between
two objects (protein or peptide sequences) in terms of
their particular structural or physicochemical proper-
ties based on amino acid properties distributed in a
sequence. The normalized Moreau–Broto autocorrelation
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Table 2. Twenty classes of enyzmes related to nitrogen metabolism

Nitrogen metabolism type EC number Train Test

Nitrogen fixation (nitrogenase) 1.18.6.1 16 305 200
Assimilatory nitrate reduction 1.7.7.2 5425 200
Assimilatory nitrate reduction 1.7.1.1 2095 200
Assimilatory nitrate reduction 1.7.1.2 5893 200
Assimilatory nitrate reduction 1.7.1.3 1522 200
Assimilatory nitrate reduction 1.7.1.4 7290 200
Assimilatory nitrate reduction 1.7.7.1 1250 200
Dissimilatory nitrate reduction 1.7.1.15 2036 200
Dissimilatory nitrate reduction 1.7.2.2 13 017 200
Denitrification (nitric oxide reductase) 1.7.2.5 4750 200
Denitrification (nitrous oxide reductase) 1.7.2.4 4568 200
Nitrification (hydroxylamine dehydrogenase) 1.7.2.6 1924 200
Nitrification (ammonia monooxygenase) 1.14.99.39 7374 200
Nitrification (hydrazine dehydrogenase) 1.7.2.8 2062 200
Nitrification 1.7.99.4 11 572 200
Nitrification (hydrazine synthase) 1.7.2.7 2612 200
Assimilatory + dissimilatory + denitrification + nitrification 1.7.9.9. 12 494 200
Dissimilatory + denitrification + nitrification (nitrate reductase) 1.7.5.1 14 423 200
Denitrification + nitrification [nitrite (oxido) reductase] 1.7.2.1 24 895 200
Dissimilatory + denitrification (periplasmic nitrate reductase) 1.9.6.1 4323 200

is defined as

I(d) =
∑N−d

i=1

(
Pi ∗ Pi+d

)

N − d
d = 1, 2, . . . , 30

where d is the lag of the autocorrelation, Pi is the value of
ith amino acid in a property entry of AAindex.

In Phases II–IV, we have converted the protein sequence
into a 400-length vector by the DPC feature as discussed
above.

deepNEC training model architecture
deepNEC comprises two separate convolution neural
networks (CNNs) that conduct two distinct classification
tasks with a single protein sequence as input data. The
CNN for Phases I and II consists of two 2D convolution
layers, two max-pooling layers, three dropout layers, two
batch normalization, one flattening layer and three fully
connected layers and finally to an output (Figure 2A).
The first layer in a CNN is always a convolutional layer.
In particular, the first layer of our CNN includes a 640-
size vector on which we have implemented our 2D
convolutional operations with some default parameters,
including n × n kernel size, f filters, 1 × 1 steps, and 1 × 1
zero-padding and then a convolutional operation was
used to filter essential features of the motif. We learned
about the network by modifying the hyper-parameters
described above to find the appropriate choices. In
addition, to reduce the size of matrix calculation,
eliminate nonmaximal values and control overfitting,
we used a 2D max-pooling layer with a 1 × 1 stride.
Before three fully connected layers, we added a flattening
layer to flatten the input. The first fully connected
layer consists of 512 hidden nodes followed by a second
fully connected layer of 256 hidden nodes and finally
a fully connected layer of 2 hidden nodes for binary
classification of deepNEC Phase I model (Figure 2A).

The CNN for Phases III and IV consists of two 2D
convolution layers, two max-pooling layers, two dropout
layers, two batch normalizations, one flattening layer
and two fully connected layers, and finally to an out-
put (Figure 1B). The first layer in a CNN is always a
convolutional layer. In particular, the first layer of our
CNN includes a 400-size vector on which we have imple-
mented 2D convolutional operations with some default
parameters, including n × n kernel size, f filters, 1 × 1
steps and 1 × 1 zero-padding. We used a 2D max-pooling
layer with a 1 × 1 stride. Before three fully connected lay-
ers, we added a flattening layer to flatten the input. The
first fully connected layer consists of 512 hidden nodes
followed by a second fully connected layer of 14 hidden
nodes with softmax activation for binary classification of
deepNEC Phase-II model (Figure 2B).

deepNEC CNN training
In deepNEC, weights were initialized randomly using a
uniform distribution. Rectified linear unit (ReLU) was
used as an activation function for the convolution layer
and hidden layers of the fully connected layers (i.e. a final
stage of each CNN within deepNEC).

f (x) = max (0, x)

The softmax function was used as an activation func-
tion for an output layer of the fully connected layer.

σ(Z)i = eZi
∑K

j=1 eZi

To minimize the internal-covariate-shift by normal-
izing the input distribution of each layer to regular
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Figure 2. CNN architecture of deepNEC. The different terminology used in the figure are explained here: Input: This represents the input sequence
vector for training; Conv 2D is a 2 dimensional convolution kernel that, when convolved with the layer input, yields a tensor of outputs; Batch Norm:
Batch normalization is a training strategy for very deep neural networks that standardizes the inputs to each mini-batch; ReLU: Rectified linear unit;
Maxpool2D: Max pooling operation for 2D spatial data; Dropout: Dropout refers to the practice of randomly ‘dropping out,’ or omitting, units during the
neural network training process; Flatten: a flattened layer to process data into one-dimensional array. Dense: a deep neural network layer which each
neuron receives input from all the neurons; Softmax: Softmax is a mathematical function that transforms a number vector into a probability vector;
Output: output prediction probabilities.

Table 3. Enzyme versus non-enzyme (phase I) training and
independent testing metrics results.

Metrics Training average
10-fold

Independent testing

Sensitivity (%) 95.76 94.47
Specificity (%) 95.64 92.40
Precision (%) 95.64 92.55
Accuracy (%) 95.70 93.43
F1-score (%) 95.70 93.50
MCC 0.914 0.868

Gaussian distribution, batch normalization was used.
Batch normalization also acts as a regularizer, which
helps prevent the overfitting of a deep learning algo-
rithm. Each neuron learns the feature representation
of the input signal across the period depending on
their learning abilities, resulting in varying learning
rates for each neuron of the network to maximize
the objective function. Therefore, the Stochastic gra-
dient descent (SGD) optimizer was used as the opti-
mizer feature in this work. The categorical entropy
of loss function was used to train the neural net-
work. CNN in Phases I and II was trained up to
100 epochs.

