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Abstract With the avalanche of the newly found protein

sequences in the post-genomic epoch, there is an increasing

trend for annotating a number of newly discovered enzyme

sequences. Among the various proteins, enzyme was con-

sidered as the one of the largest kind of proteins. It takes

part in most of the biochemical reactions and plays a key

role in metabolic pathways. Multifunctional enzyme is

enzyme that plays multiple physiological roles. Given a

multifunctional enzyme sequence, how can we identify its

class? Especially, how can we deal with the multi-classes

problem since an enzyme may simultaneously belong to

two or more functional classes? To address these problems,

which are obviously very important both to basic research

and drug development, a multi-label classifier was devel-

oped via three different prediction models with multi-label

K-nearest algorithm. Experimental results obtained on a

stringent benchmark dataset of enzymes by jackknife

cross-validation test show that the predicting results were

exciting, indicating that the current method could be an

effective and promising high throughput method in the

enzyme research. We hope it could play an important

complementary role to the existing predictors in identifying

the classes of enzymes.

Keywords Multifunctional enzyme � Prediction model �
Multi-label K-nearest algorithm � Jackknife cross-

validation test

Introduction

Enzyme plays a key role in catalyzing various biological

reactions in the cell. Enzymes are considered as one of the

most important biological catalysts in the metabolism of all

organisms, they have attracted the attention of various

investigators in the past decades. Identification and classi-

fication of enzymes are extremely beneficial in understand-

ing their cellular functions and consequently in the design

and development of drugs from a therapeutic perspective

(Zou et al. 2013). According to the Enzyme Commission

(EC) organizes, enzyme mainly divided into the following

six classes: (1) oxidoreductases, (2) transferases, (3)

hydrolases, (4) lyases, (5) isomerases, and (6) ligases.

Because of the class of enzyme keeps closely correlation

with its functions, knowledge about the class of enzyme is

constructive in understanding the mechanism of metabo-

lism. Although the class of an enzyme may be determined

by carrying out various biochemical experiments, it is both

time-consuming and costly, so it is an urgent to developing

an automated computed method for accurately and effi-

ciently identifying the classes of the query enzyme.

In the past several decades, many efforts have been

made in identifying the functional class of enzyme, such as

Cai et al. (2004) using CTD (composition, translation, and
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distribution) with support vector machine (SVM) predict-

ing the classes of enzymes; Zhou et al. (2007) using

amphiphilic pseudo amino acid composition and support

vector machine for prediction the classes of enzyme sub-

family; Shen and Chou (2007) predicting enzyme func-

tional classes and subclasses by a top-down method, and

many others (Chou 2005; Chou and Cai 2004a; Chou and

Elrod 2003; Chou and Cai 2004b; Khan et al. 2015; Shen

and Chou 2007; Zhou et al. 2007).

At present, the phenomena of multi-label very wide-

spread, and many multi-systems have been established

(Chou and Shen 2007a, 2010b; Huang and Yuan 2013b,

2015; Mei 2012; Shen and Chou 2009; Wang et al. 2015;

Zou and Xiao 2015). Although the above-mentioned

methods have each of their advantages and did play a key

role in stimulating the development in this area, they were

established under the assumption that an enzyme only with

one functional class. However, an enzyme may simultane-

ously belong to two or more classes. Enzymes with multiple

classes are particularly interesting, because they may have

some unique biological functions worthy of our special

notice (Glory and Murphy 2007; Smith 2008). Particularly,

when the enzyme with several different functions, that is

multifunctional enzymes. Thus, the current existing pre-

diction methods are not suitable to the situation. Therefore,

it is urgent and meaningful to develop a predictor to deal

with multifunctional enzymes sequences with single and

multiple functional classes (Huang and Yuan 2013a).

For a multi-label learning system, each sample in the

training set may be associated with not limited to one label,

and the mission is based on the model induced from multi-

label training samples with known label sets to predict a

label set for each unseen instance. In this study, a multi-

label algorithm called ML-KNN, i.e., multi-label K-nearest

neighbor, was adopted. ML-KNN was stemmed from the

classical K-nearest neighbor (KNN) algorithm. Firstly, for

every test sample, its K-nearest neighbors in the training

set are identified. Then, according to statistical information

gained from the label sets of those neighboring samples,

i.e., the number of neighboring samples belonging to each

possible class, maximum a posteriori principle is utilized to

determine the label set for the test sample (Zhang and Zhou

2007).

