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Highlights 
Recent advances in computational biol-
ogy, especially deep learning models, 
have significantly accelerated the discov-
ery and annotation of enzyme functions. 

Diverse enzyme feature extraction 
methods and machine learning algo-
rithms have facilitated the development 
of high-performing computational models 
for enzyme function classification. 

Deep neural network architectures, 
including convolutional neural net-
works, recurrent neural networks, 
Enzymes are essential for cellular metabolism, and elucidating their functions is 
critical for advancing biochemical research. However, experimental methods are 
often time consuming and resource intensive. To address this, significant efforts 
have been directed toward applying artificial intelligence (AI) to enzyme function 
prediction, enabling high-throughput and scalable approaches. In this review, 
we discuss advances in AI-driven enzyme functional annotation, transitioning 
from traditional machine learning (ML) methods to state-of-the-art deep learning 
approaches. We highlight how deep learning enables models to automatically 
extract features from raw data without manual intervention, leading to enhanced 
performance. Finally, we discuss the discovery of novel enzyme functions and 
generation of de novo enzymes through the integration of generative AIs and 
bio big data as future research directions. 
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transformers, and graph neural 
networks, have revolutionized data-
driven approaches in predicting 
enzyme functions. 

Artificial intelligence has transformed en-
zyme function classification, making it 
more scalable and accurate than ever 
before.
The necessity of AI-based enzyme functional classification 
Metabolism lies at the core of cellular function, orchestrating a series of biochemical reactions to 
support growth, maintenance, and adaptation. These reactions are organized into a metabolic 
network, in which enzymes act as catalysts at each step. A well-characterized metabolic network 
enables researchers to understand how nutrients are processed, how energy is generated, and 
how cells respond to environmental changes. Thus, unveiling the functions of enzymes is funda-
mental for biochemical research. While the advent of whole-genome sequencing has revolution-
ized our ability to uncover the genetic basis of metabolism by identifying genes potentially 
encoding enzymes, accurately annotating functions to these genes remains an ongoing chal-
lenge. Although traditional experimental approaches, such as in vitro enzyme assays, are crucial 
for verifying specific enzyme functions, they are challenging to conduct on a large, high-
throughput scale. Consequently, a considerable number of enzymes remain functionally 
uncharacterized, creating a significant gap between genome-sequencing achievements and 
functional annotation. 

To address this gap, computational approaches have emerged as powerful tools for rapidly infer-
ring enzyme functions [1,2]. These computational approaches complement experimental assays 
by narrowing down candidate enzymes for targeted validation, thereby accelerating the overall 
process of enzyme function prediction. Although such methods have proven effective, they rely 
heavily on existing annotated databases, which limit their applicability for enzymes with few 
known homologs. Recent advances in graphics processing units, computational algorithms, 
and the continual expansion of biological data have enabled the development of deep learning 
(see Glossary) models capable of recognizing complex patterns in protein sequences [3,4]. As a 
result, these models can predict enzyme functions with unprecedented accuracy and scalability. 

In this review, we highlight advances in computational biology for enzyme function prediction, 
ranging from conventional machine learning (ML) models to state-of-the-art deep learning
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models. By doing so, we provide a comprehensive overview of the field, highlighting key con-
cepts, methods, and ongoing challenges in bridging the gap between sequence data and func-
tional annotation.

Predicting enzyme functions using machine learning 
Although sequence similarity-based approaches have been the predominant method for enzyme 
functional classification, their effectiveness in predicting enzyme functions is constrained by con-
vergent and divergent evolutionary processes. Convergent evolution can cause proteins with 
similar enzyme functions to have low sequence similarity, whereas divergent evolution can result 
in proteins with different functions to have high sequence similarity [5]. To overcome the limita-
tions of sequence similarity-based approaches, recent bioinformatics studies have increasingly 
adopted an ML for enzyme functional classification. An ML is a subfield of artificial intelligence 
(AI) that improves task performance through learning from data [6]. This data-driven approach 
identifies inherent data patterns without explicit programming, enabling the prediction of enzyme 
functions beyond sequence similarity. 

Since the performance of an ML model is significantly affected by the types of input representa-
tion, diverse feature extraction methods should be explored. Feature extraction involves process-
ing raw data to extract meaningful information for model training and inference. Effective feature 
extraction requires selecting information that best captures the characteristics of the data, in-
formed by a deep understanding of the relevant field. Similarly, it is crucial to select an appropriate 
ML algorithm and design the model structure based on the characteristics of the task and the 
input representation. Here, we introduce various feature extraction techniques and ML algorithms 
commonly applied in enzyme function prediction (Figure 1).

Enzyme feature extraction 
Amino acid composition (AAC) [7] is one of the most widely used features for representing en-
zymes in numerical data, quantifying the frequency of each amino acid within the entire sequence 
(Figure 1A). Given that each amino acid has specific physicochemical properties, AAC provides a 
concise summary of protein characteristics and is used extensively for enzyme functional classi-
fication. For instance, a k-nearest neighbor (kNN)-based classification model was developed 
to predict enzyme classes by using AAC of a protein sequence as input [8]. Similarly, AAC was 
used as input for a support vector machine (SVM) alongside physicochemical properties to 
predict enzyme classes [9]. 

Various physicochemical properties derived from amino acids, such as molecular weight, isoelectric 
point, atomic composition, and number of charged residues, reveal critical aspects of protein struc-
tural and functional characteristics (Figure 1A). These properties provide complementary features to 
AAC, being frequently used in enzyme classification studies along with AAC. Several computational 
feature extraction tools have been developed to analyze and vectorize the physicochemical properties 
within enzyme sequences [10–12]. These calculated features have proven useful for enzyme func-
tional classification when integrated with ML models. For example, ECPred uses Pepstats to extract 
input protein features for training an SVM that predicts the Enzyme Commission number (EC 
number) of the protein [13]. Considering the numerous types of physicochemical feature that can 
be applied to feature extraction, using all of them can lead to an excessively high-dimensional feature 
vector, triggering the curse of dimensionality. To address this, dimension reduction methods, such 
as principal component analysis (PCA), can be applied [14]. 