Evaluation criteria
For binary classification problem that classifies an
enzyme against a non-enzyme sequence, we defined
enzymes as the positive data and non-enzymes as
negative data. Similar approaches were applied for
the nitrogen-related enzymes also. We used 10-fold

Table 4. Nitrogen metabolism versus non-nitrogen metabolism
(phase II) training and independent testing metrics results.

Metrics Training average
10-fold

Independent testing

Sensitivity (%) 99.51 96.60
Specificity (%) 99.88 100
Precision (%) 99.87 100
Accuracy (%) 99.71 98.30
F1-score (%) 99.69 98.27
MCC 0.9941 0.9665

cross-validation techniques to develop our model and
evaluated the training process, and the independent
dataset was used to assess the ability of our model.
Different statistical approaches were used to evaluate
the performance of each classifier in both phases. In
particular, each query point from the test set has its
correct class label in a traditional supervised binary
classification problem. During the evaluation process,
however, the classifier maps the question points to
one of the following categories: true positive (TP), true
negative (TN), false positive (FP) and false negative
(FN). To accomplish these categories for each class, the
multiclass classification uses a one-on-one approach to
rest. In this method, the query point belongs to a class,
considered as a positive or a negative point. On this basis,
TP, TN, FP and FN are determined for each class, and
the following statistical approaches are used to test the
output of the classifier for each class as was done in
many other studies [38, 46–48].

Recall/sensitivity can be defined as the ability of a
classifier to predict all relevant data correctly. It can
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Table 5. Nitrogen metabolism nine classes (phase III) training metrics results

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

Nitrogen fixation 99.92 99.98 99.86 99.98 99.89 0.9988
Assimilatory 96.14 99.08 95.39 98.59 95.76 0.9492
Dissimilatory 96.21 99.46 95.35 99.13 95.78 0.9529
Denitrification 99.8 99.93 98.93 99.92 99.36 0.9932
Nitrification 85.96 99.75 98.7 97.3 91.89 0.9059
Assimila-
tory + dissimilatory + denitrification + nitrification

97.94 99.69 96.64 99.54 97.28 0.9704

Denitrification + nitrification 99.9 99.89 99.46 99.89 99.68 0.9962
Dissimila-
tory + denitrification + nitrification

99.47 99.66 89.76 99.65 94.36 0.9432

Dissimilatory + denitrification 98.94 98.21 85.67 98.28 91.83 0.9117
Overall 96.14 99.59 95.96 99.03 95.91 0.9544

Table 6. Nitrogen metabolism nine classes (phase III) Independent testing metrics results

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

Nitrogen fixation 99.5 99.94 99.5 99.89 99.5 0.9944
Assimilatory nitrate reduction 95.5 98.56 89.25 98.22 92.27 0.9133
Dissimilatory nitrate reduction 92.5 99.44 95.36 98.67 93.91 0.9317
Denitrification 99 99.94 99.5 99.83 99.25 0.9915
Nitrification 80 99.31 93.57 97.17 86.25 0.8501
Assimila-
tory + dissimilatory + denitrification + nitrification

98 99.75 98 99.56 98 0.9775

Denitrification + nitrification 100 99.88 99.01 99.89 99.5 0.9944
Dissimila-
tory + denitrification + nitrification

98.5 99.69 97.52 99.56 98.01 0.9776

Dissimilatory + denitrification 96 98.38 88.07 98.11 91.87 0.9091
Overall 95.44 99.43 95.53 98.98 95.39 0.9488

be calculated as the ratio between predicted TP to all
positive observations (TP + FN).

Sensitivity = (TP)

(TP + FN)

Specificity can be defined as the percentage of nega-
tively labeled instances that were predicted as negative;
this can be calculated as the ratio between predicted TNs
to all negative observations TN/(TN + FP).

Specificity = (TN)

(TN + FP)

Precision can be defined as the ability of a classifier to
predict only relevant data correctly and is calculated as
the ratio between predicted TP to all predicted positive
observations (TP + FP).

Precision = (TP)

(TP + FP)

Accuracy is the measure of correct prediction out of
the total forecast.

Accuracy = (TP + TN)

(TP + TN + FP + FN)

F1 score: The F1 score uses only three categories (TP, FP
andFN) to evaluate the performance of the classifier. It is
the weighted average of precision and recall and takes
values between 0 and 1, where zero value represents the
worst classifier, and the value one represents the best
classifier.

F1 − score = 2 ∗
(
Precision ∗ Sensitivity

)

(
Precision + Sensitivity

)

Matthews correlation coefficient (MCC) can be defined
as the correlation between the observed and predicted
values. The reason behind calculating MCC is that the
accuracy and specificity sometimes overestimate the
performance of the classifier. The MCC value of +1
represents the best prediction, 0 represents random
prediction, and −1 represents the disagreement between
the correct class and the predicted class.

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN)

Web server development
The deepNEC web server was developed using PHP
7.4, JavaScript, Jquery. In all four phases, the predicted
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Table 7. Nitrogen metabolism-related 20 EC number (phase IV) training results statistics

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

Nitrogen fixation
1.18.6.1 99.92 99.98 99.86 99.98 99.89 0.9988
1.7.7.2 99.12 99.86 99.55 99.69 99.34 0.9914
Assimilatory nitrate reduction
1.7.1.1 61.71 98.96 85.38 95.64 71.49 0.7036
1.7.1.2 86.73 91.11 76.61 90.01 81.33 0.7484
1.7.1.3 69.10 97.46 65.71 95.61 67.13 0.6495
1.7.1.4 92.93 98.41 96.35 96.71 94.61 0.9227
1.7.7.1 97.77 99.88 97.85 99.77 97.80 0.9769
Dissimilatory nitrate reduction
1.7.1.15 99.95 99.96 99.76 99.96 99.85 0.9983
1.7.2.2 99.96 99.95 99.99 99.96 99.97 0.9983
Denitrification
1.7.2.5 99.87 99.65 99.66 99.76 99.76 0.9952
1.7.2.4 99.65 99.87 99.86 99.76 99.75 0.9952
Nitrification
1.7.2.6 95.88 96.64 95.60 99.35 95.72 0.9538
1.7.2.7 98.44 99.51 95.88 99.40 97.13 0.9682
1.7.2.8 94.47 99.66 96.06 99.24 95.25 0.9485
1.14.99.39 100 99.98 99.95 99.98 99.97 0.9997
1.7.99.4 99.10 99.56 99.47 99.35 99.29 0.9870
Assimilatory + dissimilatory + denitrification + nitrification
1.7.99.- 97.94 99.69 96.64 99.54 97.28 0.9704
Denitrification + nitrification
1.7.5.1 99.9 99.89 99.46 99.89 99.68 0.9962
Dissimilatory + denitrification + nitrification
1.7.2.1 99.47 99.66 89.76 99.65 94.36 0.9432
Dissimilatory + denitrification
1.9.6.1 98.94 98.21 85.67 98.28 91.83 0.9117
Overall 97.10 99.20 93.92 99.05 95.35 0.9488

