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Various enzyme identification protocols involving homology transfer by sequence-sequence or profile-sequence comparisons have
been devised which utilise Swiss-Prot sequences associated with EC numbers as the training set. A profile HMM constructed
for a particular EC number might select sequences which perform a different enzymatic function due to the presence of certain
fold-specific residues which are conserved in enzymes sharing a common fold. We describe a protocol, ModEnzA (HMM-ModE
Enzyme Annotation), which generates profile HMMs highly specific at a functional level as defined by the EC numbers by
incorporating information from negative training sequences. We enrich the training dataset by mining sequences from the NCBI
Non-Redundant database for increased sensitivity. We compare our method with other enzyme identification methods, both
for assigning EC numbers to a genome as well as identifying protein sequences associated with an enzymatic activity. We report
a sensitivity of 88% and specificity of 95% in identifying EC numbers and annotating enzymatic sequences from the E. coli genome
which is higher than any other method. With the next-generation sequencing methods producing a huge amount of sequence data,
the development and use of fully automated yet accurate protocols such as ModEnzA is warranted for rapid annotation of newly
sequenced genomes and metagenomic sequences.

1. Introduction

Emergence of next-generation sequencing technologies [1]
and complete genome sequencing projects have greatly facil-
itated the process of unraveling the full repertoire of biolog-
ical functions that an organism possesses. For a pathogenic
organism, such a compilation of functions has a direct
implication in identifying potential drug targets, for exam-
ple, selecting genes or functions which are unique to the
pathogen and not present in the host organism. Metabolic
enzymes have for long been considered as a promising group
from which such drug targets can be identified [2]. Enzymes
form a sizable part of the druggable genome. Druggability

is equated with the presence of certain folds in the proteins
which can favour interactions with drug-like chemical
compounds. The active sites or ligand binding pockets of
enzymes are prime examples of druggable folds such that
around 47% of the small molecule drugs available in the
market have an enzyme target [3, 4]. Enzyme drug targets
have been identified and exploited in a number of pathogenic
protozoans [5–7], bacteria such as M. tuberculosis [8, 9], and
fungal pathogens such as C. albicans [10–12]. Metagenome
projects resulting from recent advances in environmental
shotgun sequencing also provide opportunities for metabolic
enzyme mapping as well as studying the environmental
impact on evolution of metabolism [13, 14].

http://crossmark.crossref.org/dialog/?doi=10.1155%2F2011%2F743782&domain=pdf&date_stamp=2011-03-29
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Metabolic reconstruction is a process that aims to
develop a complete overview of the metabolic capabilities
of an organism from the genome or metagenome sequence.
There are various databases to aid metabolic reconstruction
which integrate and curate data from different sources, for
example KEGG [15] which combines genomic, chemical,
and network information, PUMA2 [16] which provides
an array of tools for comparative genomics, and MetaCyc
[17] which is a multiorganism pathway/genome database.
Accurate identification of metabolic enzymes from a fully
sequenced genome is a very important step towards such
a reconstruction. The most common approach for detection
of an enzyme function in a given genome is on the basis
of sequence similarity with homologues whose function is
known, which can be accomplished by using either sequence-
sequence comparison methods such as BLAST [18] and
FASTA [19] or profile-sequence comparison methods like
PSI-BLAST [20] and HMMER [21]. Different protocols have
been developed using these methods that detect enzymatic
function at the level of the EC number. PRIAM [22],
for example, generates position-specific scoring matrices
for collections of sequences which are associated with the
same EC number which are then used to score sequences
in a genome using reverse positionspecific blast (RPS-
BLAST) [23]. MetaSHARK [24] improves on the sensitivity
of PRIAM enzyme prediction by using hidden Markov
models to identify corresponding enzymes directly from the
genomic sequence. Other approaches for enzymatic function
inference include checking for the presence of a conserved
pattern or motif and identification of functionally critical
residues. EFICAz [25] is a protocol which combines these
two approaches along with an iterative HMMER-based
procedure for generating multiple alignments for EC number
families and pairwise sequence comparison using a family-
specific identity threshold. It has recently been extended by
including additional components based on support vector
machine (SVM) models [26].

Metabolic enzymes belonging to certain core pathways
are conserved in all three domains of life (namely archaea,
bacteria, and eukaryotes) and can thus be easily identified
using sequence homology [27]. However, there are a total
of 4905 unique EC number entries in the enzyme [28]
database release of 19 January, 2010, out of which only
2507 entries have one or more sequence associated with
them. This has led to development of various algorithms and
methods which try to associate sequences with enzymatic
activities hitherto unannotated in an organism (hence,
a pathway “hole” [29]) and can be collectively termed as
“hole-filling” algorithms. A variety of other information is
used in addition to the sequences, for example topology of
the metabolic network [30, 31] or genomic evidences such
as chromosomal clustering of operons [32], a combination
of both [29], or an ensemble of various kinds of methods
such as gene coexpression, phylogenetic profile cooccurence,
protein fusion, and so forth [33, 34]. Whereas these methods
can be used in conjunction or as a complement to the
profile-sequence comparison methods to obtain a complete
overview of the metabolic reactions of an organism, the latter
group of methods, nevertheless, still retains its importance.