Higher-order structures of proteins (i.e., secondary, tertiary, and quaternary structures) are more 
directly correlated with biological functions than are sequence-based representations of amino
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Figure 1. Schematic of the types of enzyme feature that can be elucidated with a machine learning model
(A) Extraction of the amino acid composition (AAC) and physicochemical properties of each amino acid from the enzyme
sequence. While AAC represents the frequency of each amino acid residue in the entire enzyme sequence, the
physicochemical properties of amino acids provide insights into the structural and functional characteristics of proteins
(B) Extraction of higher-order structure features from protein structure analysis. The secondary and tertiary structure o
proteins are more directly correlated with their biological functions than is the primary structure. (C) Extraction o

(Figure legend continued at the bottom of the next page.

Glossary 
Artificial intelligence (AI): technology 
that mimics human cognitive abilities to 
perform learning, reasoning, problem-
solving, and decision-making. It includes 
an ML and deep learning. 
Artificial neural network (ANN): an 
ML model comprising artificial neurons 
(nodes), synapses (edges), and layers; 
the learning process is conducted by 
gradually optimizing the weights 
assigned to each neuron through a 
signal transmission process called 
backpropagation. Activation functions in 
neural network layers can convert the 
linear signals of each layer into nonlinear 
signals. 
Contrastive learning: a  kind  of  self-
supervised learning that trains models by 
comparing positive and negative sample 
pairs, maximizing the similarity of related 
samples while minimizing that of 
unrelated ones to learn useful 
representations without explicit 
labels .
Convolutional neural network 
(CNN): a deep learning architecture that 
processes grid-like data through 
convolutional layers that extract local 
patterns, making them effective for tasks 
such as image and video recognition, 
natural language processing, and other 
structured data applications. 
Curse of dimensionality: a 
phenomenon in an ML where increasing 
the number of features (dimensions) 
leads to inefficient model training and 
reduced performance due to data 
sparsity and increased computational 
complexity. 
Decision tree: an ML algorithm that 
follows a tree-structured approach, 
recursively splitting data based on 
feature values to maximize the 
homogeneity  of  leaf  nodes,  improving  
classification or regression accu racy.
Deep learning: a  subfield of an ML that 
uses multilayered neural networks to 
learn complex and nonlinear patterns in 
data. It automatically extracts features 
without rigorous feature selection 
process, and typically requires large data 
sets for training .
Enzyme Commission number (EC 
number): an internationally recognized 
numerical classification system that 
systematically categorizes enzymes 
based on their catalytic reaction type. It 
comprises four digits arranged in a 
hierarchical manner, providing 
increasing specificity, and is denoted in 
the format ‘EC: X.X.X.X’.
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Graph neural network (GNN): a  deep  
learning architecture designed to process 
graph-structured data. It propagates and 
aggregates information among nodes to 
learn representations that capture both 
individual node (or edge) features and 
overall graph features .
k-nearest neighbor (kNN): an ML 
algorithm that predicts outcomes by 
analyzing the k-closest data points in the 
feature space, using distance metrics, 
such as Euclidean distance, to 
determine similarity. 
Large language model (LLM): a deep 
neural network with billions of parameters 
trained on vast text corpora. It captures 
complex linguistic patterns to generate 
contextually coherent text, often serving as 
the foundation for various natural 
language-processing tasks. 
Machine learning (ML): a  subfield of 
AI that enables systems to learn patterns 
from data and improve performance 
without explicit programmin g.
Position-specific scoring matrix 
(PSSM): a type of evolutionary feature 
that quantifies the probability of each 
amino acid occurring at a specific 
position within a protein sequence. It 
represents conservation and variation of 
sequences. 
Random forest: an ML algorithm that 
builds an ensemble of decision trees, 
each trained on a randomly sampled 
subset of data and features. Predictions 
are made by averaging or voting across 
trees. 
Recurrent neural network (RNN): a 
deep learning architecture designed for 
sequential data by recursively updating a 
hidden state that encodes past 
information. This mechanism allows 
RNN to capture temporal 
dependencies. 
Supervised learning: an ML paradigm 
that trains models using labeled data 
sets to map inputs to corresponding 
outputs. The learning process involves 
minimizing the discrepancy between 
predicted and true values. 
Support vector machine (SVM): an 
ML algorithm that finds an optimal 
hyperplane to maximize the margin 
between classes in a feature space. It 
supports both linear and non-linear 
classification through the use of kernel 
functions. 
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acids. Therefore, structural information can also be used for enzyme functional classification 
(Figure 1B). The composition of each secondary structure, including helices, turns, and sheets, 
serves as a representative feature describing the local conformation of polypeptide backbones. 
Bioinformatic tools, such as STRIDE [15] and PSIPRED [16], have been developed to calculate 
secondary structure compositions from raw sequences, enabling enzyme functional classification 
using ML models and secondary structural information. For instance, SVM models trained using 
secondary structure compositions derived from STRIDE were used to predict enzyme classes, 
alongside other structural (e.g., surface area, disulfide bonds, and AAC on the surface) and phys-
icochemical (e.g., AAC, types of cofactor, and metal ions) features [17]. While secondary struc-
tures elucidate general folding patterns, they provide limited insight into the specific biological 
functions of proteins. Studies have also explored features related to whole 3D structures; for ex-
ample, electrostatic, hydrophobic, and surface potentials can elucidate how each amino acid in-
teracts within the protein structure. These features have been used as inputs of linear discriminant 
analysis, SVM, and kNN to predict enzyme classes [18].

Furthermore, some studies co-utilized evolutionary information, such as sequence profiles and 
homology scores, with intrinsic information mentioned earlier (Figure 1C). For example, EzyPred 
integrates a position-specific scoring matrix (PSSM) along with functional domain composi-
tion for enzyme function prediction to effectively capture the information of evolutionarily con-
served regions in protein sequences [19]. Similarly, ECPred predicts EC numbers using three 
modules: (i) subsequence profile mapping, which uses the PSSM calculated from k-mers of the 
protein sequence; (ii) kNN for processing BLAST scores, based on the enzyme family to which 
the sequences with the highest homology sequences belong; and (iii) SVM for processing phys-
icochemical features derived from Pepstats [13]. 

General machine learning algorithms for classification 
The selection of suitable ML algorithms is crucial for effectively capturing the intrinsic patterns in 
protein representations. Since each algorithm has distinct advantages and limitations, it is neces-
sary to select appropriate algorithms based on the characteristics of the training data and the 
learning objectives. kNN is an instance-based learning algorithm that makes predictions from 
existing data rather than optimizing explicit models (Figure 2A) [20]. It has been applied to predict 
enzyme functions by assigning the most common functional class among the nearest neighbors 
in the same feature space. For example, EnzML, a multilabel kNN classifier, was trained on func-
tional domain composition to predict EC numbers [21]. kNN-based algorithms offer a highly intu-
itive training process and facilitate the straightforward identification of data instances that 
significantly influence predictions. However, kNN computes pairwise distances for every query 
against all training data and requires storing the full dataset, resulting in very high computational 
costs and hindering high-throughput analysis of expanding whole-genome sequencing data.