enzymes are further linked to different biological
databases like NCBI [49], UniProt [13], BRENDA [50],
KEGG [51, 52] and JGI IMG/M [53] to provide more
comprehensive information about their annotations. It
also provides a secondary structure prediction option
using PsiPred [54, 55]. Along with the deep learning-based
prediction, we have also included a similarity-based
method using BLAST and diamondBLAST in the web
server. Users can choose from three different prediction
type options (DNN, Homology and Combined). It allows
users to compare the machine learning results with
similarity-based methods. Users can give an e-value,
coverage and percent identity parameter for filtering the
similarity-based results.

Development environment
CNN modeling was implemented using the Keras (ver-
sion 2.4.0) Python package (https://keras.io/) with Tensor-
Flow backend (version 2.2.0) [56]. Python module scikit-
learn [57] was used to create a confusion matrix.

Results and discussion
Development of deepNEC
In deepNEC development, CNN was used out of various
deep learning approaches due to its demonstrated suc-
cess in the identification of functional areas (e.g. motifs

and domains, enzyme/non-enzyme classification) in a
biological sequence (e.g. protein sequence).

deepNEC result analysis
In addition to the evaluation criteria stated above,
receiver operating characteristics (ROC) and Precision–
Recall graphical parameters have been used to demon-
strate promising efficiency for our deepNEC models for
functional annotation of enzymes. The deepNEC phase-
I evaluation metrics for enzyme versus non-enzyme
classes are depicted in Table 3. The phase-I model’s
classification performance was demonstrated by the
average of 10-fold training/testing procedure: precision
(95.64%), recall (95.76%), accuracy (95.70%) and MCC
(0.914). On independent benchmark (testing of the models
on completely unknown data not used in the training/testing
procedure), we got a precision (92.55%), recall (94.46%),
accuracy (93.43%) and MCC (0.868), on testing of 3000
protein sequences. The deepNEC phase-II evaluation
metrics pertaining to nitrogen biochemical network-
related versus non-nitrogen biochemical network-
related classes are reported in Table 4. The phase-II
model’s classification performance was demonstrated
by the average 10-fold training precision (99.87%),
recall (99.51%), accuracy (99.71%) and MCC (0.9941)
parameters; and the precision (100%), recall (96.60%),
accuracy (98.30%) and MCC (0.9665) performance on
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Table 8. Nitrogen metabolism-related 20 EC number (phase IV) independent testing results statistics

Metrics Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-score (%) MCC

Nitrogen fixation
1.18.6.1 99.5 99.94 99.5 99.89 99.5 0.9944
Assimilatory nitrate reduction
1.7.7.2 100 99.80 99.01 99.83 99.50 0.9940
1.7.1.1 68.00 98.60 90.67 93.50 77.71 0.7505
1.7.1.2 86.50 88.60 60.28 88.25 71.05 0.6561
1.7.1.3 76.00 97.70 86.86 94.08 81.07 0.7782
1.7.1.4 88.00 98.20 90.72 96.50 89.34 0.8726
1.7.7.1 95.50 99.90 99.48 99.17 97.45 0.9698
Dissimilatory nitrate reduction
1.7.1.15 100 100 100 100 100 1
1.7.2.2 100 100 100 100 100 1
Denitrification
1.7.2.5 99.50 99.50 99.50 99.50 99.50 0.99
1.7.2.4 99.50 99.50 99.50 99.50 99.50 0.99
Nitrification
1.7.2.6 97.00 99.25 97.00 98.80 97.00 0.9625
1.7.2.7 99.00 99.25 97.05 99.20 98.01 0.9752
1.7.2.8 96.00 99.37 97.46 98.70 96.72 0.9591
1.14.99.39 100 100 100 100 100 1
1.7.99.4 99.00 99.87 99.49 99.70 99.24 0.9906
Assimilatory + dissimilatory + denitrification + nitrification
1.7.99.- 98 99.75 98 99.56 98 0.9775
Denitrification + nitrification
1.7.5.1 100 99.88 99.01 99.89 99.5 0.9944
Dissimilatory + denitrification + nitrification
1.7.2.1 98.5 99.69 97.52 99.56 98.01 0.9776
Dissimilatory + denitrification
1.9.6.1 96 98.38 88.07 98.11 91.87 0.9091
Overall 94.80 98.85 94.95 98.18 94.64 0.9370

independent testing of 2000 protein sequences. Similarly,
deepNEC phase-III evaluation criteria for nine nitrogen
biochemical network classes are described in Tables 5
and 6. The phase-III model’s classification performance
was demonstrated by the overall average 10-fold training
precision (95.96%), recall (96.14%), accuracy (99.03%)
and MCC (0.9544) parameters of nine classes; and the
precision (95.53%), recall (95.44%), accuracy (95.39%)
and MCC (0.9488) performance on independent testing
of 1800 protein sequences. The deepNEC phase-IV
evaluation criteria for 20 nitrogen biochemical network-
related enzyme classes are described in Tables 7 and
8. The phase-IV model’s classification performance
was demonstrated by an overall average of 10-fold
training procedure which gave a precision (93.92%),
recall (97.10%), accuracy (99.05%) and MCC (0.9488)
parameters of 20 classes; and the precision (94.95%),
recall (94.80%), accuracy (98.18%) and MCC (0.9370)
performance on independent testing of 4000 protein
sequences. According to [58, 59], however, accuracy alone
is not a reasonable indicator of a model classification
performance owing to the accuracy paradox; thus, the F1-
score was also calculated for the corresponding deepNEC
phases. Out of both the positive and negative examples,
the F1-score is the harmonic description of precision and
recall, showing the classifier’s ability to detect the real
true sample, and is thus viewed as a more appropriate

