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Abstract: Predicting enzyme subfamily class is an imbalance multi-class classification problem due to the fact that the 

number of proteins in each subfamily makes a great difference. In this paper, we focus on developing the computational 

methods specially designed for the imbalance multi-class classification problem to predict enzyme subfamily class. We 

compare two support vector machine (SVM)-based methods for the imbalance problem, AdaBoost algorithm with 

RBFSVM (SVM with RBF kernel) and SVM with arithmetic mean (AM) offset (AM-SVM) in enzyme subfamily classi-

fication. As input features for our predictive model, we use the conjoint triad feature (CTF). We validate two methods on 

an enzyme benchmark dataset, which contains six enzyme main families with a total of thirty-four subfamily classes, and 

those proteins have less than 40% sequence identity to any other in a same functional class. In predicting oxidoreductases 

subfamilies, AM-SVM obtains the over 0.92 Matthew's correlation coefficient (MCC) and over 93% accuracy, and in pre-

dicting lyases, isomerases and ligases subfamilies, it obtains over 0.73 MCC and over 82% accuracy. The improvement in 

the predictive performance suggests the AM-SVM might play a complementary role to the existing function annotation 

methods. 
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1. INTRODUCTION 

 Enzymes, as one of the largest and most important group 
of all proteins, participate in maintaining and regulation of 
the metabolic states of the cells. According to the definition 
of Enzyme Commission (EC) number [1], all enzymes can 
be classified into six main families: oxidoreductases, trans-
ferases, hydrolases, lyases, isomerases, and ligases. And 
each family can be further classified into a number of sub-
family classes. For a newly sequenced protein, which en-
zyme family and subfamily should it belong to? This is the 
most important problem due to the fact that it is related to the 
function protein as well as its specificity and molecular 
mechanism. However, experimentally determining the en-
zyme family and subfamily is still time-consuming and 
costly, the computational methods then have become a viable 
alternative to experimental approaches. 

 Introduction of novel mathematical approaches and 
physical concepts into molecular biology, such as Mahala-
nobis distance [2,3], pseudo amino acid composition [4], 
complexity measure factor [5,6], graph and diagram analysis 
[7-12], cellular automaton [13-16], grey theory [17], geomet-
ric moments [18], surface diffusion-controlled reaction [19], 
and ensemble classifier [20], as well as a series of user-
friendly web-servers summarized in Table 3 in [21], can sig-
nificantly stimulate the development of biological and medi- 
 

*Address correspondence to these authors at the College of Science, China 

Agricultural University, Beijing, China, 100083; Tel: 86-13718691409; Fax 
86-0991- 8588010; E-mail: dengnaiyang@cau.edu.cn and College of 

Mathematics and System Science, Xinjiang University, Urumuchi, China, 
830046; Tel 86-13681517962; Fax 86-10- 62561963;  

E-mail: xjyangzhx@sina.com 

cal science. Here, we would like to introduce a novel 
mathematical approach for predicting the enzyme subfamily 
class. 

 The most common computational method is transferring 
an enzymatic annotation between two globally aligned pro-
tein sequences, but it has been reported to significantly drop 
under 40% sequence identity [22]. To remedy this, many 
machine learning-based methods were successfully used. 
Especially, as an excellent machine learning method, support 
vector machines (SVMs) motivated by statistical learning 
theory [23,24], have been provided state-of-the-art perform-
ance in particular in computational biology [25]. Further-
more, SVM-based machine learning algorithm was used in 
predicting protein subcellular location [26], membrane pro-
tein type [27,28], protein structural class [29], specificity of 
GalNAc-transferase [30], HIV protease cleavage sites in 
protein [31], beta-turn types [32], protein signal sequences 
and their cleavage sites [33], alpha-turn types [34], catalytic 
triads of serine hydrolases [35], B-cell epitope prediction 
[36], et al. Here, we would like to use SVM-based methods 
to predict enzyme subfamilies for proteins with low homolo-
gies to known enzymes. 