To establish a powerful predictor, the following several

procedures should be considered (Chou 2011): (1) con-

struct or select a stringent benchmark dataset to train and

test the predictor; (2) use a valid mathematical expression

to formulate the sequences, which can truly reflect the

intrinsic correlation with the target to be predicted; (3)

introduce or develop a powerful algorithm (or engine) to

operate the prediction; (4) properly perform cross-valida-

tion tests to objective examine the anticipated accuracy of

the predictor.

Materials and Methods

Benchmark Dataset

All of the enzymes sequences were collected from the

Enzyme nomenclature database at website http://enzyme.

expasy.org/. To construct a high and updated benchmark

dataset for developing a predictor to identifying the classes

of enzymes, the following steps should be considered:

Step 1 Only those sequences with keyword ‘‘multi-

functional enzyme’’ were collected.

Step 2 The sequences annotated with ‘‘fragment’’ should

be removed.

Step 3 The sequences with length less than 50 amino

acid residues were also removed, because these sequences

may be belong to fragment.

Step 4 To reduce the influence of redundancy and

homology bias, the program CD-HIT (Huang et al. 2010)

was used to exclude these enzymes that had more than

80 % pairwise sequence identify to any other in a same

subset.

Finally, we obtained 3095 different enzyme sequences.

These sequences together form the benchmark dataset S

which is used in the current study, and it covers 6 different

classes and can be formulated as follows (Lin et al. 2013a):

S ¼ S1 [ S2 [ S3 [ S4 [ S5 [ S6 ð1Þ

where [ stands for the symbol for ‘‘union’’ in the set the-

ory, while S1 represents the subset of ‘‘oxidoreductases,’’

S2 for ‘‘transferases,’’ S3 for ‘‘hydrolases,’’ and so on. The

particular information about the dataset is listed in Table 1.

To establish an effective predictor for statistically pre-

dicting classes of multifunctional enzymes based on the

sequence information, one of the most important steps is to

formulate the sequences with an efficient mathematics

expression that can truly reflect the correlation with the

target to be identified (Chou 2011). To represent the pro-

tein sample, the following two models were often used:

Table 1 The benchmark dataset constructed in this study

Order Class of enzyme Number of enzyme

1 Oxidoreductases 800

2 Transferases 1931

3 Hydrolases 1351

4 Lyases 655

5 Isomerases 166

6 Ligases 139

Total number of virtual enzymes 5042

Total number of different enzymes 3095

Of the 3095 different enzymes sequences, 1302 belong to one class,

1647 to two classes, 138 to three classes, 8 to four classes—i.e., there

are total 5042 enzyme sequences
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sequential model and discrete model. In the sequential

model, the sequence similarity search-based tools were

used to conduct the prediction. However, the method

would lose its function when an uncharacterized protein

did not exist significant homology to attribute-known

proteins. Thus, to address the problem, various discrete

models were proposed.

Representation of Enzyme Sample

Among the discrete models, amino acid composition may

be the simplest, which is short of AAC (Nakashima et al.

1986). According to the AAC-discrete model, protein

sequence P can be formulated like (Chou and Zhang 1994;

Lin et al. 2013a; Xiao et al. 2012):

P ¼ ½f1f2. . .f20�T; ð2Þ

where fiði ¼ 1; 2; . . .; 20Þ represent the occurrence fre-

quencies of the 20 native amino acids in protein P, while T

is the symbol of transposing operator. Although AAC-

discrete model has been employed for predicting a lot of

protein attributes (Chou and Elrod 1999; Nakashima et al.

1986; Zhou 1998; Zhou and Assa-Munt 2001; Zhou and

Doctor 2003), there exists a fatal disadvantage that if AAC

model as the only one feature extract method was utilized

to extract the information of the protein P, all of its

sequence-order and sequence length information would be

lost. Therefore, to avoid the situation arise, the pseudo

amino acid composition (PseAAC) (Chou 2001) was put

forward to replace the simple amino acid composition

(AAC) to represent the sample of protein.