ML algorithms that use decision boundaries have addressed the computational inefficiency of 
kNN-based methods by designating specific regions of the feature space for each class. SVM 
is a prominent example of such boundary-based classification (Figure 2B) [22]. SVM identifies a 
hyperplane that maximizes the margin, which is the distance between the hyperplane and the 
closest data points from each class, performing well even for high-dimensional input data. Due 
to this advantage, SVM is one of the most frequently used algorithms in enzyme function
Transformer: a  deep  learning  
architecture that uses self-attention 
mechanisms to process entire 
sequences in parallel, thereby modeling 
contextual relationships between all 
elements simultaneousl y.

evolutionary information by homology analysis. (D) One-hot encoding representation of a protein sequence. The single-lette
amino acid code of a protein sequence is transformed into a one-hot encoded representation in the form of a 2D matrix. In this
matrix, the rows correspond to each position in the sequence, and the columns represent each amino acid. All elements are
zero except for the positions corresponding to each residue, which are set to one.
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Figure 2. Schematic of machine learning (ML) algorithms frequently used for enzyme function prediction. The
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top panel illustrates that the various enzyme features illustrated in Figure 1 serve as inputs for an ML-based enzyme function
prediction. (A) Classification process of k-nearest neighbor (kNN). kNN predicts classes by calculating distances in feature
space and selecting the k-nearest neighbors. (B) Classification process of the support vector machine (SVM). SVM
optimizes the decision boundary by maximizing the distance between the nearest data points of each class (suppor
vectors) and the hyperplane. (C) Classification process of decision trees. The decision tree utilizes a tree-like structure
where nodes split data to maximize subset homogeneity, defined as the degree to which a set comprises exclusively data
with the same attributes. (D) Classification process of the random forest. Random forest is an ensemble learning method
that builds multiple decision trees during training and combines their outputs to improve performance and reduce overfitting

(Figure legend continued at the bottom of the next page.
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prediction tasks. For example, SVM-Prot was developed to predict EC numbers and protein fam-
ilies of input proteins using SVM [23]. Separate SVM models were trained for each functional class 
(i.e., EC numbers and protein families) using protein feature vectors that integrate various proper-
ties, such as AAC, secondary structures, and other physicochemical features.

The major challenges in using decision boundary-based algorithms are their sensitivity to feature 
distribution and the difficulty in interpreting their prediction results. Decision tree algorithms ad-
dress these issues by recursively splitting the data at each node based on input features, offering 
inherent robustness to feature scaling and a more interpretable model structure (Figure 2C) [24]. 
For example, EFICAz2 uses a decision tree to integrate prediction outputs from various modules 
(e.g., SVM-based and functionally discriminating residue-based modules), thereby improving EC 
number classification performance [25]. Random forest, an ensemble of multiple decision trees, 
has also been used for enzyme functional classification (Figure 2D) [26]. PredictEFC was devel-
oped to predict enzyme classes using random forests, with functional domain information re-
trieved from the InterPro database as inputs [27]. PredictEFC showed higher performance 
compared with an SVM-based model trained on the same dataset, highlighting the effectiveness 
of random forests in enzyme functional classification. 

Artificial neural networks (ANNs) are ML algorithms inspired by the transmission of informa-
tion between neurons via synapses in the human brain (Figure 2E) [28]. For decades, ANNs 
have been used to capture complex and nonlinear data patterns, enabling the analysis of nonlin-
ear relationships between protein sequences and their function. For instance, ProtFun was devel-
oped as an ensemble of ANNs to predict enzyme functional classes from various 
physicochemical properties, including hydrophobicity, number of charged residues, and second-
ary structures [29]. However, in the early days of ANNs, computational capabilities were limited 
and, thus, only shallow network architectures were utilized. 

As discussed earlier, an ML-based approaches should be carefully designed with well-chosen 
representations of enzymes. Such preparation demands substantial preprocessing time and an 
in-depth understanding of enzymology related to catalytic reactions. However, manually curated 
features often fail to capture the inherent complexity in biological data, limiting the ability of AI to 
accurately learn enzyme functional characteristics. Furthermore, traditional ML models are insuf-
ficient to model the intricate, complex relationships in biological data, shaped and evolved over 
billions of years. In summary, the difficulty in manually extracting optimal features and the chal-
lenge of unraveling complex nonlinear relationships between data features and labels have 
been major bottlenecks in traditional ML-based predictions. 

Predicting enzyme functions using deep learning 
Recent advances in deep learning, especially the development of various neural network archi-
tectures, have significantly enhanced the performance of enzyme function prediction. By leverag-
ing deep and complex network architectures, deep learning models inherently learn intricate 
patterns directly from raw data (e.g., amino acid sequences) without the need for extensive fea-
ture extraction [3]. Here, we examine the progression of deep neural network architectures and 
their role in enabling high-performance prediction of protein functions, specifically in terms of 
EC numbers and Gene Ontology (GO) terms (Table 1).
(E) Classification process of the artificial neural network (ANN). ANN comprises layers of artificial neurons, the weights of 
which are updated through backpropagation. Activation functions, such as sigmoid or rectified linear unit, enable the 
model to learn nonlinear data patterns. By leveraging these models, catalytic activities and specific functions of enzymes 
can be predicted based on their intrinsic properties. 
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Table 1. Deep learning-based tools for predicting EC numbers and GO termsa 

Tool Output typeb Input type Main neural network 
architecture 

Characteristics Refs 

DeepEC EC number (4669 EC 
numbers) 

Protein sequence Convolutional layers Combination with homologous 
search module 

[35] 

DEEPre EC number (3517 EC 
numbers) 

Protein sequence, PSSM, 
solvent accessibility, secondary 
structure, functional domains 

Convolutional layers, 
LSTM layers 

Hierarchical classification using 
models specialized in each EC 
number 

[32] 

mlDEEPre EC number (3517 EC 
numbers) 

Protein sequence, PSSM, 
functional domains 

Convolutional layers Hierarchical classification with 
DEEPre after second digit 
Multi-label classification based 
on first digit of enzyme 

[33] 

DCNN EC number Mutation features, distance 
features, angle features 

Convolutional layer Use of kNN algorithm for 
integrating each feature and 
inferring output 