 One key problem for using SVM-based methods is to 
construct a number of features to represent a given protein 
sequence. In previous studies, the amino acid composition 
(AAC) representation has been widely utilized in many pre-
dicting problems [37-39], including enzyme family and sub-
family class [40]. Owing to lack of the sequence order in-
formation, some modified versions of AAC, such as pseudo 
amino acid composition (Pse-AAC) [41] and amphiphilic 
pseudo-amino acid composition (Am-Pse-AAC) [42] have 



1442    Protein & Peptide Letters, 2010, Vol. 17, No. 11 Wang et al. 

been developed. However, both Pse-AAC and Am-Pse-AAC 
have some parameters to be determined, and need the prop-
erties of physio-chemistry of amino acids. Recently, a much 
simple feature describing method for protein-protein interac-
tion (PPI) prediction has been proposed [43]. The authors 
have shown that SVM with the conjoint triad feature (CTF) 
outperformed other sequence-based PPI prediction methods. 
The CTF considers not only properties of one amino acid but 
also its vicinal amino acids and treats any three continuous 
amino acids as an unit. That is, it contains not only the com-
position of amino acids but also sequence-order effect. It has 
also successfully been used in prediction of DNA- and RNA-
binding proteins [44]. Inspired by these, in this paper, we 
introduce the CTF into our predictive model. 

 Only used sequence-based feature may not enough to 
generate the encouraging predictive results. One way to im-
prove the performance is to develop automated classifiers 
specially designed for the problems to be solved. And it 
should be point out that the prediction of enzyme subfamily 
class is an imbalance multi-class classification problem due 
to the fact that the number of proteins in each subfamily 
makes a great difference. Unfortunately, when faced with 
imbalanced problem, the performance of SVM drops signifi-
cantly [45]. So it is essential to use modified versions of 
SVM specially designed for imbalance classification prob-
lem to predict enzyme subfamily class. In this paper, we 
compare two modified versions of SVM, AdaBoost algo-
rithm with RBFSVM (SVM with RBF kernel) and SVM 
with arithmetic mean (AM) offset (AM-SVM) in enzyme 
subfamily classification. AdaBoost algorithm, which can 
produce an accurate predictive rule by combining rough and 
moderately inaccurate rules-of-thumb [46], has lots of ad-
vantages such as high efficiency, high detection rate and low 
false positive rate [47]. Furthermore, it has been proofed that 
AdaBoost with RBFSVM component classifier, called as 
AdaBoostSVM, has better performance than standard SVM 
on imbalance classification problem [48]. While AM-SVM 
is SVM with arithmetic mean (AM) offset. It has been 
proofed that by introducing an offset parameter, the decision 
boundary can be modified on imbalance classification prob-
lem [49,50]. And a simple way to obtain the offset is to cal-
culate the AM of support vectors (SVs)' decision values [49]. 

 AdaBoostSVM and AM-SVM are validated on an en-
zyme benchmark dataset covering six enzyme main families 
with a total of thirty-four subfamily classes and any two pro-
teins in a same functional class have less than 40% sequence 
identity. The improvement in predictive performance sug-
gests that AdaBoostSVM and AM-SVM are all better than 
the Standard SVM and moreover, AM-SVM has much well 
performance. These results show that our SVM-based 
method based only on the sequence information performs 
well in predicting members of the enzyme subfamily, which 
is an extremely imbalance multi-class classification problem. 
We therefore hope our SVM-based method will be a useful 
tool for some other imbalance computational biological 
problem, including determination of subcellular location, 
prediction of membrane protein types and so on. 

 The paper is structured as follows. We begin by encoding 
the proteins by the CTF. Then we introduce the benchmark 
dataset and give the description of AdaboostSVM and AM-

SVM in Materials and Methods section. In Results section, 
we compare our method with standard SVM on the bench-
mark dataset. Lastly, the discussions and conclusions are 
presented. 