A profile HMM constructed using Swissprot sequences
for a particular EC number might score sequences belonging
to other EC groups very highly if the enzymatic activities
have developed in the same protein fold and therefore
share certain fold-specific residues [35]. For example, the
Alpha/Beta hydrolase fold (SCOP [36] classification) has
35 protein families which span through various enzymatic
functions in terms of EC numbers. A group of 9 EC
numbers, all of which are carboxylic ester hydrolases (EC
3.1.1) with different substrate specificities, are included in
this fold group (Supplementary Table ST1 available online
at doi:10.1155/2011/743782) and would be expected to
have common fold-specific signals which would be con-
served in sequences belonging to these EC numbers. As
a result, the profile HMM for the EC 3.1.1.8 used with
default parameters selects sequences from 5 other EC
groups (Supplementry Figure SF1, inset available online at
doi:10.1155/2011/743782). Figure SF1 also depicts the over-
all structural similarity between representatives from each of
the six EC groups.

We have earlier described the use of negative training
sequences (i.e., sequences of different functions related to the
training sequences by virtue of sharing a common fold) to
both optimise the discrimination threshold as well as modify
the emission probabilities of the profile HMMs to increase its
specificity. We have used relative entropy of the amino acid
probabilities of the positive and negative training sequences
to select residues in the positive alignment which are respon-
sible for its specific function as opposed to residues which are
similarly conserved in both the negative and positive training
sequence sets [35]. In this paper, we describe ModEnzA
(HMM-ModE Enzyme Annotation), where we apply HMM-
ModE to create profile HMMs which are specific at the
functional level as defined by the EC classification. We enrich
the training set by mining sequences from the nonredundant
(NR) database for increased coverage of the EC numbers
and thus, increased sensitivity. We use the Markov clustering
algorithm (MCL) [37] to partition the EC sequence sets
into clusters corresponding to nonorthologous sequences
or oligomeric subunits. The ModEnzA protocol is used
to annotate metabolic enzymes from completely sequenced
reference genomes. We present a comparative analysis of our
protocol with other methods used for genome-wide enzyme
identification such as PRIAM, MetaShark, and EFICAz.

2. Methods

2.1. Collection of Training Sequences

2.1.1. Training Sequences from Enzyme/Swiss-Prot. The
expasy enzyme database (release of 19 Jan 2010) had a total
of 4905 unique EC number entries out of which 2507 were
associated with a total of 180315 sequences. These 2507
entries were divided into 2 groups, those having 3 or more
sequences and those having just 1 or 2 sequences. The 1910
EC numbers which had 3 or more sequences in Swiss-Prot
were designated as Tier I (Figure 1) while the sequences in the
latter group were used as queries to mine similar sequences
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Figure 1: Flow diagram of the ModEnzA protocol.

from the nonredundant protein database (NR) database as
follows.

2.1.2. Mining of the Nonredundant Protein Database. There
were 597 EC numbers that had just 1 or 2 sequences asso-
ciated with them in the Swiss-Prot database. These were
used as BLASTp queries to mine similar sequences from the
NR database at NCBI (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Protein). We used an E-value cut-off of 10−35,
a percent identity range of 50 < × < 99 and a query coverage
of 80% as the primary filters. If a sequence appeared as
BLAST hit in more than one EC numbers, it was removed
from all the EC number files. We removed sequences with
ambiguous annotations such as “hypothetical”, “unnamed”,
“unknown”, “unclassified”, and “unidentified”. While we
did not follow a systematic testing approach to fix these
parameters, we nevertheless tried various combinations of
the parameters (e-values of 10−30 and 10−35, percent identity
ranges 50–99, 75–99, 75–95, etc). The final set of parameters
was decided upon after visual inspection of the annotations
of the gathered sequences looking for the least amount
sequences with ambiguous sequence descriptions and the
most number of EC groups with more than 3 sequences.

After the filtering step, we were left with 450 EC number
groups with 3 or more sequences. To these we further applied

a reciprocal BLAST best hit criterion, wherein we discarded
those NR sequences which did not have the original query
swissprot sequence as their top hit. We obtained 364 EC
groups having 3 or more sequences which fit this criterion.
These were designated as Tier II profiles (Figure 1). The
remaining 86 EC groups which also had 3 or more sequences
but did not have sufficient reciprocal best hits were desig-
nated as Tier III (Figure 1).