[34] 

HECNet EC number (402 EC 
numbers) 

Protein sequence, PSSM, 
solvent accessibility, secondary 
structure, functional domains, 
disordered region, amino acid 
composition 

Convolutional layer, 
LSTM layers 

Use of Siamese network 
employing triplet loss 

[36] 

HDMLF EC number Protein sequence Transformer layers, 
BiGRU layers, attention 
layers 

Use of multiple sequence 
alignment to fine-tune 
prediction and multitask 
learning to optimize outputs 
predicted 
Prediction of promiscuous 
enzyme functions 

[72] 

UDSMProt EC number (3978 EC 
numbers), GO term 
(5101 GO terms), 
remote homology 
detection, fold detection 

Calculated features, protein 
sequence 

LSTM layers Pretraining of LSTM layers 
Fine-tuning of classifier 

[61] 

DeepECtransformer EC number (5360 EC 
numbers) 

Protein sequence Transformer layers, 
convolutional layers 

Combination of homologous 
search module 

[39] 

PhiGnet EC number, GO term Protein sequence Transformer layers, 
graph convolutional 
layers 

Use of evolutionary couplings 
and residue community 
information 

[54] 

CLEAN EC number (5242 EC 
numbers) 

Protein sequence Transformer layers Prediction of EC numbers using 
contrastive learning 

[55] 

MAPred EC number (5242 EC 
numbers) 

Protein sequence Transformer layers, 
convolutional layers, 
cross- attention layers 

Use of embeddings extracted 
by ESM-1b and ProstT5, and of 
global and local features 

[73] 

GraphEC EC number (5106 EC 
numbers), active site, 
optimal pH 

Protein sequence Transformer layers, 
graph convolutional 
network 

Use of protein language model, 
ESMFold to extract structural 
features, and label diffusion to 
reflect homolog information 

[59] 

GearNet EC number (538 EC 
numbers), GO term 

Protein sequence, protein 
structure 

Graph convolutional 
layers, edge 
message-passing layers 

Use of three kinds of edge type 
and 
multiview contrastive learning 
for pretraining 

[49] 

DeeProtGO GO term (22 246 GO 
terms) 

Amino acid trigram Fully connected layers Hierarchical classification of GO 
terms 

[74] 

DeepGOZero GO term (31 081 GO 
terms) 

InterPro binary features Fully connected layers Use of zero-shot learning 
Learning to embed proteins in 
space where GO axioms have 
been embedded by 
ELEmbeddings method 

[75]
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Tool Output typeb Input type Main neural network 
architecture 

Characteristics Refs 

DeepGraphGO GO term Protein network, InterPro binary 
features 

Graph convolutional 
layers 

Integration in NetGO framework [76] 

CFAGO GO term Protein network, protein 
domain, subcellular location 

Transformer layers Pretraining using 
self-supervised learning 
Fine-tuning for GO term 
prediction task 
Use of protein–protein 
interaction networks 

[77] 

Chemical-SA-BiLSTM GO term Protein sequence, chemical 
properties 

Self-attention layer, 
bidirectional LSTM layers 

Specialization for proteins from 
grain 

[78] 

CaLM GO term DNA sequence Transformer layers Learning patterns of 
synonymous codon usage 
Pretraining on cDNA 
sequences 

[68] 

DeepGOPlus GO term (5220 GO 
terms) 

Protein sequence Convolutional layers Combination with sequence 
homology search 

[79] 

DeepGOA GO term Protein sequence Convolutional layers, 
graph convolutional 
layers 

Specialization for maize 
proteins 

[80] 

NetGO2 GO term Protein sequence BiLSTM layers Use of learn-to-rank framework [81] 

ProteInfer GO term (32 109 GO 
terms) 

Protein sequence Dilated convolutional 
layers 

Provision of coarse-grained 
functional localization 

[37] 

NetGO3 GO term Protein sequence Transformer layers Use of protein language and 
learn-to-rank framework 

[82] 

PFresGO GO term (2752 GO 
terms) 

Protein sequence Transformer layers Use of protein language model 
and GO graph hierarchy 

[62] 

ESM-S GO term Protein sequence Transformer layers Pretraining on remote 
homology detection task 

[83] 

DeepGO-SE GO term Protein sequence Transformer layers Learning to embed proteins in 
space where GO axioms have 
been embedded by 
ELEmbeddings method 

[63] 

HNetGO GO term (1340 GO 
terms) 

Protein sequence Graph attention network Use of SeqVec to extract learned 
embeddings, protein–protein 
interaction networks, and GO 
graph hierarchy 

[84] 

DeepGO GO term (27 760 GO 
terms) 

Protein sequence Convolutional layers Use of protein–protein 
interaction networks and GO 
graph hierarchy 

[85] 

GAT-GO GO term (2752 GO 
terms) 

Protein sequence Convolutional layers, 
graph attention networks 

Use of protein structure 
information and protein 
language models 

[86] 

DeepFRI EC number, GO term 
(2752 GO terms) 

Protein sequence, protein 
structure 

LSTM layers, graph 
convolutional layers 

Use of protein structure 
information 

[64] 

TransFun GO term (4921 GO 
terms) 

Protein sequence, protein 
structure 

Transformer layers, 
equivariant GNNs 

Combination with sequence 
homology search 
Use of protein structure 
information 

[66] 

PredGO GO term (5220 GO 
terms) 

Protein sequence, protein 
structure 

Transformer layers, 
geometric vector 
perceptron GNNs 

Use of protein–protein 
interaction networks and 
protein structure information 

[87] 

a Abbreviations: EC, Enzyme Commission; GNN, graph neural network; GO, Gene Ontology; LSTM, long short-term memory. 
b Numbers in parentheses indicate the number of EC numbers or GO terms covered by the tools when available.
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Deep learning-aided prediction of EC numbers 
The EC number is a nomenclature scheme for classifying enzymes based on the functions they 
perform [30]. It comprises four digits arranged in a hierarchical system. The first digit, known as 
the main class, is assigned based on the primary type of reactions the enzyme catalyzes: oxido-
reductase (EC:1), transferase (EC:2), hydrolase (EC:3), lyase (EC:4), isomerase (EC:5), ligase 
(EC:6), and translocase (EC:7). Further classification into subclasses and sub-subclasses is de-
termined by the second and third digits, respectively. These digits provide detailed information 
about the enzymatic reaction, specifying the type of compound, group, or bond involved at the 
catalytic site, with criteria varying across classes. The fourth digit indicates the substrate specific-
ity of the enzyme in the catalyzed reaction. Given its clear description of enzyme functions, various 
deep learning models have been developed to predict EC numbers and classify enzyme functions 
(Figure 3, Key figure). Here, we discuss recent advances in deep learning used for predicting EC 
numbers. This knowledge provides valuable insights into bridging enzymology with computa-
tional science, potentially advancing the fields of biological sciences and biotechnology. 