output measure relative to accuracy alone. While the F1-
score is a more accurate parameter relative to accuracy
to measure the model performance, the F1-score often
overestimates the classification performance in the case
of unbalanced test data [60]. The F1-scores for deepNEC
phase I (Table 3), for deepNEC phase II (Table 4), for the
overall performance of deepNEC phase III (Tables 5 and
6) and for the overall performance of deepNEC phase
IV (Tables 7 and 8) indicate a high performance of the
models in all classes [60]. A balanced success metric
MCC score (>0.90) was determined for all the classes in
each phase, guaranteeing the higher predictive efficiency
of our deepNEC models.

ROC curve analysis
For assessing the efficiency of the classification model,
ROC is a graphical metric. This illustrates the rela-
tionship between true positive rate or sensitivity (TPR)
and false positive rate or 1-specificity (FPR) at different
thresholds, where FPR is usually plotted against the x-
axis and TPR against the y-axis [61–63]. Out of the total
negative cases, the FPR of the classification model is the
determination of false-positive prediction. In all positive
cases, at the same time, the TPR defines the TP forecast.
ROC curves are depicted in Figures 3 and 4. The top-left
corner, where sensitivity and accuracy are 100%, reveals
the optimal classification condition of the ROC curve.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025



deepNEC | 9

Figure 3. 10-FOLD average training ROC curves for deepNEC, all four phases.

The diagonal line [coordinate (0, 0) to (0, 1)] indicates the
random output of the classification. Therefore, the ROC
of the model must be over the diagonal line to get a good
classification pattern, i.e. the more the area below the
curve, the higher the performance of the classifier. The
model’s micro average ROC has also been plotted along
with the fourteen classes to demonstrate the deepNEC
model’s average ROC efficiency. The deepNEC model’s
micro average ROC metric was plotted against micro
average FPR (FPRμ) and micro average TPR (TPRμ), where
FPRμ and TPRμ reflected the contribution of all fourteen
classes and defined as

TPRμ =
∑k

i=1 TPi
∑k

i=1 TPi + FNi

FPRμ =
∑k

i=1 FNi
∑k

i=1 TPi + FNi

Precision–recall analysis
The precision–recall curve, plotted at different thresh-
olds against recall and precision on the x-axis and y-axis
respectively, is another graphical metric to determine the
classifier’s efficiency. The precision–recall curve helps to

evaluate the classifier’s optimistic predictive efficiency
as it does not include real adverse cases in its estimation
(Figures 5 and 6).

The optimal classification condition for the precision–
recall curve is the upper right corner with a region under
the curve of 1 square unit, where the precision and recall
of the classifier is 100%, guaranteeing the classifier’s
ability to predict TP without any FP predictions. There is a
fair trade-off between accuracy and recall, i.e. the region
below the precision–recall curve must close to 1 square
unit to provide a good classification model.

Benchmarking of deepNEC with other tools
Since deepNEC is the first reported tool specifically
for nitrogen-related enzymes, we compared the perfor-
mance of deepNEC with the existing tools for enzyme
classification like ECPred [64], DeepEC [65], DeEPn
[66] and DEEPre [44]. Due to the unavailability of the
DeEPn and DEEPre servers, we were not able to include
them for further analysis. ECPred uses multiple binary
classifiers, while DeepEC is a combination of deep
learning and homology methods. We downloaded 50
sequences from UniProt which were not part of our
original training/testing. The comparison statistics are
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Figure 4. Independent testing ROC curves for deepNEC, all four phases.

represented in Figure 7 and Table 9. The accuracy of
deepNEC was 92%, while the accuracy of ECPred and
DeepEC were 76 and 74%, respectively. The F1-score of
deepNEC was much higher (92.31) than ECPred (80) and
DeepEC (74.51), validating the fact that our classifier had
a better chance of separating the true samples from the
negative samples. As expected, the MCC of deepNEC was
much higher (+0.843) than ECPred (+0.567) and DeepEC
(+0.480), showing the ability of the deepNEC classifier to
make a more precise prediction.

Use of deepNEC for annotation
of bacterial genomes
Understanding the role played by enzymes and biota
in the functioning of agro-ecosystems is important
for improving capabilities for soil health management.
Several microbiome databases are generated every day
with the advent of NGS technology. Quantitative data
for nitrogen metabolism and enzyme activity will help
us better understand the role of enzymes in soils. The
development of deepNEC is one step in this direction
to assist experimental biologists in the correct iden-
tification/classification of different types of enzymes
from genomes and environmental metagenomes. For
the performance evaluation of deepNEC on genome

sequence data, we obtained 20 bacterial complete
genomes from the NCBI (Table 10). Then we used
deepNEC to predict all of the proteomes. Results of all the
four phases for 20 genomes, with full results are available
in Supplementary File 2. The highest percentage number
of sequences annotated as enzymes was found in
Frankia alni (66.84%) followed by Rhodobacter capsulatus
(63.36%), Cupriavidus taiwanesis (61.08%) and Candida-
tus Nitrosocosmicus franklandus (35.78%) has the least
percentage of sequences annotated as enzymes. From
these enzymes, the highest percentage of sequences in
Nitrospina gracilis (7.56%) were annotated as nitrogen
biochemical network-related followed by Nitrospira
moscoviensis (7.08%), F. alni (6.66%), R. capsulatus (6.36%),
while the least percentage of nitrogen biochemical
network-related enzymes were annotated in Candidatus
Nitrosocosmicus franklandus (2.50%). In phase III, these
nitrogen biochemical network-related enzymes were
further assigned to nine different classes. For nitrogen
fixation, the highest percentage of sequences were
annotated in Croscosphaera watsonii (26.53%), followed by
Anabaena cylindrica (23.80%) whereas the least number
was in Nitrosomonas oligotropha (1.96%). Similarly, for the
assimilatory class, the most percentage of sequences
were present in Nitrobacter winogradskyi (41.30%) followed
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Figure 5. 10-FOLD average training PRC curves for deepNEC, all four phases.

by F. alni (33.98%) and the least percentage was in
Nitrosomonas eutropha (13.04%). In the dissimilatory
class, Nitrososphaera viennensis (10.20%) has the highest
enzymes predicted and C. watsonii, N. winogradskyi and
A. cylindrica have no enzymes predicted for dissimilatory
nitrate reduction. N. europaea (27.02%) has the highest
number of predicted enzymes for denitrification class,
while Candidatus Jettenia caeni (5.43%) has the lowest
number. For the nitrification class, highest number
of enzymes were predicted in Nitrosomonas halophila
(44.70%) followed by Candidatus Brocadia sinica (42.57%),
while Candidatus Nitrosocosmicus franklandus (16.66%) has
the least percentage of enzymes for nitrification.