Based on the concept of PseAAC, a query protein P can

be formulated by

P ¼ ½/1/2/3 � � �/s�
T; ð3Þ

where the subscript s is a positive integer and its value rely

on what information we want to extract from the protein

sequence of P. Below, we would detailed introduce how to

extract the information from protein sequence.

Chou’s Pseudo Amino Acid Composition (PseAAC)

Ever since the concept of pseudo amino acid composition

was introduced by Chou in 2001, it has widely used in

bioinformatics and computational proteomics (Chen et al.

2009; Esmaeili et al. 2010; Li and Li 2008; Xiao et al.

2006). Because it has been widely and increasingly used,

five open access softwares, called ‘PseAAC’ (Shen and

Chou 2008), ‘PseAAC-Builder’ (Du et al. 2012), ‘propy’

(Cao et al. 2013), ‘PseAAC-General’ (Du et al. 2014) and

‘Pse-in-one’ (Liu et al. 2015b), were established: the 1st

and 2nd ones are for generating various models of Chou’s

special PseAAC; the 3rd and 4th ones are for generating

various Chou’s general PseAAC; and the 5th one not only

can generate varieties of PseAAC defined by users them-

selves but also can generate various feature vectors for

DNA/RNA sequences. According to PseAAC, a protein

sequence can be converted into a 20þ k dimension vector,

among the 20þ k elements, the first 20 represent the amino

acid composition of the 20 native amino acids, while the

latter k elements represent the sequence-order information.

The sequence-order information can be indirectly repre-

sented by the following expression:

dg ¼
1

L� g

XL�g

i¼1

XðRi;RiþgÞ; ðg ¼ 1; 2; . . .; k and k\LÞ;

ð4Þ

where L represents the length of the sequence and the dg is
the gth correlation factor with which harbors the sequence-

order information between all the g most contiguous resi-

dues. The correlation function XðRi;RjÞ can be defined as

follows:

XðRi;RjÞ ¼
1

3
FðRjÞ � FðRiÞ
� �2þ GðRjÞ � GðRiÞ

� �2n

þ HðRjÞ � HðRiÞ
� �2o ð5Þ

where FðRiÞ, GðRiÞ; and HðRiÞ are the evaluated values of

hydrophobicity, hydrophilicity, and mass, respectively.

Before the three types of values were used, a standard

conversion should be conducted using Eq. (4) of Huang

and Yuan (2013a).

The numerical values of the three physical–chemical

(PC) properties for each of the 20 native amino acids are

listed in Table 2.

Thus, a protein sequence P with L amino acid residues

can be formulated:

P ¼ ½x1; x2; . . .; x20; x20þ1; . . .; x20þk�T; k\L; ð6Þ

where

xu ¼

fu

P20

i¼1

fi þ w
Pk

g¼1

dg

; ð1�u� 20Þ

wdu�20

P20

i¼1

fi þ w
Pk

g¼1

dg

; ð20þ 1�u� 20þ kÞ;

8
>>>>>>><

>>>>>>>:

ð7Þ

where w is the weight factor, fiði ¼ 1; 2; . . .; 20Þ represent
the normalized occurrence frequencies of the 20 native

amino acids, and dg is the g-tier sequence-correlation fac-

tor, which can be computed by Eq. (4). According to

Eqs. (4)–(7), we can see that the value of w and k is very

important to the prediction performance, by preliminary

computation and analyse, we find that when k ¼ 20 and

w ¼ 0:5 the best results would be obtained.
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Split Amino Acid Composition (SAAC)

In the SAAC model, a protein sequence will be divided

into three parts, and the amino acid composition of each

part would be calculated separately. In view of this, the

SAAC model was adopted in this study, and the enzyme

sequence was divided into the following three segments: C

termini, N termini, and the middle part. In these three parts,

C termini and N termini contain 25 amino acid residues,

respectively, and the others are included in the middle part.

Thus, using a SAAC-based method, a sequence can be

represented by a 60-dimension vector.

Grey Model (GM)

Grey model was first used in bioinformatics by Lin et al.

(2011). It has been provided it is a useful tool in this area.