2.2. Clustering Sequences Using the Markov Clustering Algo-
rithm (MCL) [37]. The sequences belonging to each EC
number in Tier I were clustered into subgroups with MCL
using pairwise BLAST scores as input. This resulted in
2313 distinct subgroups having 3 or more sequences. These
were considered as separate profiles called as Tier I profiles,
for example the 7 subgroups of EC number 3.1.1.4 were
designated as 3.1.1.4 1 through 3.1.1.4 7 and converted
into separate HMMs. There were 117 EC numbers which
had subgroups containing just 1 or 2 sequences. These
subgroups were discarded after manual inspection. Similarly,
the sequences in the other tiers were also clustered using
MCL. We obtained 370 subgroups with more than three
sequences in Tier II and 86 subgroups in Tier III making
a total of 2769 distinct ModEnzA profiles.
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2.3. HMM-ModE Profiles. The subgroups for each EC num-
ber were used to construct HMM profiles and HMM-
ModE profiles as previously described [35]. Briefly, HMMs
are generated for each subgroup using hmmbuild from the
HMMER package [21] after aligning the sequences using
MUSCLE [38]. The discrimination threshold is optimised by
performing an n-fold cross-validation routine, partitioning
the training sequences into n train and test sets such that
each sequence is part of at least one test set. For each test
set t, a profile HMM created from the remaining (n − 1)
sets is used to score the sequences to get a True Positive
(TP) score distribution. False positives (FP) are identified
from the Swiss-Prot sequences (i.e those sequences that
perform an enzymatic function which is different from that
of the EC number for which the HMM was generated) using
hmmsearch from HMMER. The FPs are also partitioned into
n sets such that each FP sequence is part of at least one
set. The profile HMM created for each (n − 1) subset is
also used to score the corresponding FP set to get an FP
score distribution. The sensitivity, specificity, and Matthews
correlation coefficient (MCC) [39] distributions for each of
n sets is calculated using these TP and FP score distributions.
The optimal discrimination threshold is identified as the
mid-point of the MCC distribution averaged over the n sets.

The number of cross-validation sets n is defined as
follows:

n = 10, ∀ subgroups with sequences ≥ 10,

n =
⎧
⎨

⎩

Number of FP if FP < TP

Number of TP if FP > TP

⎫
⎬

⎭

∀ subgroups with sequences < 10.

(1)

If more than 3 false positives are identified, then these are
again aligned and converted into HMMs and used to modify
the true positive profile HMM as described earlier [35]. In
case of a large number of false positives from the preclassified
training set, to avoid issues of multiple alignments of very
large datasets, we restrict the number of false positives to
200. The false positives are first clustered using MCL, and
then sequences are randomly selected from the clusters
proportionate to the size of the clusters such that the final
number is 200. An optimized threshold is then calculated as
above. In case no false positives are selected by the original
HMM, it is used with default parameters.

All methods described above were automated using
scripts written in-house, to form the workflow described in
Figure 1, and are available from the authors upon request.

2.4. Benchmark Datasets and Enzyme Identification Programs.
For the bacterial genomes (E. coli, B. aphidicola, and M.
pneumoniae) we used the corresponding HAMAP [40] anno-
tations as the benchmark for comparing the various en-
zyme identification methods. The genome sequences for
these and the corresponding annotations were downloaded
from http://expasy.org/sprot/hamap/bacteria.html. We used
hmmsearch to score the protein sequences for a given genome
with the ModEnzA profiles generated above.

The sequence IDs identified by each of the methods
which had a 4-digit EC number annotation in HAMAP were
considered as true positives (TP). False negatives (FN) were
those predicted sequence IDs which had EC annotations in
HAMAP but were not selected by a method whereas false
positives (FP) were predicted sequences which actually did
not have an EC number annotation in HAMAP. Similarly, for
assigning EC numbers, true positives were those predicted
EC numbers which had corresponding sequences in the
HAMAP genome annotations, false positives, those that
did not and false negatives were EC numbers which were
present in HAMAP but not predicted by a method. For the
P. falciparum genome, we used EC annotations in PlasmoDB
as the benchmark. The sequence annotation and EC number
information for P. falciparum can be obtained from http://
plasmodb.org/plasmo/. True positives, false positives, and
false negatives were defined as earlier. For the ROC curves
for P. falciparum we used the KEGG annotations as the
benchmark.

The PRIAM program [22] and the corresponding profiles
were downloaded from http://priam.prabi.fr/REL JUL06/
index jul06.html and used with an RPS-BLAST e-value
cutoff of 10−30on the protein sequences of the genomes.
The MetaShark package [24] was obtained from http://
bmbpcu36.leeds.ac.uk/shark/ This was run using an e-value
cutoff of 10−30 on the genomic DNA sequences of the organ-
isms (including plasmids in case of B. aphidicola) obtained
from NCBI ftp://ftp.ncbi.nih.gov/ The EFICAz enzyme an-
notations [25] for various organisms were obtained from
http://cssb2.biology.gatech.edu/EFICAz/.

The percentage sensitivity and specificity of each method
was calculated as

sensitivity =
(

TP
(TP + FN)

)

∗ 100,

specificity =
(

TP
(TP + FP)

)

∗ 100.

(2)

2.5. Receiver-Operator Characteristic Curves. For comparison
of ModEnzA with PRIAM and MetaShark the ModEnzA
profiles for all EC numbers were rebuilt using the July
2006 version of ENZYME database which is used by the
current versions of both PRIAM and MetaShark. The ROC
curves (1-specificity versus sensitivity) were plotted for each
of the three methods (PRIAM, MetaShark, and ModEnzA)
on the four genomes by comparing against the benchmark
sets mentioned above. The three programs were run on
the genomes using an E-value threshold (RPS-BLAST, PSI-
BLAST, and hmmsearch E-values for PRIAM, MetaShark,
and ModEnzA, resp.) of 10. For PRIAM and MetaShark,
the resulting E-values were binned and a threshold sweep
was used to calculate the sensitivity and specificity at each
E-value threshold. For ModEnzA, similar calculations were
performed using a sweep through the hmmsearch scores
(Figure 2(a)). The MetaShark output consists only of EC
numbers, hence its sensitivity and specificity values were
calculated only on the basis of EC number comparisons,
whereas for PRIAM and ModEnzA, both the correct EC
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Figure 2: ROC curves for genome-wide enzyme identification using the ModEnzA profiles. The classification of the complete genomes of
the four organisms is shown in (a). A fraction of the EC number profiles (284 out of 2075 Tier I ModEnzA profiles) were retrained with an
older version of the ENZYME database and compared to PRIAM and MetaShark (b). ModEnzA-RT-Retrained ModEnzA profiles.