These prediction results are in line with the reported
annotations and functions of these bacterial genomes
[67–85] and indicate that deepNEC can be used as a
tool for annotations of new genomes or metagenomes.
A negative control dataset (e.g. altered enzyme protein
sequences with their functionalities gone) would also
be highly beneficial in enhancing deepNEC’s prediction
capabilities for mutations in domains and binding site
residues of protein sequences. Additional training of
deepNEC with the negative control dataset as well as new
nitrogen biochemical network-related enzymes would

allow for more accurate detection of changes in enzy-
matic function caused by mutation or rearrangements.
This feature is particularly valuable for examining
homologous enzymes, such as those derived from
new (meta)genome data that contain alterations with
previously unknown impacts on enzyme functioning.
Above all, it will be critical to utilize deepNEC in a
variety of situations, either independently or as part
of a third-party software package, and to gather input
from biochemists, enzymologists and biotechnologists
to more rigorously validate deepNEC predictions and to
guide future improvements.

Comparison with similarity-based method
To compare the prediction performance of our alignment
free method with the alignment-based methods such as
BLAST, we downloaded one proteome, e.g. Nitrosospira
multiformis proteome. We applied our deep learning
based approach as well homology based approach to this
dataset. deepNEC outperformed similarity-based meth-
ods like BLAST/diamond BLAST in the prediction of novel
nitrogen metabolism-related enzymes. Out of the total
2739 proteins in N. multiformis; 1488 as enzymes and 1251
non-enzymes were predicted with deepNEC, whereas

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025



12 | Duhan et al.

Figure 6. Independent testing PRC curves for deepNEC, all four phases.

Figure 7. deepNEC comparison with existing tools.

820 enzymes and 1919 non-enzymes were predicted
using diamondBLAST in phase I. In phase II, 83 nitrogen
metabolism-related and 1405 non-nitrogen metabolism-
related enzymes were predicted using deepNEC out of
the total 1488 enzymes from phase I, and 17 nitrogen
metabolism-related and 803 non-nitrogen metabolism-
related were predicted using diamondBLAST out of the
820 enzymes predicted in phase I. In phase III, deepNEC
classified 83 nitrogen metabolism-related enzymes into 6
classes while diamondBLAST classified 16 of 17 nitrogen

Table 9. Comparison of deepNEC with other tools for Enzyme
versus non-enzyme classification

Metrics deepNEC ECPred DeepEC

Sensitivity (%) 96 96 76
Specificity (%) 88 56 72
Precision (%) 88.89 68.57 73.08
Accuracy (%) 92 76 74
F1-score (%) 92.31 80 74.51
MCC 0.843 0.567 0.480

metabolism-related enzymes in 6 different classes. In
phase IV, we have selected nitrification class for the
EC number prediction. In this phase IV EC prediction,
31 nitrification-related enzymes were classified in 5 EC
numbers while with diamondBLAST only 3 EC numbers
were predicted for 4 nitrification-related enzymes. Thus,
based on this comparison, we can say that deepNEC
predicted more enzymes than similarity-based methods
using the same dataset.

Conclusion
DeepNEC is a machine learning prediction model
for predicting nitrogen biochemical network-related
enzymes. It is implemented in four phases, where phase
I classifies a protein sequence in enzyme/non-enzyme;
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Table 10. Annotation of 20 microbial genomes with deepNEC

Ammonia oxidizing bacteria (Beta-Proteobacteria)

Genus and species Strain Lineage/cluster Accession References

Nitrosospira briensis C-128 cluster 3 GCF_000619905.2 [67]
N. multiformis ATCC 25196 cluster 3 GCA_000196355.1 [68]
N. oligotropha Nm45 cluster 6A GCF_009833085.1 [69]
N. europaea ATCC 19718 cluster 7 GCF_000009145.1 [70]
N. eutropha C-91 cluster 7 GCF_000014765.1 [71]
N. halophila Nm1 GCF_900107165.1 [72]
Ammonia oxidizing bacteria (Gamma-Proteobacteria)
Candidatus Nitrosolglobus terrae TAO100 GCF_002356115.1 [86]
Ammonia oxidizing archaea (Thaumarchaeota)
N. viennensis EN-76T Nitrososphaera GCF_000698785.1 [74]
Ca. Nitrosocosmicus franklandus C13 NFRAN1 Nitrososphaera sister GCF_900696045.1 [75]
Nitrite oxidizing bacteria (Proteobacteria, Nitrospirae)
N. winogradskyi NB-255 Alpha-proteobacteria GCA_000012725.1 [76]
N. moscoviensis NSP-S1 lineage II Nitrospira GCF_001273775.1 [87]
N. gracilis 3/211 GCF_000341545.2 [77]
Comammox bacteria (Nitrospirae)
Nitrospira inopinata ENR4 lineage II (clade A.1) GCF_001458695.1 [78]
Anammox (Plantomycetes)
Ca. Jettenia caeni KSU-1 GCA_000296795.1 [79]
Ca. Brocadia sinica JPN1 GCF_000949635.1 [80]
Nitrogen-fixing bacteria
C. taiwanesis LMG 19424 GCF_000069785.1 [81]
A cylindrica PCC 7122 GCF_000317695.1 [82]
F. alni ACN14A GCF_000058485.1 [83]
C. watsonii WH 8501 GCF_000167195.1 [84]
R. capsulatus A12 GCF_014622665.1 [85]

phase II further classifies the predicted enzyme into
nitrogen metabolism enzyme/non-nitrogen metabolism
enzyme; phase III classifies the predicted nitrogen
biochemical network-related enzyme in nine classes;
phase IV then provides an EC number for the predicted
nitrogen metabolism class. For the prediction of nitro-
gen biochemical network-related enzymes, deepNEC
converts protein sequence into DPC and NMBroto
features. The training and validation dataset of the
deepNEC model was retrieved from UniProtKB/Swiss-
Prot. Independent dataset comparison of the deepNEC
model was further performed against other enzyme
classification tools (DeepEC, ECPred) to analyze the
performance of our model. deepNEC was able to
outperform these alternatives. Researchers will be able
to use deepNEC to predict and analyze a variety of new
nitrogen biochemical network-related enzymes from
genomes and metagenomes.

