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Abstract

Accurate and trustworthy prediction of Enzyme Commission (EC) numbers is
critical for understanding enzyme functions and their roles in biological processes.
Despite the success of recently proposed deep learning-based models, there remain
limitations, such as low performance in underrepresented EC numbers, lack of
learning strategy with incomplete annotations, and limited interpretability. To
address these challenges, we propose a novel hierarchical interpretable trans-
former model, HIT-EC, for trustworthy EC number prediction. HIT-EC employs
a four-level transformer architecture that aligns with the hierarchical structure
of EC numbers, and leverages both local and global dependencies within protein
sequences for this multi-label classification task. We also propose a novel learn-
ing strategy to handle incomplete EC numbers. HIT-EC, as an evidential deep
learning model, produces trustworthy predictions by providing domain-specific
evidence through a biologically meaningful interpretation scheme. The predictive
performance of HIT-EC was assessed by multiple experiments: a cross-validation
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with a large dataset, a validation with external data, and a species-based per-
formance evaluation. HIT-EC showed statistically significant improvement in
predictive performance when compared to the current state-of-the-art benchmark
models. HIT-EC’s robust interpretability was further validated by identifying
well-known conserved motifs and functional regions in the CYP106A2 enzyme
family. HIT-EC would be a robust, interpretable, and reliable solution for EC
number prediction, with significant implications for enzymology, drug discov-
ery, and metabolic engineering. The open-source code is publicly available at:
https://github.com/datax-lab/HIT-EC.

Keywords: Hierarchical interpretable transformer, EC number predictions,
Trustworthy prediction

1 Introduction

The Enzyme Commission (EC) number classification system is a pivotal tool for cat-
egorizing enzymes based on the corresponding enzyme-catalyzed reactions [1-3]. An
EC number consists of four hierarchical numbers (e.g., 1.1.1.1), which represent a
class, a subclass, a sub-subclass, and a serial number, respectively [4]. For instance,
the malate dehydrogenase enzymatic function is referred to as EC 1.1.1.37; the first
level ‘1’ (EC ‘1’) denotes oxidoreductase; the second level (EC 1.1’) indicates reaction
in the CH-OH group of donors; the third number (EC 1.1.‘1’) shows donor acceptors
with NAD+ or NADP+; the last level (EC 1.1.1.437’) refers to a malate dehydroge-
nase [5, 6]. This hierarchical classification characterizes enzyme functions and their
roles in diverse biochemical pathways and facilitates the annotations of enzymes in
biological databases. The significance of the EC number system extends beyond cate-
gorization, underpinning advancements in drug discovery, metabolic engineering, and
ecological sustainability [7-9].

Accurate classification of EC numbers is essential for understanding enzyme func-
tions and their roles in metabolic pathways. Computational approaches for EC number
prediction are broadly categorized into three groups: (1) protein structure-based, (2)
sequence similarity-based, and (3) machine learning-based methods. Protein structure-
based models (e.g., COFACTOR [10], i-TASSER suite [11], AutoDock [12]) examine
structural templates and perform homology analysis through protein threading using
reference databases. While effective for identifying folds and functional sites, these
models are constrained by the limited availability of high-quality structural data.
Sequence similarity-based approaches (e.g., EFICAz [13], ModEnzA [14], PRIAM [15],
EnzML [16]) utilize conserved patterns and motifs identified by multiple sequence
alignment (MSA) to infer enzyme functions. Despite their substantial utility in identi-
fying functional domains, these approaches (1) are computationally expensive, (2) are
ineffective when confronted with the absence of closely related reference sequences,
and (3) often require additional post-hoc analyses.

A promising solution is leveraging machine learning, which effectively captures
complex relationships within enzyme sequences. The current state-of-the-art models
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Fig. 1 An overview of the study. (A) Collection of protein sequences from Uniprot, the Protein
Data Bank, and the KEGG database. (B) Innovative hierarchical interpretable using both local and
global flows named HIT-EC. (C) HIT-EC trains with incomplete EC numbers with the masked loss
mechanism. (D) Assessment of the predictive performance against three state-of-the-art benchmark
models across various experiment settings. (E) HIT-EC provides trustworthy predictions validated
by aligning the model’s interpretation with established biological knowledge.

include ECPred [17], DEEPre [18], DeepEC [19], ECPICK [20], DeepECtrans-
former [21], and CLEAN [22], which show enhanced predictive power when automating
enzyme annotation. However, there still remains substantial room for improvement in
their predictive performance, as these models often struggle with limited and imbal-
anced training data, particularly for enzymes with underrepresented functions where
limited references are available [23]. Our study reveals that the state-of-the-art meth-
ods achieved an Fl-score of only around 70% for underrepresented enzymes (e.g.,
N < 25), which account for 41% of EC numbers in the dataset. This low performance
highlights the challenges in achieving accurate predictions for underrepresented EC
numbers.

Model interpretability also remains a critical challenge, particularly in establish-
ing trustworthy predictions. Beyond achieving high predictive accuracy, it is essential
to understand the rationale behind a model’s predictions to ensure biological rele-
vance, especially when applied to high-stakes decisions. In EC number prediction, an
interpretation scheme validates a model’s predictions by comparing highlighted amino
acids with established biological knowledge, such as conserved motifs or functional
sites, to ensure that the final prediction relies on biologically known and relevant com-
ponents. In ECPICK, model interpretation provided insights into how specific motifs
or regions influence predictions, yielding domain-specific evidence [20]. In addition to
increasing trustworthiness in the predictions, it also has the potential to uncover new
motif sites or functional regions, which could drive further experimental investigations
and expand our understanding of enzyme functions.