 9053, 2011, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2011/743782, W

iley O
nline L

ibrary on [24/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 Advances in Bioinformatics

numbers predicted as well as the correct sequences assigned
were used.

3. Results and Discussion

3.1. Enriching the Training Dataset. One of the crippling
issues in biological data modeling is the incomplete nature of
the training data. We have used both Swiss-Prot [41] and NR
sequences for generating profiles specific for EC numbers.
There were 1910 EC numbers which had 3 or more Swiss-
Prot sequences associated with them. These form our Tier I
profiles, which can be used to annotate sequences with a very
high degree of confidence, since they were generated from
curated training sequences. We considered three sequences
as the minimum number required to generate a multiple
alignment and consequently for constructing HMMs. Even
though these profiles with 3 sequences (and in general all
profiles with very few training sequences) are not expected
to be representative of the protein function, they are, never-
theless, included in the ModEnzA protocol as place holders
which would become more accurate as they are populated
with more sequences in future.

The training set for EC numbers which had less than
3 Swiss-Prot sequences was enriched by mining sequences
from the NR database using BLASTp with parameters suit-
ably modified for increased sensitivity (namely, BLOSUM62
substitution matrix and a lower than default value for “ f ”,
the hit extension parameter). The hits were screened with
a stringent E-value cut-off of 10−35. Hits having more than
99% identity or those having less than 50% identity with the
query sequence were left out to remove identical sequences
and potential false positives while ensuring variability in the
protein family. This resulted in 450 EC groups (which had
more than three sequences) out of which in 364 EC groups
(Tier II), all the mined sequences picked up the original
swissprot query sequence as the reciprocal best BLAST hit.
The remaining 86 were put in a separate group designated
as Tier III. By enriching the training data set, we have
populated an additional 450 enzyme functions with high-
quality sequences, providing increasing coverage over the
set of enzyme functions. This is still not comprehensive—
the coverage that our profiles provide, including Tier II
and III, is still only 48% of the total number of enzyme
functions known. However, the same method developed for
known functions may be applied to new functions as they
are mapped with sequences in future versions, of which
this enrichment exercise serves as an example. The coverage
within an organism is expected to be much higher, as most
common functions are mapped with known sequences.

3.2. Clustering Training Sequences with Markov Clustering
Algorithm (MCL). Sequences belonging to the same EC
group and thus performing the same enzymatic function,
might have complex relationships amongst them in terms of
sequence similarity due to the presence of (1) heteromeric
multiple subunits of the enzymes, (2) nonorthologous or
unrelated sequences performing the same function, or (3)
sequences that can perform more than one enzymatic func-
tion [22]. Clustering the sequences for a particular EC

number based on a similarity score is therefore an important
requirement to separate these multiple subunits or non-
orthologous sequences.

We used MCL to cluster the sequences of an EC
group into subgroups after removing sequences which had
“fragment” as part of the annotation. To validate our use
of automated clustering, we compared our MCL clusters for
some of the cases mentioned above with available structural
information from PDB [42]. For example, MCL clusters the
swissprot sequences for the DNA-directed RNA polymerase
(EC 2.7.7.6) into 14 subgroups (PRIAM has 51 separate
profiles for EC 2.7.7.6). We tested the ModEnzA profiles for
EC 2.7.7.6 on a set of sequences of the structural subunits
for the RNA polmerase downloaded from PDB. The yeast
polymerase (PDB ID: 3H0G) has 12 subunits while the
prokaryotic polymerase from E. coli (PDB ID: 3LU0) has
5 subunits (excluding the sigma subunit). In each case, the
sequences corresponding to different subunits were picked
up by a different ModEnzA subgroup profile (Supplementary
Table ST2 available online at doi:10.1155/2011/743782). We
also manually inspected the “singlet” sequences, that is
the sequences which the MCL clustering procedure cannot
assign to any cluster bigger than size 3 and thus have to
be discarded while making the profiles. We obtained 2313
distinct MCL subgroups with more than 3 sequences in Tier
I. There were 117 EC numbers (with a total of 215 “singlet”
sequences) with subgroups having less than 3 sequences.
These were subjected to a BLASTp analysis against the
NR database and the results were manually inspected to
ascertain the functional neighbours (top BLAST hits) of these
sequences. Out of the 215 sequences that were so tested,
23% (55) matched with sequences which had a different
functional annotation than the original EC group suggesting
that these might have had possible errors in annotation.
Some of the sequences (14 or 6%) were shorter than most
of the other sequences in that EC group (probably fragments
or truncated proteins) whereas a fraction (3%) were longer
than the rest. Another 15 sequences (6%) were not clustered
because they belonged to a different sub-unit of the enzyme,
indicating the ability of MCL to clearly distinguish between
heteromeric subunits of enzymes. Whereas 23% sequences
did not show any significant hits in the BLAST search,
a sizable fraction (30%) were such that they had the correct
annotation but not a sufficient number of neighbours to
form a separate cluster. These were not included in the profile
construction; however, they could be used for mining similar
sequences from the NR database if they match sequences
with the same function as the EC group. As mentioned above,
all of the 215 sequences were not included in the profile
generation step. This exercise demonstrates the efficacy
of using an MCL-based clustering approach in separating
enzyme subgroups.