Key Points

• Nitrogen biochemical network is an important pathway
in the global biogeochemical cycle.

• deepNEC is a deep learning-based tool for the identifica-
tion and classification of N-biochemical network-related
enzymes.

• It is a four-phase prediction tool and further pro-
vides annotations of the predicted enzymes to external
databases. It can also predict secondary and tertiary
structures.

• Independent validation of deepNEC on independent test
data shows an efficient and accurate prediction. Also
performed annotations on 20 novel bacterial genomes.

• The resource will be useful for the functional annotation
of microbial genomes and metagenomes.

Acknowledgment
Special thanks are due to Shelby McCowan (Bioinfor-
matics Linux Systems Administrator), who helped with
the installation of the backend software that deepNEC
uses through SLURM jobs and with the configuration
of the head node of the High-Performance Computing
(HPC) cluster to implement the web server successfully.
The authors sincerely thank the anonymous referees for
all the suggestions and help in improving the research
article.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.

Data availability
The prediction software developed from this study is
available freely at http://bioinfo.usu.edu/deepNEC/. The
standalone version of deepNEC can be downloaded from
https://navduhan@bitbucket.org/navduhan/deepnec.git.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac071#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
http://bioinfo.usu.edu/deepNEC/
https://navduhan@bitbucket.org/navduhan/deepnec.git


14 | Duhan et al.

All the training/testing data and the independent testing
data used in this study are available as well on the web
server.

Funding
This work was funded by the Office of Research, USU
(Research Catalyst grant # A45112 to R.K.). The funding
body had no involvement in the design of this study, data
collection, analysis, interpretation or article preparation.

Conflict of Interest
The author declare no conflict interest.

References

1. Fowler D, Coyle M, Skiba U, et al. The global nitrogen
cycle in the Twentyfirst century. Philos Trans R Soc B Biol Sci
2013;368:20130164.

2. Galloway JN, Dentener FJ, Capone DG, et al. Nitrogen cycles: past,
present, and future. Biogeochemistry 2004;70:153–226.

3. Falkowski PG, Fenchel T, Delong EF. The microbial engines that
drive earth’s biogeochemical cycles. Science 2008;320:1034–9.

4. Gruber N, Galloway JN. An earth-system perspective of the
global nitrogen cycle. Nature 2008;451:293–6.

5. Reed DC, Algar CK, Huber JA, et al. Gene-centric approach to
integrating environmental genomics and biogeochemical mod-
els. Proc Natl Acad Sci 2014;111:1879–84.

6. Landolfi A, Dietze H, Koeve W, et al. Overlooked runaway feed-
back in the marine nitrogen cycle: the vicious cycle. Biogeo-
sciences 2013;10:1351–63.

7. Vitousek PM, Howarth RW. Nitrogen limitation on land and in
the sea: how can it occur? Biogeochem 1991;13:87–115.

8. Ye RW, Thomas SM. Microbial nitrogen cycles: physiology,
genomics and applications. Curr Opin Microbiol 2001;4:307–12.

9. Jetten MSM. The microbial nitrogen cycle. Environ Microbiol
2008;10:2903–9.

10. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-
cycling network. Nat Rev Microbiol 2018;16:263–76.

11. Goddard JP, Reymond JL. Enzyme assays for high-throughput
screening. Curr Opin Biotechnol 2004;15:314–22.

12. Bairoch A. The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucleic Acid Res 2000;28:45–8.

13. Consortium TU, Bateman A, Martin M-J, et al. UniProt: the
universal protein knowledgebase in 2021. Nucleic Acid Res
2021;49:D480–9.

14. Cornish-Bowden A. Current IUBMB recommendations on
enzyme nomenclature and kinetics. Perspect Sci 2014;1:74–87.

15. des Jardins M, Karp PD, Krummenacker M, et al. Prediction of
enzyme classification from protein sequence without the use of
sequence similarity. Proc Int Conf Intell Syst Mol Biol 1997;5:92–9.

16. Dobson PD, Doig AJ. Predicting enzyme class from protein struc-
ture without alignments. J Mol Biol 2005;345:187–99.

17. Nagao C, Nagano N, Mizuguchi K. Prediction of detailed enzyme
functions and identification of specificity determining residues
by random forests. PLoS One 2014;9:e84623.

18. Roy A, Yang J, Zhang Y. COFACTOR: an accurate compara-
tive algorithm for structure-based protein function annotation.
Nucleic Acid Res 2012;40.

19. Yang J, Yan R, Roy A, et al. The I-TASSER suite: protein structure
and function prediction. Nat Method 2014;12:7–8.

20. Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved pro-
tein function prediction by combining structure, sequence
and protein-protein interaction information. Nucleic Acid Res
2017;45:W291–9.

21. Arakaki AK, Huang Y, Skolnick J. EFICAz2: enzyme function
inference by a combined approach enhanced by machine learn-
ing. BMC Bioinform 2009;10:107.

22. Kumar N, Skolnick J. EFICAz2.5: application of a high-precision
enzyme function predictor to 396 proteomes. Bioinformatics
2012;28:2687–8.

23. Quester S, Schomburg D. EnzymeDetector: an integrated
enzyme function prediction tool and database. BMC Bioinform
2011;12:376.

24. Tian W, Arakaki AK, Skolnick J. EFICAz: a comprehensive
approach for accurate genome-scale enzyme function infer-
ence. Nucleic Acid Res 2004;32:6226–39.