2. MATERIALS AND METHODS 

2.1. Input Feature:The Conjoint Triad Feature (CTF) 

 Construction of feature vectors for each data dominates 
the learning capability of the SVM-based methods. Since the 
CTF considers not only the composition of amino acids but 
also sequence-order effect, so this efficient and simple en-
coding scheme is under our consideration here. 

 Now let us address to construct the CTF. Based on the 
dipoles and volumes of the side chains, the 20 amino acids 
can be classified into seven classes: {A, G, V }, {I, L, F, P}, 
{Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, {C}. Thus, a 
( 7 7 7 =)343-dimension vector is used to represent a 
given protein, where each element of this vector is the fre-
quency of the corresponding conjoint triad appearing in the 
protein sequence. The detail description of the CTF can be 
see in [32]. 

2.2. SVM for Binary Classification Problem 

 At first, we briefly introduce the SVM for binary classifi-
cation problem. 

 Given training examples ( , )i ix y  for 1, ,i l= … , where 

ix is a vector in the input space 
nR  and iy denotes the cor-

responding class label taking a value of +1 or -1. Let 

: nR  be a mapping from the input space to a Hilbert 

space . The SVM is to find a hyperplane 

( ( )) 0w x b+ =  which can separate the two classes with 

the maximal margin and minimal training errors in the Hil-
bert space. By applying kernel function to replace the inner 

product in , the corresponding decision function is 

 

where 
*

 is the solution of the following optimization prob-
lem 

 

and
*b can be obtained as follows: 

 If there exists 
*

(0, ), 1, ,j C j l= … , then 

 

 We define the decision value of x as the value of ( )g x . 

 Notice that, enzyme subfamily classification problem is a 
multi-class classification problem. For convenience, the 
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multi-class classification problem is represented as follows: 
Given the training set 

{
n l

1 1 l lT = (x , y ),  , (x , y )}  (R {1, ,m}) , (1) 

where m is the number of classes. According to the idea of 

one versus one SVM, we can construct (m-1)m/2 two-class 

training subsets based on training set (1), then (m -1)m/2 

binary classifiers are constructed by implementing the binary 

SVM. Specially, for every 

(i, j)  {(i, j)|i < j, i, j = 1, ,m} , a training subset 
i-jT , 

which contains the class i and class j examples, is con-

structed. By implementing the algorithm of binary SVM 

on
i-jT , the sub-classifier ( )i jf x  is calculated as follows: 

 

where ( )i jg x is the decision value of x . At last, we can 

get the decision function ( ) {f |i < j, i, j = 1, ,m},i jf x =  

for the training set (1). 

 By using the major vote rule, the predictive label of x can 
be obtained. 

2.3. AdaBoostSVM 

 For dealing with imbalance problem, we introduce a 
modified version of AdaBoost.M1 (a kind of AdaBoost algo-
rithm for multi-class classification problem) [51], called as 
AdaBoostSVM, to predict enzyme subfamily class. The 
AdaBoostSVM generates a set of component classifiers, and 
combines the component classifiers into a single prediction 
rule. The pseudo code of AdaBoostSVM is described as fol-
lows: 

 Algorithm 2.1(AdaBoostSVM) 

 

 

2.4. SVM Classifier with AM Offset 

 In this subsection, we introduce another modified version 

of SVM to modify the decision boundary by introducing an 

offset parameter . Specially, the offset is calculated by 

the AM of SVs’ decision value [38]. The mathematical ex-

pression of is as follows: 

s

i

i i

S

s

=
= , where 1, sS S  are 

decision values of SVs, s is the number of SVs. 

After introducing the offset parameter , the decision value 

of a input x is reformulated as follows: 

 

The decision function then becomes: 

 

 By using one versus one idea, the predictive label of the 
input protein can be obtained. We denote this method as 
AM-SVM. 