The PRIAM method identifies the longest homologous
subsequences shared within the set of sequences associated
with EC number (EC group) as a single module or domain.
It initially takes the shortest sequence in the group as
a module and then proceeds to identify similar subse-
quences within a given EC group using PSI-BLAST. The
matching subsequences are removed from the corresponding
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Advances in Bioinformatics 7

sequences and the shortest sequence identified to start the
next iteration [22]. Complete linkage clustering using a
30% sequence identity cutoff has also been employed to
create subgroups as in the EFICAz protocol [25, 26].
The most populated and most divergent subgroup is then
converted into a profile HMM which is used to add
sequences with E-value < 0.01 which have at least one
conserved potential active site residue. These subgroups are
termed as CHIEFc (conservation-controlled HMM iterative
procedure for enzyme family classification) families [25].
The Markov clustering algorithm (MCL) provides for an
accurate, unsupervised, and fully automated protocol for
clustering the sequences of a given EC number. MCL avoids
potential problems associated with module architecture-
based clustering as well as the pairwise protocols of dealing
with similarity relationships which have been used earlier
[43]. It also circumvents the requirement of using arbitrary
sequence identity cutoffs as described above or manual
assignment. Instead, the graph-theoretic representation of
the similarity scores allows for the detection of global
patterns of sequence similarity in a single step [37].

3.3. Validation and Comparison of ModEnzA with Existing
Methods. The training sequences for each EC number were
used to generate HMM profiles using the HMM-ModE
protocol as described in Methods. The average sensitivity
and specificity distributions of the n sets in the n-fold cross
validation exercise provide us with a confidence measure
with which to use the profiles. If the original profile HMM
selects false positives from within the negative training
sequences, the information from these is used to modify the
emission probabilities of the HMM so that it becomes more
specific.

The ModEnzA profiles were used to scan the complete
genomes of organisms to assess the performance of our
method. Following the example of [22, 24], we chose three
bacterial genomes (E. coli, B. aphidicola, and M. pneumo-
niae) which have been extensively annotated using both
manual and automatic methods as part of the high-quality
automated and manual annotation of microbial proteomes
project [40] and one eukaryotic genome (P. falciparum),
for which detailed descriptions of function are available
from the PlasmoDB resource [44]. The enzymatic function
annotations from these sources were used as benchmarks for
comparing the sensitivity and specificity of ModEnzA with
other enzyme identification methods PRIAM, MetaSHARK,
and EFICAz (see Section 2).

Identification of functional residues or residues that
are responsible for imparting functional specificity is a
critical step toward constructing function specific profiles.
Information theoretic measures such as positional entropy
[45] and mutual information [46] have earlier been used for
this purpose. EFICAz employs an evolutionary footprinting
approach which scores each position in an alignment of
a family of sequences by a combination of entropy based
conservation scores in (1) the “homofunctional” alignment,
that is, consisting of members of the same family and (2)
a “heterofunctional” alignment which consists of similar
sequences (which might have different functions), mined

from a nonredundant database using the homofunctional
profile HMM. The alignment positions are then ranked using
a Z-score of the conservation degree to identify functionally
discriminating residues (FDRs). HMM-ModE, the protocol
upon which ModEnzA is based, uses a similar concept of
negative training sequences, these are sequences belonging to
other functional families which are scored positively by the
HMM for a particular family. We use a position-dependent
null model which contains conservation information from
these negative training sequences. We calculate the relative
entropy between the distributions of amino acids in the
alignments of the positive and negative training sequences
and select residues where this score is higher than the
relative entropy between the positive sequences and the
null set (i.e., the null probabilities as calculated from
the swissprot sequences). The probabilities of the amino
acids in the negative set are used to modify the emission
probabilities of these selected residues to generate a function
specific profile HMM. This avoids the problem of loss of
information associated with using a Z-score cutoff [35]. The
discrimination potential of a profile is a function of the
unique nature of the family at the level of both its fold
and specificity determining positions. As a consequence, the
discriminating potential of a profile HMM at a functional
level would be expected to be dependent on the frequency
of occurrence of the parent fold among proteins, that is,
an activity that arises in a commonly occurring fold will
be more likely to have false positives from the complete
training set than an activity that arises in a fold that is not
so wide-spread. As such, there is no discernible relationship
between the cluster size (no. of training sequences available
for a subgroup) and the discrimination potential of the
corresponding profile (Supplementary Figure SF2 available
online at doi:10.1155/2011/743782).