Therefore, we also adopted it in this study to extract feature

from sequence. According to grey model GM(2,1) (Lin

et al. 2011), a sequence can be formulated as

P ¼ ½/1/2 � � �/20/21/22/23�
T ; ð8Þ

where /iði ¼ 1; 2; . . .; 20Þ are the occurrence frequencies

of the 20 different types of amino acids in the protein

concerned, while /jðj ¼ 21; 22; 23Þ represent the absolute

value of three coefficients. For the detailed description

about the grey model, please refer to Lin et al. (2011).

Prediction Engine

In this study, the following multi-label algorithm was

adopted to perform the prediction: multi-label K-nearest

neighbor (ML-KNN). A detailed description about how the

classifier works is clearly described in Zhang and Zhou

(2007). The predictor established in this study can be used

to predict the functional classes of both singleplex and

multiplex multifunctional enzymes.

Results and Discussion

It is worthy point out that for a multi-label learning system

like the current, which is different from the classical single-

label learning system, hence those existed metrics used to

evaluate the quality of a predictor on a single-label system

will failed work when faced a multi-label problem like this.

The metrics will be much more complicated for a multi-

label learning system. Now, let us describe the metrics used

in multi-label system in the following.

For a multi-label learning system contain N protein

sequences, which belong to M functional classes, L is the

label set that contain all of possible functional classes

concerned. Thus, the i� th sequence Pi and its corre-

sponding functional class can be expressed by

fPi; Lig ði ¼ 1; 2; . . .;NÞ ; ð9Þ

where Li is the subset that included all class label(s) for the

ith protein. Obviously, we have

L1 [ L2 [ � � � [ LN � L ¼ fl1; l2; � � � lMg; ð10Þ

where liði ¼ 1; 2; . . .;MÞ corresponding to the label for the

ith functional class. In this study, N ¼ 3095 and M ¼ 6.

Assume L�i as the predicted label(s) for ith sample. Thus,

the following five metrics can be used to measure the

prediction quality of the multi-label system:

Absolute-false ¼ 1

N

XN

i¼1

Li [ L�i
�� ��� Li \ L�i

�� ��
M

� �

Accuracy ¼ 1

N

XN

i¼1

Li \ L�i
�� ��
Li [ L�ik k

� �

Precision ¼ 1

N

XN

i¼1

Li \ L�i
�� ��

L�ik k

� �

Recall ¼ 1

N

XN

i¼1

Li \ L�i
�� ��

Lik k

� �

Absolute true ¼ 1

N

XN

i¼1

DðLi; L�i Þ

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

;

ð11Þ

where N is the number of different multifunctional

enzymes, M is the total number of classes, and here N ¼

Table 2 The numerical values of the three physical–chemical

properties

AA PC

Hydrophilicity Hydrophobicity Mass

A -0.5 0.62 15.0

C -1.0 0.29 47.0

D 3.0 -0.90 59.0

E 3.0 -0.74 73.0

F -2.5 1.19 91.0

G 0.0 0.48 1.0

H -0.5 -0.40 82.0

I -1.8 1.38 57.0

K 3.0 -1.50 73.0

L -1.8 1.06 57.0

M -1.3 0.64 75.0

N 0.2 -0.78 58.0

P 0.0 0.12 42.0

Q 0.2 -0.85 72.0

R 3.0 -2.53 101.0

T -0.4 -0.05 45.0

V -1.5 1.08 43.0

W -3.4 0.81 130.0

Y -2.3 0.26 107.0
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3095 and M ¼ 6. The symbols [ and \ represent ‘‘union’’

set theory and intersection, respectively. || || represents the

operator acting on the set therein to count the number of its

elements, and

DðLi; L�i Þ ¼ 1; if all the labels in Li are identified to those in L�i
DðLi; L�i Þ ¼ 0; otherwise

�

ð12Þ

Among the five evaluation measures, the lower the

absolute false is, the better the prediction quality will be.

However, for the other four metrics, the situation is just

opposite, i.e., the higher their rates are, the better the pre-

diction quality will be.

In statistical prediction, it would be meaningless to

simple say a success rate of a predictor without specifying

what method and benchmark dataset were used to test its

accuracy (Wu et al. 2012). As is well known, the following

three methods often used to evaluate the performance of a

predictor: independent test, n-fold cross-validation test

(sub-sampling test), and jackknife test (leave-one-out

cross-validation test), respectively. Among these three

methods, the jackknife test was considered the most

objective method because it always yields a unique result

for a given benchmark dataset, and hence, it has been

widely recognized and increasingly used by various

researchers to examine the power of the predictors (Chou

and Shen 2007b; Hayat et al. 2012; Lin et al. 2013b; Wu

et al. 2012; Xiao et al. 2013).