2.5. Dataset 

 The benchmark dataset used to validate the performance 
of our method is collected from the literature [52]. The se-
quences in this dataset have less than 40% sequence identity 
to any other in a same functional class. The detail informa-
tion of this dataset can be found in [52]. In addition, for 
avoiding the extreme subfamily bias, those subfamilies 
which contain less than 40 proteins are excluded in our vali-
dation. Finally there are six main functional classes and 
thirty-four subfamily classes (i.e., twelve for oxidoreduc-
tases, seven for transferases, five for hydrolases, four for 
lyases, four for isomerases and two for ligases) in the 
benchmark dataset. 

2.6. Parameters Selection and Experimental Protocol 

 The performance of SVM heavily depends on the combi-
nation of several parameters. Specially, both AdaboostSVM 
and AM-SVM involve two classes parameters: the trade-off 
parameter C and RBF kernel function parameter  should be 
appropriately chosen, as C controls the trade-off between 
maximizing the margin and minimizing the training error, 
and  dominates the generalization ability of SVM by regu-
lating the amplitude of the RBF kernel function. We opti-
mize them by using a grid search. To minimize the overfit-
ting of the prediction models, 3-fold cross-validation is per-
formed on the training dataset. The cross accuracy is used to 
select the parameters. And for Standard SVM, the optimal C 
and  are 100 and 0.25 respectively, for AdaBoostSVM, the 
optimal C and  are 10 and 0.125 respectively and for AM-
SVM, the optimal C and  are 10 and 0.25 respectively. With 
respect to the Adaboost algorithm parameters K and N, we 
fix them as ten and 0.8 times of current training samples re-
spectively. 
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 Among the independent dataset test, sub-sampling (e.g., 
5 or 10-fold cross-validation) test, and jackknife test, which 
are often used for examining the accuracy of a statistical 
prediction method [53], the jackknife test was deemed the 
most objective that can always yield a unique result for a 
given benchmark dataset, as demonstrated by Eq.50 of [54]. 
Therefore, the jackknife test has been increasingly and 
widely adopted by investigators to test the power of various 
prediction methods (see, e.g. [55-72]). However, to reduce 
the computational time, we adopted the 10-fold cross-
validation in this study as done by many investigators with 
SVM as the prediction engine. That is, each main functional 
class dataset is split into 10 subsets of roughly equal size, 
each subset is then taken in turn as a test set, and we train 
Standard SVM, AdaBoostSVM and AM-SVM on the re-
maining nine sets. Note that, we treat each main functional 
class independently and construct the predictor only on the 
one of them. 

3. RESULTS 

 In this section, we evaluate the performance of our meth-
ods for prediction of enzyme subfamily classes. The experi-
ments are implemented by Libsvm(version 2.88) [73]. 

3.1. Comparison with Alternative Methods 

 Here, Standard SVM (one versus one binary SVM) is 
introduced for comparison. Standard SVM has been illus-
trated in method section. 

 We plot the distributions of accuracy with respect to the 
subfamily classes for each method on the six main functional 
classes respectively in Fig. (1). Except for the Ec2.8 and 
Ec3.1 sub-classes, AM-SVM obtains the best accuracies, 
AdaBoostSVM comes close second, and Standard SVM be-
comes the last in identifying all sub-classes of all six main 
families. That is because that, both AM-SVM and 
AdaBoostSVM take the imbalance property into account, 
perform better than Standard SVM. These result suggests 
that the more properties of dataset itself are incorporated into 
the predictive model, the more better results can be expected. 

 From Fig. (1) we can see that, except for the Ec2.8 sub-
class, AM-SVM outperforms AdaBoostSVM in identifying 
all sub-classes of all six main families. That is, although both 
AdaboostSVM and AM-SVM are specially designed for the 
imbalance problem, AM-SVM seems more reliable. In addi-
tion, comparing with standard SVM, the accuracy from 
AdaBoostSVM is not increased dramatically as that from 
AM-SVM. The reason for the different results will be dis-
cussed here. In [37], the authors have shown that by design-
ing parameter adjusting strategies, AdaBoost algorithm with 
RBFSVM component demonstrates better generalization 
performance than Standard SVM on imbalanced classifica-
tion problems. That is, the parameter has been adjusted in 
each AdaBoost algorithm iteration. However, to reduce the 
computational time, we fix the parameter  in each iteration, 
so the accuracy from AdaBoostSVM is not increased dra-
matically as the expected. 