EFICAz uses a family specific Sequence Identity threshold
(SIT), which is set after making all pairwise sequence com-
parisons within the family, for predicting enzyme function
[25]. Both PRIAM and MetaShark have options for varying
the e-value threshold. An E-value cutoff of 10−10 in PRIAM
results in a high sensitivity (92.61%) but a specificity of only
82.25% for identifying EC numbers from E. coli. On the other
hand, using a stringent E-value cutoff of 10−30 increases
specificity (90.42%) with a drop in sensitivity (90.80%) (data
not shown). This is a drawback of using arbitrary thresholds
for discrimination. ModEnzA uses cross-validation to ensure
an optimal threshold for each separate profile [32] thereby
eliminating the use of arbitrary thresholds.

The EFICAz webserver at http://cssb2.biology.gatech.edu
/cgi-bin/eficaz browse.cgi provides 4 digit EC number pre-
dictions for a number of genomes. These predictions were
directly compared with ModEnzA. The sensitivity and speci-
ficity were calculated with respect to the EC numbers that
were correctly assigned to a genome as well as the sequences
associated with an enzymatic activity which were identified
by the methods. The comparative performance of EFICAz
and ModEnzA for identifying EC numbers and enzymatic
sequences from the four genomes is shown in Table 1. The
sensitivity and specificity values of the ModEnzA profiles are
higher compared to EFICAz both in assigning EC numbers
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8 Advances in Bioinformatics

as well as identifying enzymatic sequences. As expected, the
sensitivity is improved by the inclusion of the Tier II and
Tier III profiles (the sensitivity in assigning EC-associated
sequences increasing up to 97% for B. aphidicola, e.g.) but
there is a slight drop in the specificity because the training
sequences were mined from the NR database and hence
may have errors of annotation. The Tier I ModEnzA profiles
by themselves show a higher specificity than EFICAz while
selecting enzymatic sequences for each genome tested. The
augmentation by Tier II and III profiles still maintains an
on par specificity while increasing the sensitivity to a value
greater than that of EFICAz for identifying both EC numbers
and sequences. Given that the genome databases mentioned
above also have an automated annotation component to
them, it must be noted that choosing a different set of anno-
tations as the benchmark (e.g KEGG) does not significantly
alter the conclusions of the comparisons (supplementary
Table ST3 available online at doi:10.1155/2011/743782).

The PRIAM and MetaShark methods use the July 2006
version of the ENZYME database as the training set. To
ensure a fair comparison we rebuilt all the ModEnzA profiles
using the July 2006 ENZYME version. As demonstrated in
the next section, the KEGG database has more EC-sequence
associations for P. falciparum than PlasmoDB, and for this
reason we replaced PlasmoDB with KEGG as the bench-
mark for the comparison of ModEnzA with PRIAM and
MetaShark. Receiver-operator characteristic (ROC) curves
serve as an indicator for the discriminating potential of
a classifier method. The ROC curves for the retrained
ModEnzA (ModEnzA-RT) profiles as well as PRIAM and
MetaShark are shown in Figure 2(a). Since EFICAz uses
4 different methods, each with its own set of parameters,
we could not include EFICAz in this analysis. The area
under the ROC curve for the ModEnzA profiles is better
than both PRIAM and MetaShark for all the four genomes.
MetaShark predictions on P. falciparum suffer from very
low specificity (Figure 2(a), bottom left panel) probably
because it is difficult to map the profile HMMs back onto
its DNA sequence which is atypically AT rich and contains
lots of repetitive sequences [47]. The ROC curves for
ModEnzA scans on the entire genomes of the four organisms
(Figure 2(b)) show the high discrimination potential of the
ModEnzA profiles.

3.4. Enzyme Identification from the P. falciparum Genome.
Eukaryotic species account for only about 16% of the most
represented species (31% of all sequences) in terms of
number of sequence entries in Swiss-Prot (http://ca.expasy.
org/sprot/relnotes/relstat.html). The P. falciparum genome is
also not included in the HAMAP project which deals exten-
sively with bacterial, archaeal, and plastid encoded proteins.
Hence, this could be considered as an ideal case to compare
the various enzyme identification methods. We chose the
PlasmoDB enzyme annotations as a benchmark to decide on
the true positive, false positive, and false negative predictions.
The sensitivity and specificity calculated in terms of these
numbers for ModEnzA and EFICAz is shown in Table 1. The
relative scarcity of training sequences from the eukaryotic
domain is reflected in the low sensitivities of the methods.

Table 1: Genome-wide enzyme identification for three bacterial
genomes (E. coli, B. aphidicola, and M. pneumoniae) and one
eukaryotic genome (P. falciparum) by ModEnzA and EFICAz.

Methods EFICAz
ModEnzA

(Tier I)
ModEnzA
(Tier I+II)

Annotation
benchmark

HAMAP

E. coli

Sequences 1012 859 (1051) 902 (1021) 930 (1082)

Sensitivity 84.88 89.13 91.89

Specificity 81.73 88.34 85.95

EC numbers 755 653 (728) 663 (697) 699 (775)

Sensitivity 86.49 87.81 92.58

Specificity 89.69 95.12 90.19

B. aphidicola

Sequences 273 257 (273) 264 (271) 265 (273)

Sensitivity 94.13 96.7 97.07

Specificity 94.13 97.41 97.07

EC numbers 245 226 (238) 225 (229) 225 (233)

Sensitivity 92.24 91.83 91.83

Specificity 94.95 98.25 96.56

M. pneumoniae

Sequences 147 119 (149) 126 (139) 126 (139)

Sensitivity 80.95 85.71 85.71

Specificity 79.86 90.64 90.64

EC numbers 127 101 (122) 115 (122) 115 (122)

Sensitivity 79.52 90.55 90.55

Specificity 82.78 94.26 94.26

Annotation
benchmark

PlasmoDB

P. falciparum

Sequences 771 341 (480) 350 (415) 358 (431)

Sensitivity 44.22 45.39 46.43

Specificity 71.04 84.33 83.06

EC numbers 410 217 (247) 212 (234) 215 (242)

Sensitivity 52.92 51.7 52.43

Specificity 87.85 90.59 88.84

Numbers within parentheses indicate the total number of sequences or EC
numbers identified by each method.