Deep learning-based enzyme functional classification has advanced with the development of var-
ious neural network architectures. Convolutional neural networks (CNNs) have been widely 
applied to enzyme sequences because their convolutional layers effectively extract local features 
through element-wise multiplication and summation between convolutional filters and inputs 
(Figure 3A) [31]. This capability allows CNNs to learn local contexts in enzyme sequences, such 
as functional motifs, resulting in high performance in enzyme functional classification. Various 
deep learning models using CNNs have been developed to predict EC numbers [32–37]. 

For example, DeepEC used one-hot encoding with three parallel convolutional layers using dif-
ferent filter sizes (Box 1 and Figure 1D) [35]. This approach enabled the neural networks to cap-
ture diverse local features, processed by max-pooling layers and fully connected layers to 
predict: (i) whether the input protein is an enzyme; (ii) EC numbers up to the third digit; and 
(iii) EC numbers up to the fourth digit. In cases where the neural networks cannot predict EC 
numbers (e.g., inconsistencies between predictions up to the third and fourth digits), homology 
analysis is conducted to predict EC numbers by assigning those of enzymes with high se-
quence similarity. DeepEC outperformed existing models (i.e., CatFam, DETECT v2, ECPred, 
EFICAz2.5 , and PRIAM) by achieving a precision of 0.920 and a recall of 0.455 on 201 enzyme 
sequences that had not been used to develop the tools, whereas the other EC number predic-
tion tools exhibited comparably low precision and recall, ranging from 0.737 to 0.880 and 
0.203 to 0.416, respectively. 

Despite amino acid sequences being inherently sequential data rather than 2D representations, 
CNNs have shown promising results in enzyme function prediction. With advances in deep learn-
ing, recurrent neural networks (RNNs) designed for processing sequential data, particularly in 
natural language processing, are increasingly used for EC number prediction tasks using amino 
acid sequences (Figure 3B). Given their ability to extract more global contexts across protein se-
quences, deep learning models using RNNs combined with CNNs have been developed. For ex-
ample, DEEPre uses neural networks comprising two modules: (i) a CNN followed by a long 
short-term memory (LSTM) network, a type of RNN; and (ii) multilayer perceptrons (MLPs) serving 
as classifiers [32]. Each module processes sequence length-dependent inputs (e.g., PSSM, sol-
vent accessibility, secondary structure, and one-hot encoded protein representation) and 
sequence length-independent inputs (e.g., presence of functional domains). Subsequently, all 
features are concatenated to predict EC number digits through MLPs. DEEPre performs hierar-
chical EC number classification by first predicting whether the input protein is an enzyme, 
followed by sequential prediction of each digit of the corresponding EC number up to the third
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 9
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Key figure 

Schematic of deep learning algorithms for Enzyme Commission (EC)
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Figure 3. (A) Convolutional neural networks (CNNs) for learning local features of a protein sequence. CNNs capture local sequence
patterns by scanning protein sequences with learnable filters, which aggregate local information into condensed embeddings
(B) Long short-term memory (LSTM), a type of recurrent neural network, for learning sequential features of a protein sequence
LSTMs process protein sequences sequentially by updating a hidden state at each residue. (C) Transformer for learning long-
range relationships between all residues. Transformers use self-attention mechanisms to learn relationships between all residues in
a protein sequence. They transform sequence embeddings into query, key, and value vectors, and compute attention scores
using matrix multiplication (MatMul) and the Softmax function to generate context-aware representations that emphasize key interac-
tions among residues. (D) Graph neural networks (GNNs) for learning structural information. GNNs model proteins as graphs where
nodes represent residues (or atoms) and edges represent interactions defined by relationships, such as spatial proximity. Node (o
edge) features are updated through the message-passing step, which propagates the aggregated information from neighboring
nodes (or edges) to the target node (or edge), capturing both local and global structural contexts. (E) Scheme of enzyme function clas-
sification using deep learning. For training, enzyme sequences are labeled with targets (EC number or GO term), and the model learns
to predict them using neural networks. A well-trained model can infer targets for unannotated enzyme sequences, even those absen
from known data sets.
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Box 1. Common methods of extracting protein features for deep learning models 

Protein sequences are commonly represented using the single-letter amino acid code due to its simplicity and readability. 
However, this format consists solely of letters, which requires preprocessing to transform it into a machine-readable format 
suitable for deep learning models. Therefore, extensive efforts have focused on extracting rich information from protein 
sequences. 

One-hot encoding is a conventional approach for handling categorical data, such as amino acids. It embeds a protein se-
quence into a 2D matrix with dimensions of sequence length multiplied by the number of amino acid types. Each amino 
acid is encoded into a vector, where all elements are zero except for the position corresponding to the amino acid, which 
is set to one. These encoded vectors are then stacked to represent the entire protein sequence. In addition to sequence-
derived representations, deep learning models also utilize other inputs, such as physicochemical properties, probabilistic 
and statistical models, and evolutionary information, providing comprehensive information about input proteins 
[32,33,36,61]. 

Recently, protein representations extracted from pretrained models have become more commonly used as inputs for 
deep learning models because they capture various aspects of protein information. For instance, ESM-1b is a notable pro-
tein language model with 650 million parameters pretrained on 27 million protein sequences [43]. It uses masked language 
models specifically tailored for proteins, learning evolutionary relationships between residues, such as coevolution and 
contact. With advances in computational resources and the integration of larger data sets, ESM-1b has evolved into 
ESM2, offering more robust and evolutionarily rich representations [50]. 