However, even though the jackknife test was used as

the cross-validation method, a same predictor may still

generate obviously different results when tested by differ-

ent benchmark datasets. This is because the more stringent

of a benchmark dataset in excluding homologous and high

similarity sequences, the more difficult for a predictor to

achieve a high overall success rate (Chou and Shen 2010a).

Listed in Table 3 are the results obtained based on the

aforementioned benchmark dataset S by the jackknife test.

From Table 3, we can see that for such a multiplex

benchmark dataset, the absolute-true rate is high, while the

absolute-false rate is much lower, indicating the method is

quite a promising method for identifying the functional

classes of multifunctional enzymes.

It is instructive to point out that, for such a multi-label

learning system, only say the absolute-true rate for each

individual multifunctional enzyme functional classes is

meaningless and misleading. Therefore, instead of the

absolute-true success rate for each of individual functional

classes, the results about the absolute-true success rate for

multifunctional enzymes with different numbers of func-

tional classes (or labels) are listed in Tables 4, 5, 6. Fur-

thermore, in order to facilitate comparison, the

Table 3 The results obtained by different models with jackknife test

Evaluate metrics Methods

CPseAAC SAAC GM

Absolute-false 0.0941 0.0447 0.0711

Accuracy 0.7881 0.9057 0.8513

Precision 0.8200 0.9164 0.8705

Recall 0.8193 0.9219 0.8763

Absolute-true 0.7267 0.8801 0.8090

Table 4 A comparison of the absolute-true success rates by CPseAAC for the multifunctional enzymes with different numbers of functional

classes

Number of functional

classes or labels

Number of

multifunctional enzymes

Absolute-true success rate

CPseAAC (%) Completely random guess (%) Weighted random guess (%)

1 1302 999/1302 = 76.73 2.78 7.01

2 1647 1129/1647 = 68.55 1.11 3.55

3 138 115/138 = 83.33 0.83 0.22

4 8 6/8 = 75.00 1.11 0.015

Table 5 A comparison of the absolute-true success rates by SAAC for the multifunctional enzymes with different numbers of functional classes

Number of functional

classes or labels

Number of

multifunctional enzymes

Absolute-true success rate

SAAC (%) Completely random guess (%) Weighted random guess (%)

1 1302 1146/1302 = 88.02 2.78 7.01

2 1647 1440/1647 = 87.43 1.11 3.55

3 138 131/138 = 94.93 0.83 0.22

4 8 7/8 = 87.50 1.11 0.015
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corresponding success rates by the completely random

guess and weighted random guess are also provided in

Tables 4, 5, 6. The detailed information about the com-

pletely random guess and weighted random guess can be

found in Lin et al. (2013b) and Xiao et al. (2013).

From Tables 4, 5, 6, we can see that (1) though the

enzyme with multiple functional classes, its absolute true is

still high, even the overall success rate by the worst solu-

tion in each dataset is overwhelmingly higher than the

completely randomized rate and weighted randomized rate;

(2) although the number of enzymes which belongs to four

functional classes is few, the result is still promising,

indicating that the method is powerful.

Conclusions

Prediction of the functional classes of multifunctional

enzyme is a challenging and meaningful problem, particu-

larly when the system concerned contains both singleplex

and multiplex enzymes. In this paper, three different models

were proposed to deal with multifunctional enzyme with

single or multiple functional classes. The current approach

represents a new strategy to handle themulti-label biological

problems and hence may become a useful tool in the area of

bioinformatics and proteomics (Wang and Li 2012).

As demonstrated in a series of recent publications (Chen

et al. 2012; Ding et al. 2014; Jia et al. 2015; Liu et al.

2015a; Qiu et al. 2014; Xiao et al. 2015; Xu et al. 2013,

2014), user-friendly and publicly accessible web servers

represent the further direction for developing practically

more useful models, simulated methods, or predictors, and

we shall make efforts in our future work to provide a web

server for the method presented in this study.
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