Again the specificity of the ModEnzA profiles is higher than
EFICAz.

ModEnzA assigned 22 EC numbers which were not
annotated in PlasmoDB (False Positives). We checked for
the corresponding functions of these EC numbers in two
other databases, namely KEGG (because it is often used
as a reference knowledge base) [12] and PlasmoCyc [4]
(which also contains a comprehensive annotation of the
P. falciparum genome). We found that 13 of the 22 false
positive EC numbers have been annotated as belonging to
P. falciparum by either of these databases (Table 2).

We were interested in the ability of Tier II and Tier III
profiles to annotate novel sequences, especially as they were
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Table 2: Conflicting annotations for the 22 EC numbers predicted as belonging to the P. falciparum genome by ModEnzA but not annotated
in PlasmoDB.

EC No. Sequence KEGG PlasmoCyc

1.1.5.3 PFC0275w
FAD-dependent glycerol-3-phosphate
dehydrogenase, putative

FAD-dependent glycerol-3-phosphate
dehydrogenase, putative

1.17.7.1 PF10 0221
(E)-4-Hydroxy-3-methylbut-2-enyl-diphosphate
synthase

Methylerythritol phosphate pathway

1.3.1.8 PF11 0370 — —

1.3.5.2 PFF0160c — Uridine-5′-phosphate biosynthesis

2.1.1.48 PF14 0156 — —

2.3.1.180 PFB0505c
3-Oxoacyl-(acyl carrier protein) synthase III,
putative

Fatty acid biosynthesis initiation I

2.3.1.181 MAL8P1.37 Lipoyl(octanoyl) transferase —

2.4.1.141 MAL8P1.133 Beta-1,4-N-acetylglucosaminyltransferase
Dolichyl-diphosphooligosaccharide
biosynthesis

2.7.12.1 PF14 0431 dual-specificity kinase —

2.7.1.90 PFI0755c 6-phosphofructokinase
ATP-dependent phosphofructokinase,
putative

2.7.7.64 PFE0875c — —

2.8.1.8 MAL13P1.220 Lipoic acid synthetase —

3.1.13.4
MAL8P1.104,
PFE0980c

— —

3.1.21.2 PF13 0176 — —

3.4.21.10

PFE0340c,
PF11 0149,
MAL8P1.16,
PF14 0110

— —

3.5.1.88 PFI0380c — —

3.6.1.1

PF14 0541,
PFL1700c,
PFC0710w-a,
PFC0710w-b

Inorganic pyrophosphatase
Inorganic pyrophosphatase, putative, V-type
H(+)-translocating pyrophosphatase,
putative

3.6.1.7 PF11 0121 — —

3.6.3.44 PFE1150w — ABC transporter, putative

3.6.4.3 PF14 0548 — —

3.6.4.6 PFC0140c Vesicle-fusing ATPase —

3.6.5.5 PF10 0368 Dynamin GTPase —

“—”–Annotation not present in either PlasmoCyc or KEGG.

created from sequence similarity and not expert-curated data
sets. It was also interesting to address the fact that in the
absence of a profile, ModEnzA could be used to pick a related
function. The Tier II ModEnzA profiles selected 14 sequences
and 7 EC numbers, respectively, from the P. falciparum
genome (Table 3). The cysteine protease falcipain sequences
(gene IDs PF11 0161, PF11 0162, and PF11 0165), for
instance, do not currently have an EC number associated
with them. So in absence of a corresponding EC profile,
ModEnzA annotates it with the nearest cysteine endopetidase
bromelain (EC 3.4.22.32) but it is gratifying to note that
the annotation is correct upto the general level of the first
three E.C. digits. Three of the 7 EC numbers predicted
by ModEnzA exactly match the corresponding PlasmoDB
assignments while 3 others have the same first three digits.
Only one EC assignment (EC 3.4.23.2) has more than 1

digit mismatch with the EC annotated in PlasmoDB. Of
the 14 sequences annotated, the EC assignments for 8 share
the first three digits with the corresponding annotations
in PlasmoDB (Table 3). The Tier II and Tier III profiles
can annotate sequences up to the first three EC digits with
sufficient accuracy. However, as has been mentioned earlier,
these should be used with caution, because the training
sequences used for these profiles may be prone to annotation
errors.

As the results show, there is a discrepancy between the
annotations/predictions of different databases. The Mod-
EnzA protocol assumes importance because it is a rapid tool
that provides a high degree of confidence in assigning EC
numbers to a genome. A typical hmmsearch with ModEnzA
Tier I profiles on the E. coli genome (4407 proteins) takes
∼7.8 Hrs on a laptop having a 2.4 GHz core2duo Intel
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Table 3: Three-digit annotations for the sequences selected from P. falciparum by Tier II and Tier III profiles.