 The CTF was initially developed for predicting protein 

interactions, although it achieved better outcome than AAC 

for PPI prediction, its effect in protein class prediction will 

be established by comparison in predicting enzyme subfam-

ily classes. In Table 1, we list the accuracies from AM-SVM 

with CTF and AAC respectively in predicting subfamily 

classes of oxidoreductases. We denote AM-SVM with CTF 

and AAC as 
CTFAM SVM  and 

AACAM SVM  respec-

tively. From Table 1, we can see that, except for Ec1.3 and 

Ec1.11, the CTF achieves better results than AAC in predict-

ing subfamily classes of oxidoreductases. So we believe that 

the CTF is also efficient in enzyme subfamily classs predic-

tion. 

3.2. Other Evaluation Criterion 

 Moreover, the Matthew’s correlation coefficient (MCC) 
(Matthews, 1975) is used to evaluation the performance of 
predictive methods. MCC allows us to overcome the short-
coming of accuracy on imbalanced data [74]. For example, if 
the number of the positive samples are much larger than that 
of the negative samples, a classifier is easy to predict all 
samples as positive. Significantly it is not a good classifier 
because it predicts all negative samples incorrectly. In this 
case, the accuracy and MCC of the positive class are 100% 
and 0, respectively. Therefore, MCC is a better measure for 
imbalanced data classification. 

 Set 
m mM R R  as the confusion matrix of the predic-

tion result, where ijM  (1 ,i j m ) represents the number 

of proteins that actually belong to class i but are predicted as 

class j. We further set 

 

where ( 1, )k k m= is the index of a particular class, m is 

the number of classes (m = 12, 7, 5, 4, 4, 2 for oxidoreduc-

tases, transferases, hydrolases, lyases, isomerases, and li-

gases respectively). For class k , if the samples which belong 

to the class k are treated as the positive samples, while the 

other samples are treated as the negative ones, then kp repre-

sents the number of true positive samples, kq represents the 

number of true negative samples, kr represents the number of 

false positive samples, while ks represents the number of 

false negative samples. Based on the equations above, the 

MCC of class ( )kk MCC is 

( )( )( )( )

k k k k
k

k k k k k k k k

p q r s
MCC

p s p r q s q r
=

+ + + +

 

 The distributions of MCCs with respect to the subfamily 

classes for each method on the six main functional classes 

are drawn respectively in Fig. (2). From Fig. (2) we can see 

that, expect for Ec3.4 and Ec4.6 sub-classes, AM-SVM ob-

tains the best MCCs, AdaBoostSVM comes close second,
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Figure 1. The distributions of accuracy with respect to the subfamily classes for each method on oxidoreductases, transferases, hydrolases, 

lyases, isomerases, and ligases respectively. 

 

and Standard SVM becomes the third in identifying all sub-
classes of oxidoreductases, transferases, hydrolases, lyases, 
isomerases and ligases. Fig. (2) also shows that although 

both AdaboostSVM and AM-SVM are specially designed 
for the imbalance problem, AM-SVM seems more reliable. 
AM-SVM obtains over 92% MCC, and the best MCC can be 
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Figure 2. The distributions of MCC with respect to the subfamily classes for each method on oxidoreductases, transferases, hydrolases, 

lyases, isomerases, and ligases respectively. 

 

close to 1 in predicting sub-classes of oxidoreductases , 
while AdaboostSVM obtain over 83% MCC. 