Similar to the ESM models, ProtBERT and ProtT5 are also proficient in contextual information at the residue level using 
masked language models [45]. ProtBERT uses a BERT-based token masking approach, training on single amino acid 
masking to learn residue-level relationships, while ProtT5 uses span masking in an encoder–decoder structure to predict 
entire masked segments, capturing broader contextual patterns. Embeddings derived from such pretrained protein lan-
guage models have demonstrated superior performance in downstream tasks, including classification, autoregression, 
and generation, compared with previous deep learning models [44,45,47]. The most recent development, ESM3, repre-
sents a state-of-the-art model trained on sequences, structures, and various properties of proteins [53]. This advance al-
lows the protein language model to not only create representations from diverse aspects, but also function as a generative 
model for generating novel sequences, structures, and properties of proteins. Thus, the evolution of protein language 
models has significantly expanded the frontier of protein science. 
digit. DEEPre was further upgraded to mlDEEPre, capable of predicting multilabel enzymes with 
multiple functions, such as promiscuous enzymes [33].

With the development of deep learning and the advent of large language models (LLMs) using 
transformer layers, the paradigm of protein function analysis has entered a new phase. Trans-
former layers are highly effective at learning relationships between residues, even when they are 
far apart (Figure 3C) [38]. DeepECtransformer uses a combination of transformer layers and 
convolutional layers to learn long-range interactions within amino acid residues [39]. An input pro-
tein sequence is fed into two consecutive transformer layers, followed by two convolutional 
layers, effectively learning both local and global features of the sequence. If an ANN in 
DeepECtransformer predicts no EC number for a given sequence, the homology search algo-
rithm DIAMOND is used to assign an EC number based on homologous enzymes [40]. The 
use of transformer layers not only enhances the prediction performance of DeepECtransformer, 
but also enables the interpretation of the reasoning process of the deep learning model at the res-
idue level, facilitating the analysis of enzyme functional domains. DeepECtransformer also 
surpassed DeepEC and DIAMOND on the test dataset derived from the UniProtKB/TrEMBL en-
tries released in April 2018, showing macro and micro F1 scores of 0.8093 and 0.9611, respec-
tively, which are 0.2703 and 0.2142 higher than the second-best scores, respectively [41]. 

To leverage the advantages of transformer architectures, which have enabled the development of 
BERT-like LLMs, protein language models (i.e., language models pretrained on numerous protein 
sequences) were constructed and pretrained on large amounts of protein sequences using 
masked language modeling (Box 1)  [42–53]. Using embeddings extracted from such pretrained 
protein language models showed superior performance on downstream tasks compared with
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 11
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previous deep learning models [44,45,47]. For example, PhiGnet used latent representations ex-
tracted from ESM-1b as inputs for two graph convolutional networks (GCNs) [43,54]. In PhiGnet, 
residue-level features were extracted from two graphs: (i) evolutionary couplings, which provide 
information on relationships between pairwise residues at two covariant sites; and (ii) residue 
communities, which contain hierarchical interactions among residues. By using evolutionary dis-
tances obtained from these two graphs as edges and ESM-1b-derived representations as node 
features, PhiGnet demonstrated superior performance in predicting EC numbers and GO terms. 
It also showed superior performance compared with other EC number prediction tools, such as 
BLAST, FunFams, DeepGO, DeepFRI, Pannzer, ProteInfer, and CLEAN, exhibiting an area under 
precision/recall curve (AUPR) of 0.89 and Fmax scores of 0.88, which are 0.08 and 0.15 higher 
than those of the second-best models, respectively, on the test dataset. 

Supervised learning, which trains an ML model to learn labels corresponding to inputs, has 
been the major approach in enzyme functional classification since the early stages of AI-based 
approaches. However, this training scheme restricts models to making predictions only among 
the labels presented in the training dataset, hindering their ability to generalize across all enzyme 
functions, especially for EC numbers with few data points. To address this issue, CLEAN, a model 
designed to cluster functionally similar enzymes in latent space, was developed [55]. CLEAN was 
trained using contrastive learning, where sequences annotated with the same EC number 
were drawn closer in latent space, while those with different EC numbers were pushed apart. 
This approach assigns EC numbers based on the closest enzymes in latent space to an input 
protein, resulting in superior performance in EC number prediction tasks compared with super-
vised learning-based methods. By leveraging the contrastive learning approach, CLEAN 
surpassed previous EC prediction tools, DeepEC, BLASTp, DEEPre, and ProteInfer, even show-
ing a high accuracy of 0.8667 for fourth-level EC predictions on the halogenase dataset, while 
other tools achieved accuracies <0.4. 

The remarkable advances in deep learning-based protein tertiary structure prediction tools, ex-
emplified by AlphaFold and RoseTTAFold, have ushered in a new era of structure-based enzyme 
function analysis [56,57]. These tools have exponentially accumulated high-quality predicted 
structure data in protein structure database, such as AlphaFold DBi , and their utilization of protein 
structural information has shown promise even in EC number prediction [58]. Recent deep learn-
ing models use not only protein representations derived from amino acid sequences, such as em-
beddings from protein language models, but also structural information derived from deep 
learning models pretrained on 3D protein structures. 

With enhanced access to protein structure data, graph neural networks (GNNs) have been 
used to extract structural features for the functional classification of enzymes (Figure 3D). GraphEC, 
a deep learning-based model for predicting active sites, optimal pH, and EC numbers of input pro-
teins, was developed using a GNN [50,59]. The nodes and edge features of the input graph are 
constructed using sequence embeddings from ProtTrans [45] and protein 3D structures predicted 
by ESMFold, a high-throughput protein structure prediction model [50]. By using these evolution-
arily and structurally rich features and GNNs, GraphEC-AS is first trained to predict active sites of 
input proteins by assigning weight scores to each amino acid residue. These per-residue weighted 
scores are then used to predict EC numbers by emphasizing high-scoring residues to derive global 
features of the sequence. GraphEC also integrates label diffusion, a method that balances the final 
prediction between conserving the initial prediction and following homologs of the input protein, to 
predict EC numbers by considering homologous information. The integration of these approaches 
has enabled the effective use of structural information from deep learning and evolutionary informa-
tion from homologous enzymes, resulting in the superior performance of GraphEC in predicting EC
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numbers. On the NEW-392 and Price-149 datasets, which cover 177 and 56 different EC num-
bers, respectively, GraphEC achieved the highest F1 scores of 0.5910 and 0.6131, respectively 
among ECPred, GrAPFI, DeepEC, ProteInfer, ECPICK, and CLEAN, which ranged from 0.0927 
to 0.4988 and from 0.0197 to 0.4947 [60]. 