25. Yu C, Zavaljevski N, Desai V, et al. Genome-wide enzyme
annotation with precision control: catalytic families (CatFam)
databases. Proteins Struct Funct Bioinform 2009;74:449–60.

26. Cai CZ, Han LY, Ji ZL, et al. SVM-Prot: web-based support vector
machine software for functional classification of a protein from
its primary sequence. Nucleic Acid Res 2003;31:3692–7.

27. Cai CZ, Han LY, Ji ZL, et al. Enzyme family classification by
support vector machines. Protein Struct Funct Genet 2004;55:
66–76.

28. Cai YD, Chou KC. Predicting enzyme subclass by functional
domain composition and pseudo amino acid composition. J
Proteome Res 2005;4:967–71.

29. Chou K-C. Using amphiphilic pseudo amino acid composition to
predict enzyme subfamily classes. Bioinformatics 2005;21:10–9.

30. Chou KC, Elrod DW. Prediction of enzyme family classes. J
Proteome Res 2003;2:183–90.

31. De Ferrari L, Aitken S, van Hemert J, et al. EnzML: multi-label
prediction of enzyme classes using InterPro signatures. BMC
Bioinform 2012;13:61.

32. Huang WL, Chen HM, Hwang SF, et al. Accurate prediction
of enzyme subfamily class using an adaptive fuzzy k-nearest
neighbor method. Biosystems 2007;90:405–13.

33. Kumar C, Choudhary A. A top-down approach to classify
enzyme functional classes and sub-classes using random forest.
Eurasip J Bioinform Syst Biol 2012;2012:1.

34. Li YH, Xu JY, Tao L, et al. SVM-prot 2016: a web-server for
machine learning prediction of protein functional families from
sequence irrespective of similarity. PLoS One 2016;11:e0155290.

35. Lu L, Qian Z, Cai YD, et al. ECS: an automatic enzyme classifier
based on functional domain composition. Comput Biol Chem
2007;31:226–32.

36. Nasibov E, Kandemir-Cavas C. Efficiency analysis of KNN and
minimum distance-based classifiers in enzyme family predic-
tion. Comput Biol Chem 2009;33:461–4.

37. Qiu JD, Luo SH, Huang JH, et al. Using support vector machines
to distinguish enzymes: approached by incorporating wavelet
transform. J Theor Biol 2009;256:625–31.

38. Bin SH, Chou KC. EzyPred: a top-down approach for predicting
enzyme functional classes and subclasses. Biochem Biophys Res
Commun 2007;364:53–9.

39. Volpato V, Adelfio A, Pollastri G. Accurate prediction of pro-
tein enzymatic class by N-to-1 neural networks. BMC Bioinform
2013;14:S11.

40. Claesson MJ, Wang Q, O’Sullivan O, et al. Comparison of two
next-generation sequencing technologies for resolving highly
complex microbiota composition using tandem variable 16S
rRNA gene regions. Nucleic Acid Res 2010;38:e200–0.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025



deepNEC | 15

41. Wang YC, Wang Y, Yang ZX, et al. Support vector machine
prediction of enzyme function with conjoint triad feature and
hierarchical context. BMC Syst Biol 2011;5:S6.

42. Wang Y-C, Wang X-B, Yang Z-X, et al. Prediction of enzyme
subfamily class via pseudo amino acid composition by incorpo-
rating the conjoint triad feature. Protein Pept Lett 2012;17:1441–9.

43. Bin ZX, Chen C, Li ZC, et al. Using Chou’s amphiphilic pseudo-
amino acid composition and support vector machine for predic-
tion of enzyme subfamily classes. J Theor Biol 2007;248:546–51.

44. Li Y, Wang S, Umarov R, et al. DEEPre: sequence-based enzyme
EC number prediction by deep learning. Bioinformatics 2018;34:
760–9.

45. Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics 2012;28:3150–2.

46. Feng PM, Chen W, Lin H, et al. IHSP-PseRAAAC: identifying the
heat shock protein families using pseudo reduced amino acid
alphabet composition. Anal Biochem 2013;442:118–25.

47. Liu B, Liu F, Wang X, et al. Pse-in-one: a web server for generating
various modes of pseudo components of DNA, RNA, and protein
sequences. Nucleic Acid Res 2015;43:W65–71.

48. Kaundal R, Saini R, Zhao PX. Combining machine learning and
homology-based approaches to accurately predict subcellular
localization in Arabidopsis. Plant Physiol 2010;154:36–54.

49. National Center for Biotechnology Information. https://www.
ncbi.nlm.nih.gov/.

50. Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and
metabolic information. Nucleic Acid Res 2002;30:47.

51. Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of genes
and genomes. Nucleic Acid Res 1999;27:29–34.

52. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspec-
tives on genomes, pathways, diseases and drugs. Nucleic Acid Res
2017;45:D353–61.

53. Chen I-MA, Chu K, Palaniappan K, et al. The IMG/M data man-
agement and analysis system v.6.0: new tools and advanced
capabilities. Nucleic Acid Res 2021;49:D751–63.

54. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure
prediction server. Bioinformatics 2000;16:404–5.

55. Buchan DWA, Jones DT. The PSIPRED protein analysis work-
bench: 20 years on. Nucleic Acid Res 2019;47:W402–7.

56. Abadi M, Barham P, Chen J, et al. Tensorflow: a system for
large-scale machine learning. 12th USENIX Symp. Oper. Syst. Des.
Implement. (OSDI 16) 2016;265–83

57. Pedregosa F, Michel V, Grisel Oliviergrisel O, et al. Scikit-learn:
machine learning in python. J Mach Learn Res 2011;12. https://
www.jmlr.org/papers/v12/pedregosa11a.html.

58. Abma BJM, Kurtev I. Evaluation of requirements management
tools with support for traceability-based change impact analysis,
Master’s thesis in Software Engineering. University of Twente,
2009.

59. Valverde-Albacete FJ, Carrillo-de-Albornoz J, Peláez-Moreno C.
A proposal for new evaluation metrics and result visualization
technique for sentiment analysis tasks. Lect Note Comput Sci
(including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
2013;8138 LNCS:41–52.

60. Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbal-
anced data using Matthews correlation coefficient metric. PLoS
One 2017;12:e0177678.