 In addition, we list the MCCs from AM-SVM with CTF 
and AAC respectively in predicting subfamily classes of 

oxidoreductases in Table 2. As Table 1 shown, except for 
Ec1.3 and Ec1.11, the CTF achieves better results than AAC 
in predicting subfamily classes of oxidoreductases. So we 
have the reason to believe that the CTF is also efficient in 
enzyme subfamily classs prediction. 
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Table 1.  The Accuracy of Various Features for Oxidoreduc-

tases Subfamily Classes 

Subfamily 
AACAM SVM (%) 

CTFAM SVM (%) 

Ec1.1 100 100 

Ec1.2 100 100 

Ec1.3 100 99.2 

Ec1.4 86.6 97.2 

Ec1.5 98.8 100 

Ec1.6 100 100 

Ec1.8 90.9 100 

Ec1.9 96.3 96.3 

Ec1.11 98.3 96.6 

Ec1.13 93.3 100 

Ec1.14 99.3 100 

Ec1.17 97.6 100 

Overall 96.8 99.1 

 

Table 2.  The MCC of the Various Features for Oxidoreduc-

tases Subfamily Classes 

Subfamily AACAM SVM  
CTFAM SVM  

Ec1.1 0.96 0.98 

Ec1.2 1 1 

Ec1.3 1 0.99 

Ec1.4 0.93 0.98 

Ec1.5 0.94 1 

Ec1.6 1 1 

Ec1.8 0.96 1 

Ec1.9 0.98 0.98 

Ec1.11 0.99 0.98 

Ec1.13 0.97 1 

Ec1.14 0.99 1 

Ec1.17 0.99 1 

4. DISCUSSION AND CONCLUSION 

 In this paper, for predicting enzyme subfamilies for pro-
teins with low homologies to known enzymes, the sequence-
base feature and the SVM-based model specially designed 
for the imbalance classification problem are introduced. Two 
modified version of SVM: AdaBoostSVM and AM-SVM are 
validated on a benchmark dataset proposed in [52]. This 
benchmark dataset covers six enzyme main family classes 
with a total of thirty-four subfamily classes and any two pro-

teins in a same subfamily class have less than 40% identity. 
As a result, comparing with the Standard SVM, the accuracy 
from AdaBoostSVM without parameter adjusting strategies, 
is not increased dramatically as that from AM-SVM. These 
results imply that, although AM-SVM combines only se-
quence-based feature: the CTF, the promising results can be 
expected due to it considering the properties of problem to 
be solved. Furthermore, AM-SVM may be suitable to be a 
tool for some other imbalance classification biological prob-
lem, including determination of subcellular location, predic-
tion of membrane protein types and so on. 

 Efficient feature construction is important in determining 
the performance of a predictive method. The results in this 
paper suggest that, comparing with the AAC, the CTF dis-
play its promising prospects (Table 1, 2). According to a 
recent comprehensive review [75], the CTF belongs to a dif-
ferent mode of pseudo amino acid composition (PseAAC). 
That is, it contains not only the composition of amino acids 
but also sequence-order effect. Thus future work can focus 
on introducing some encoding features which consider the 
sequence-order information, including K-spaced amino acid 
pairs [76] and so on. Another way to improve the feature 
construction methods is to integrate more data sources into 
encoding features (such as functional domain and evolution 
information) and use efficient kernel methods to fuse differ-
ent information [77]. In addition, we can define a different 
similarity measure for each data source and thereby incorpo-
rate more prior information into the design of the classifier 
[78]. 

 In this paper, we just compare two automated classifiers 
on imbalance classification problem: AdaBoostSVM and 
AM-SVM. There are many modified versions of SVM suit-
able on imbalance problem, such as Multisurface proximal 
support vector machine classification [79], and its extended 
versions: Twin SVM [80] and Nonparallel plane proximal 
classifier (NPPC) [81]. In the future, we can apply these 
models to facilitate the predictive task, and compare the per-
formance of them on predicting enzyme family and subfam-
ily class. 

 Since user-friendly and publicly accessible web-servers 
represent the future direction for developing practically more 
useful predictors [32], we shall make efforts in our future 
work to provide a web-server for the method presented in 
this paper. 
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