Despite these efforts to predict EC numbers using deep learning, inherent challenges remain dif-
ficult to address: the scarcity of data for less-studied EC numbers and resulting dataset imbal-
ances. These limitations result in lower performance when predicting EC numbers for enzymes 
with limited data. For example, while EC number prediction models have shown relatively high 
performance in predicting the first and second digits of EC numbers, performance tends to 
drop as predictions become more specific (e.g., predicting fourth-digit EC numbers). These chal-
lenges are inevitable when predicting enzyme functions in terms of EC numbers, but addressing 
them is crucial for achieving more accurate and robust enzyme functional classification 
(Figure 3E). 

Deep learning-aided prediction of GO terms 
As discussed, EC numbers provide a well-structured classification scheme for enzyme functions 
using four hierarchical digits. GO terms, which are controlled vocabularies of gene functionalities, 
also describe enzyme functions across three domains: molecular function (MF), cellular compo-
nent (CC), and biological process (BP). As of November 2024, there were 40 635 GO termsii , pro-
viding more complex and nuanced descriptions of enzyme functions through multiple GO terms 
and their relationships. GO terms are structured as a directed acyclic graph, where each node 
represents a GO term and an edge denotes relationships between the GO terms. This complex 
hierarchy of GO terms makes predicting GO terms for a protein challenging. 

Recent advances in deep learning models have facilitated extracting latent features directly from 
the raw representation of inputs (e.g., RGB values of an image) without requiring domain-specific 
feature engineering. As a result, GO term prediction models based solely on amino acid se-
quences have been developed. For example, ProteInfer, a deep learning model developed to pre-
dict EC numbers and GO terms, use deep dilated convolutional layers to increase the receptive 
field, facilitating the extraction of a more global context of the input sequence (Figure 3A) [37]. 

Advances in deep learning, especially in neural networks for sequential data, have significantly en-
hanced GO term prediction using amino acid sequences. For example, UDSMProt uses long 
short-term memory networks to predict EC numbers and GO terms (Figure 3B) [61]. The model 
was trained in two steps: pretraining on a large protein sequence database to learn a general un-
derstanding of proteins, followed by fine-tuning on task-specific datasets to predict enzyme func-
tion. Pretraining used a self-supervised autoregressive approach, where the neural network 
predicted the next amino acid residue in a sequence based on preceding amino acid residues. 
Fully connected layers were then added to the pretrained long short-term memory network and 
fine-tuned to predict GO terms for the input protein. UDSMProt showed superior AUPR scores 
of 0.472, 0.356, and 0.704 for MF, BP, and CC, respectively, among DiamondScore, DeepGO, 
and DeepGOCNN, on a dataset from Swiss-Prot annotations between January and October 
2016, which had not been used to train benchmarking tools, thus allowing fair comparisons [41]. 

The development of transformer architecture has become a powerful approach in deep neural 
network development by using pretrained models for downstream processes through fine-
tuning on task-specific datasets (Figure 3C). This strategy involves constructing LLMs using 
transformer-based neural networks and training them on large corpus data, which has been 
adopted in biotechnology, leading to the construction of protein language models. Since the
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emergence of such models, deep learning models for the GO term prediction task have started to 
use the learned representations of protein language models as inputs. 

The use of learned representations from protein language models in conjunction with advanced 
neural networks has also been explored. For example, PFresGO uses transformer layers to inte-
grate protein features generated by one-hot encoding and ProtT5, a protein language model with 
562 million parameters, with GO hierarchy features via a multi-head cross-attention mechanism 
[45,62]. GNNs, which update node representations by exchanging information with neighboring 
nodes, have also been used to extract more complex protein features from graph data, such as 
protein–protein interaction networks. Given that determining the role of a protein in BPs and its 
CC is challenging solely from its amino acid sequence, DeepGOGAT-SE uses a graph attention 
network to extract protein–protein interaction features [63]. By leveraging protein representations 
calculated from ESM2, a protein language model with 3 billion parameters, the graph attention 
network learns protein functions within the context of protein–protein interaction networks. 

Advances in deep learning now enable the direct use of 3D protein structures, as described ear-
lier. For instance, DeepFRI was developed to predict GO terms using both amino acid sequences 
and protein structures [64]. DeepFRI comprises two neural networks: (i) a long short-term mem-
ory network pretrained on amino acid sequences to extract residue-level features; and (ii) a GCN 
that propagates the residue-level features through a graph where nodes represent residues and 
edges connect adjacent residues (Figure 3D). The combination of sequence and structure infor-
mation not only improved prediction performance, but also provided the interpretation of the 
deep learning model, identifying residues associated with predicted functions. When compared 
with existing GO term prediction tools (i.e., BLAST, DeepGO, FunFams, DeepFRI, TALE+, and 
DeepGOZero), PFresGO showed superior performance on BP and CC domains, achieving 
Fmax scores of 0.5678 and 0.6737, respectively, on an independent test dataset. For the MF do-
main, PFresGO achieved a Fmax score of 0.6917, which is similar to the highest score, 0.7191, 
achieved by DeepGOZero. 

With the great progress in protein structure prediction, such as the development of AlphaFold 
and RoseTTAFold, numerous predicted protein structures have started to be used in GO term 
prediction models, enhancing prediction performance derived from big data [56,65]. For exam-
ple, TransFun uses protein structures predicted by AlphaFold2 to extract adjacency matrices of 
amino acid residues, which are subsequently used to process residue-level representations 
from protein language models [66]. TransFun outperformed existing GO term prediction tools, 
such as DiamondScore, DeepGO, DeepGOCNN, TALE, and DeepFRI, on all GO domains, 
obtaining Fmax scores of 0.659, 0.551, and 0.395 for CC, MF, and BP domains, respectively, 
while the other tools achieved Fmax scores from 0.502 to 0.654, from 0.392 to 0.548, and from 
0.362 to 0.398, respectively on the CAFA3 test dataset used as an independent dataset [67]. 

As the availability of diverse bio big data increases, AI for enzyme function classification has begun 
to incorporate various types of biological data beyond protein sequences alone. In a recent study, 
an LLM was pretrained on protein-coding DNA sequences instead of amino acid sequences, 
using masked language modeling to predict masked codons [68]. This approach demonstrated 
performance comparable or superior to that of protein language models in predicting protein fea-
tures, such as solubility, subcellular localization, and GO term predictions, by leveraging latent 
features extracted from patterns of synonymous codon usage, which are not accessible from 
amino acid sequences. Likewise, the availability of extensive biological data and advances in 
deep learning have significantly enhanced the prediction of GO terms, shedding light on previ-
ously unknown aspects of protein function (Figure 3E).
14 Trends in Biotechnology, Month 2025, Vol. xx, No. xx



Trends in Biotechnology

Outstanding questions 
What novel data representations or 
feature extraction methods offer the 
greatest potential for improving AI 
models in enzyme function prediction 
beyond traditional sequence-based 
embeddings? 