61. Semwal R, Aier I, Raj U, et al. Pharmadoop: a tool for pharma-
cophore searching using Hadoop framework. Netw Model Anal
Heal Inform Bioinform 2017;6:1–9.

62. Zweig MH, Campbell G. Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clin
Chem 1993;39:561–77.

63. Swets JA. Measuring the accuracy of diagnostic systems. Sci Sci
1988;240:1285–93.

64. Dalkiran A, Rifaioglu AS, Martin MJ, et al. ECPred: a tool for
the prediction of the enzymatic functions of protein sequences
based on the EC nomenclature. BMC Bioinform 2018;19:334.

65. Ryu JY, Kim HU, Lee SY. Deep learning enables high-quality and
high-throughput prediction of enzyme commission numbers.
Proc Natl Acad Sci 2019;116:13996–4001.

66. Semwal R, Aier I, Tyagi P, et al. DeEPn: a deep neural network
based tool for enzyme functional annotation. J Biomol Struct Dyn
2020;39:2733–2743.

67. Rice MC, Norton JM, Valois F, et al. Complete genome of
Nitrosospira briensis C-128, an ammonia-oxidizing bacterium
from agricultural soil. Stand Genomic Sci 2016;11:1–8.

68. Norton JM, Klotz MG, Stein LY, et al. Complete genome
sequence of Nitrosospira multiformis, an ammonia-oxidizing bac-
terium from the soil environment. Appl Environ Microbiol 2008;
74:3559.

69. Sedlacek CJ, McGowan B, Suwa Y, et al. A Physiological
and genomic comparison of Nitrosomonas cluster 6a and 7
ammonia-oxidizing bacteria. Microb Ecol 2019; 78:985–94

70. Chain P, Lamerdin J, Larimer F, et al. Complete genome
sequence of the ammonia-oxidizing bacterium and obligate
chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003;185:
2759–73.

71. Stein LY, Arp DJ, Berube PM, et al. Whole-genome analysis
of the ammonia-oxidizing bacterium, Nitrosomonas eutropha
C91: implications for niche adaptation. Environ Microbiol 2007;9:
2993–3007.

72. IMG-taxon 2675903041 annotated assembly - Genome - Assem-
bly - NCBI. Nitrosomonas halophila proteome. https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCA/900/107/165/GCA_900107165.1_
IMG-taxon_2675903041_annotated_assembly/.

73. Hayatsu M, Tago K, Uchiyama I, et al. An acid-tolerant
ammonia-oxidizing γ -proteobacterium from soil. ISME J 2017;11:
1130–41.

74. Stieglmeier M, Klingl A, Alves RJE, et al. Nitrososphaera viennen-
sis gen. Nov., sp. nov., an aerobic and mesophilic, ammonia-
oxidizing archaeon from soil and a member of the archaeal
phylum Thaumarchaeota. Int J Syst Evol Microbiol 2014;64(Pt
8):2738–52.

75. Lehtovirta-Morley LE, Ross J, Hink L, et al. Isolation of ‘Candida-
tus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal
ammonia oxidiser with tolerance to high ammonia concentra-
tion. FEMS Microbiol Ecol 2016;92(5):fiw057.

76. Starkenburg SR, Chain PSG, Sayavedra-Soto LA, et al. Genome
sequence of the chemolithoautotrophic nitrite-oxidizing bac-
terium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol
2006;72:2050–63.

77. Lücker S, Nowka B, Rattei T, et al. The genome of Nitrospina gracilis
illuminates the metabolism and evolution of the major marine
nitrite oxidizer. Front Microbiol 2013;4:27.

78. Daims H, Lebedeva EV, Pjevac P, et al. Complete nitrification by
Nitrospira bacteria. Nature 2015;528:504–9.

79. Ali M, Oshiki M, Awata T, et al. Physiological characterization of
anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia
caeni’. Environ Microbiol 2015;17:2172–89.

80. Oshiki M, Ali M, Shinyako-Hata K, et al. Hydroxylamine-
dependent anaerobic ammonium oxidation (anammox) by “Can-
didatus Brocadia sinica”. Environ Microbiol 2016;18:3133–43.

81. Amadou C, Pascal G, Mangenot S, et al. Genome sequence of
the beta-rhizobium Cupriavidus taiwanensis and comparative
genomics of rhizobia. Genome Res 2008;18:1472–83.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/900/107/165/GCA_900107165.1_IMG-taxon_2675903041_annotated_assembly/


16 | Duhan et al.

82. ASM31769v1 - Genome - Assembly - NCBI. Anabaena cylindrica
refernce genome NCBI. https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCA/000/317/695/GCA_000317695.1_ASM31769v1/.

83. Normand P, Lapierre P, Tisa LS, et al. Genome characteristics of
facultatively symbiotic Frankia sp. strains reflect host range and
host plant biogeography. Genome Res 2007;17:7–15.

84. ASM16719v1 - Genome - Assembly - NCBI. Crocosphaera
watsonii refernece genom NCBI. https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCA/000/167/195/GCA_000167195.1_ASM16719v1/.

85. ASM1462266v1 - Genome - Assembly - NCBI. Rhodobacter cap-
sulatus NCBI Genome. https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCA/014/622/665/GCA_014622665.1_ASM1462266v1/.

86. Hayatsu M, Tago K, Uchiyama I, et al. An acid-tolerant ammonia-
oxidizing & gamma-proteobacterium from soil. ISME J 2017;11:
1130–41.

87. Koch H, Lücker S, Albertsen M, et al. Expanded metabolic ver-
satility of ubiquitous nitrite-oxidizing bacteria from the genus
Nitrospira. Proc Natl Acad Sci 2015;112:11371–6.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac071/6553605 by guest on 25 April 2025

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/317/695/GCA_000317695.1_ASM31769v1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/317/695/GCA_000317695.1_ASM31769v1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/167/195/GCA_000167195.1_ASM16719v1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/014/622/665/GCA_014622665.1_ASM1462266v1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/014/622/665/GCA_014622665.1_ASM1462266v1/

	 deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning
	Introduction
	Materials and methods
	Results and discussion
	Conclusion
	Key Points  
	 Acknowledgment
	Supplementary Data
	Data availability
	Funding
	Conflict of Interest