Gene
PlasmoDB product
description∗

PlasmoDB EC∗ ModEnzA
EC

EC description#

PF07 0059
4-nitrophenylphosphatase,
putative

3.1.3.-(Phosphoric monoester
hydrolases.); 3.1.3.41
(4-nitrophenylphosphatase)

T2-
3.1.3.41

4-nitrophenylphosphatase

PF08 0108 Pepsinogen, putative 3.4.23.1
T2-
3.4.23.2

Pepsin B

PF10 0329
Aspartyl protease, putative;
Plasmepsin VII

None
T2-
3.4.23.2

Pepsin B

PF11 0161
Falcipain-2 precursor,
putative

3.4.22.-
T3-
3.4.22.32

Stem bromelain

PF11 0162 Falcipain-3 3.4.22.-
T3-
3.4.22.32

Stem bromelain

PF11 0165 Falcipain 2 precursor 3.4.22.-
T3-
3.4.22.32

Stem bromelain

PF11 0295
Farnesyl pyrophosphate
synthase, putative

2.5.1.10
Geranyltranstransferase;
2.5.1.1
Dimethylallyltranstransferase

T2-
2.5.1.67

Chrysanthemyl
diphosphate synthase

PF14 0075 Plasmepsin, putative 3.4.23.38 (Plasmepsin I)
T2-
3.4.23.39

Plasmepsin II

PF14 0076 Plasmepsin 1 precursor 3.4.23.38 (Plasmepsin I)
T2-
3.4.23.39

Plasmepsin II

PF14 0077 Plasmepsin 2 3.4.23.39 (Plasmepsin II)
T2-
3.4.23.39

Plasmepsin II

PF14 0078
HAP protein; Plasmepsin
III

3.4.23.-Aspartic
endopeptidases

T2-
3.4.23.39

Plasmepsin II

PF14 0281 Aspartyl protease, putative None
T2-
3.4.23.2

Pepsin B

PF14 0334
NAD(P)H-dependent
glutamate synthase,
putative

1.4.7.1 Glutamate synthase
(ferredoxin);1.4.1.14
-Glutamate synthase (NADH)

T2-
1.4.1.14

Glutamate synthase

PF14 0553
Cysteine proteinase
falcipain-1

None
T3-
3.4.22.32

Stem bromelain

PF14 0625 Hypothetical protein
3.4.2.3; Transferred entry:
3.4.17.4

T2-
3.4.23.2

Pepsin B

PFC0495w Aspartyl protease, putative
3.4.23.- Aspartic
endopeptidases

T2-
3.4.23.2

Pepsin B

PFF0530w Transketolase, putative 2.2.1.1 Transketolase T2-2.2.1.3
Formaldehyde
transketolase

PFI1125c
3-oxoacyl-(acyl-carrier
protein) reductase,
putative

1.1.1.100 (3-oxoacyl-[acyl-
carrier-protein] reductase);
2.3.1.85 (Fatty-acid synthase)

T2-
1.1.1.140

Sorbitol-6-phosphate
2-dehydrogenase

∗
Gene product descriptions and EC annotations obtained from PlasmoDB. #IUBMB EC description.

processor and 3 Gb RAM. The same search on a workstation
with a 2.50 GHz Intel xeon quadcore processor with 8 GB
RAM takes ∼2.2 Hrs. Since the hmmsearch and hmmscan
program is inherently capable of multithreading, ModEnzA
can be expected to be even faster on machines with more pro-
cessors. For example, we were able to annotate the enzymes
in a metagenomic sample with 203240 translated protein
fragments with ModEnzA in just around 1.3 hrs by splitting
the target sequences into 10 parts and using 10 nodes (each
with a dual core processor) to run the hmmscan program on a

high-performance computing cluster (unpublished results).
The n-fold cross validation routine built into ModEnzA on
the training sequences ensures an optimal threshold which
can separate the true positives from the False positives
for any given EC number. The modification of emission
probabilities of the True positive profiles by using infor-
mation from the false positive alignment further increases
the specificity. We have decided to make this data available
for use by the scientific community using HMMER2,
even though HMMER3 has since been released [21].
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Advances in Bioinformatics 11

HMMER3 has only local-local alignments, and our method
is based on predicting the fold (domain) and hence is
implicitly based on global or “Glocal” (align a complete
model to a subsequence of the target) alignments. ModEnzA
is based on scripts that modify the emission probabilities in
the model, and it is unsure if the formats for HMMER3 are
stable enough to extract probabilities from the model. The
model has changed between the two versions, and it has been
advised that profiles built on one should not be used with the
other, as parameters are differently optimised. When more
alignment modes are available and the format is more stable,
newer versions of ModEnzA would migrate to HMMER3 to
take advantage of the increased sensitivities and speed.

4. Conclusion

We present a method for enzyme annotation by enriching
existing curated databases and using profile hidden Markov
models optimised for specificity using negative training
sequences. The protocol shows improved sensitivity and
specificity compared to other existing methods for enzyme
identification and can be used to accurately map the meta-
bolome of an organism.
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