What novel enzyme function 
nomenclature systems can be devised 
to capture the complexity of enzyme 
functions in AI-driven functional 
genomics? 

How can AI be advanced from merely 
classifying enzyme functions to accu-
rately predicting key functional param-
eters that inform the rational design of 
enzymes with desired properties? 

What strategies can be implemented 
to integrate generative AI with experi-
mental validation, ensuring that de 
novo enzyme designs based on AI pre-
dictions meet practical biochemical 
functionality, stability, and other de-
sired characteristics?
Concluding remarks 
Here, we reviewed the progress of AI in predicting enzyme functions. We began by examining 
conventional ML algorithms, such as kNN, SVM, and random forests, along with machine-
readable representations of protein features commonly used as inputs. These features range 
from amino acid compositions and physicochemical properties to sequence profile-derived em-
beddings. By understanding these conventional algorithms, we explored how data-driven ap-
proaches have been used in functional genomics. Finally, we reviewed the development of 
deep learning models for prediction of enzyme functions and highlighted state-of-the-art neural 
network architectures and algorithms, including transformer-based protein language models. 

Although deep learning has facilitated high-performance enzyme function prediction, model generaliz-
ability remains constrained by inherent imbalances in enzyme data. Data scarcity within certain enzyme 
classes limits the ability of deep learning models to effectively learn and generalize characteristic fea-
tures. In addition, taxonomic bias, stemming from the over- or under-representation of specific  taxa,  
further undermines generalizability by skewing predictions toward well-represented groups and reduc-
ing accuracy for under-represented or novel taxa. To address these challenges, data augmentation 
strategies can mitigate data scarcity by generating synthetic enzyme sequences through computa-
tional methods, such as generative adversarial networks and variational autoencoders, thereby en-
hancing class diversity. Furthermore, incorporating phylogenetic relationships into model training can 
reduce taxonomic bias. One approach involves phylogenetic tree-based regularization, ensuring that 
evolutionarily related enzymes adopt more coherent functional representations within the model.

Another challenge lies in the lack of interpretability in deep learning models. Most deep learning 
models operate as black-box systems, making it difficult to discern which specific features are 
pivotal in transforming raw data into predictive outputs. Consequently, these models generate 
predictions without offering interpretable insights into the underlying relationships between en-
zyme characteristics and their functions. Analyzing attention maps or feature importance evalua-
tion methodologies, such as Shapley additive explanations, can enhance model interpretability 
and address these limitations. For instance, analyzing attention scores from the self-attention 
layer in a transformer-based model revealed that amino acid residues related to active sites 
and cofactor binding sites significantly contributed to EC number prediction [39]. 

Finally, although high-performance enzyme function prediction has been enabled based on well-
established nomenclature systems (e.g., EC number and GO term), these frameworks limit the dis-
covery of novel enzymatic functions. Given these advances, future directions of AI-based functional 
genomics should explore approaches that move beyond traditional nomenclature systems (see 
Outstanding questions). One possibility is a bottom-up strategy, which predicts enzyme functions 
without being constrained by predefined terms, thereby expanding the scope for discovering en-
tirely new functionalities. In parallel, the rise of generative AI offers a powerful opportunity for design-
ing novel enzymes with desired functions. By leveraging deep learning and bio big data, it can 
create de novo enzymes from scratch, bridging the gap between function prediction and applica-
tions of biotechnologies (Box 2). Together, these innovations will reshape the landscapes of func-
tional genomics, enzymology, metabolic engineering, and synthetic biology, enabling numerous 
biotechnology applications in the fields of medicine, food, cosmetics, chemicals, materials, and 
other industrial biotechnologies [69–71]. 

Declaration of generative AI and AI-assisted technologies in the writing process 
After writing the manuscript, ChatGPT was used solely to check English grammar. Following this 
grammar check, the authors reviewed and revised the content once more to ensure its correct-
ness. The authors take full responsibility for the content of the published article. 
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Box 2. De novo enzyme design and following ethical issues 

The rise of generative AI offers a powerful opportunity for designing novel enzymes with desired functions beyond the func-
tional annotation of unknown sequences. For example, ProteinMPNN has enabled the precise extraction of amino acid 
sequences from protein structures using message-passing neural networks [88]. Furthermore, RFdiffusion and RFAA 
have demonstrated the ability to generate protein structures with binding capabilities for specific molecules by using 
denoising diffusion probabilistic models [89,90]. Building on these advances, generative AIs now facilitate the design of 
protein structures with desired functions and the identification of corresponding amino acid sequences required for their 
formation. However, enzyme design poses greater challenges than designing ligand-binding proteins, as it requires opti-
mizing both substrate binding and catalytic activity to ensure functionality. 

To address this challenge, research is focusing on integrating deep learning-based scaffold generation with catalytic site 
optimization to ensure the functionality of designed enzymes [91]. This approach has facilitated the development of artificial 
enzymes, such as de novo luciferase and serine hydrolase [92,93]. These approaches provide a systematic framework for 
engineering enzymes with enhanced activity and specificity, thereby expanding the potential of computational enzyme de-
sign in synthetic biology and industrial biotechnology. Looking forward, future research should aim to establish a general-
ized platform for enzyme design that enables precise engineering of catalytic functions with broad applicability across 
diverse biochemical reactions. 

While the advancement of deep learning in enzyme design can open new frontiers in biotechnology, it also raises significant 
ethical concerns that must be addressed. One major concern is the potential ecological impact of artificially designed en-
zymes if they are unintentionally released (especially in the cell or organism) into natural environments. Unlike naturally 
evolved enzymes, computationally designed enzymes and the metabolisms they might alter may exhibit unforeseen inter-
actions with ecosystems, potentially disrupting microbial communities or biochemical cycles in unexpected ways. In addi-
tion, the potential misuse of artificially designed enzymes can pose serious biosecurity risks. The ability to design enzymes 
with precise catalytic functions could be exploited to create biological weapons, illicit drugs, or novel psychoactive sub-
stances. This necessitates strict ethical considerations, regulatory oversight, and international collaboration to prevent mis-
use, while ensuring that these powerful tools are harnessed responsibly for scientific and industrial advances. As 
computational enzyme design continues to improve, maintaining a balance between innovation, biosecurity, and environ-
mental responsibility is crucial for mitigating unintended consequences. 
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