Incomplete annotations in biological databases present a significant opportunity
to improve the predictive performance of deep learning models. For instance, as of
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September 2022, 15.4% of protein sequences in the Swiss-Prot database are incom-
pletely annotated, often missing last levels of the EC classification (e.g., 1.1.-.-). These
incomplete annotations arise from several factors, including the labor-intensive and
time-consuming nature of experimental characterization, the vast number of newly
discovered enzymes that have not yet been studied, and the challenges in reliably
assigning EC numbers to enzymes with novel or ambiguous functions [23]. These lim-
itations address the potential to enhance model performance by developing methods
that can effectively handle incomplete annotations. To the best of our knowledge, all
of the current state-of-the-art models rely on only completely annotated data when
training for EC number prediction, which deprives these models of valuable data.

In this study, we develop a novel Hierarchical Interpretable Transformer model
(HIT-EC) that advances EC number classification by leveraging the hierarchical struc-
ture of EC numbers and incompletely labeled sequences (Fig. 1). HIT-EC employs a
four-level transformer architecture that aligns with the EC number hierarchy, which
provides context-aware predictions at each level. The major contributions of the HIT-
EC model are as follows: (1) statistically significant improvement of the predictive
performance, (2) a novel training strategy to handle incomplete annotations, and
(3) an evidential approach to provide trustworthy predictions (Fig. 1). The perfor-
mance of HIT-EC was assessed by extensive experiments across multiple evaluation
settings with a large dataset (over 200,000 sequences), including (1) cross-validation
experiments, (2) external validation using newly registered enzymes, and (3) the eval-
uation of the predictive performance on complete genomes of various species. In the
experiments, HIT-EC consistently outperformed the state-of-the-art methods across
all evaluation settings. HIT-EC improved micro- and macro-averaged F1-scores by at
least 6% and 4%, respectively, in the cross-validation experiment, and also showed a
6% improvement in F1-score for underrepresented enzyme classes with fewer than 25
sequences. Furthermore, we demonstrated the trustworthiness of HIT-EC’s predictions
by comparing the regions highlighted by our method to established biological knowl-
edge within the CYP106A2 enzyme family, which provided evidence of the similarities
between our interpretation and well-known functional and structural characteristics.

2 Methods

In this section, we elucidate the proposed HIT-EC model, focusing on three core com-
ponents: the architecture of the proposed framework, the approach for training with
incomplete EC annotations, and the strategy for enhancing model interpretability.

2.1 Architecture of HIT-EC

HIT-EC consists of five modules: (1) an embedding layer that encodes a protein
sequence to characterize its physicochemical properties as numerical representations,
(2) a positional encoding layer that incorporates sequence order information, (3) four
transformer encoders, each of which corresponds to a level of the EC hierarchy and
estimates level-specific local predictions, (4) a global linear layer that generates a global
prediction of the EC numbers, and (5) the aggregation of the global prediction and
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the level-specific local predictions to form the final prediction. The HIT-EC architec-
ture captures both local and global dependencies within sequences, while leveraging
the hierarchical structure of the EC nomenclature.

First, the embedding layer converts amino acid sequences into physicochemical
representations [24]. Each amino acid in a sequence is mapped to a fixed-dimensional
vector using an embedding matrix E € R23%? where d is the dimension of the
embeddings. The value 23 corresponds to the 20 amino acids, the special codon "X’
(representing the amino acids 'B’, ’Z’, 'U’, and ’O’), the classification token, and the
padding token. Each row of E represents a specific amino acid, and the matrix values
are learned in the training phase to capture meaningful biochemical and structural
properties. The embedding layer projects each sequence into a continuous vector space.
By transforming the discrete sequence data into a numerical format, the embedding
layer provides the foundation for downstream layers to process and extract relevant
features for enzyme classification.

Second, the positional encoding layer integrates sequence order information into the
model to capture the sequential nature of protein structures [25]. Since transformers
lack inherent sequence-order awareness, positional encodings are added to the input
embeddings to provide this positional context. HIT-EC employs sinusoidal positional
encodings, where each position (i.e., p) in the sequence is assigned a unique vector
using sine and cosine functions of different frequencies. The positional encoding (i.e.,
P(-)) for each dimension ¢ at the position p is computed as:

. . p
P(p,2i) = sin (71000022'#1) , (1)

. p
P(p,2i+ 1) = cos (100002i/d) , (2)
where 2¢ and 2¢ + 1 represent even and odd indices, respectively. These encodings
are then added to the amino acid embeddings, resulting in A € R*? where S is
the sequence length (i.e., S = 1,024). Each row of A corresponds to an amino acid,
containing both physicochemical properties and positional information. This positional
information is crucial for capturing sequence-specific patterns, such as conserved motifs
and functional regions, which are associated with the EC number classification.
Third, HIT-EC introduces a novel transformer-based architecture to implement
the complementary paradigms of the local and global flows to enhance the hierarchical
classification of enzyme functions. The local flow captures the dependencies between
each level and the previous level of the EC hierarchy to capture hierarchical relation-
ships [26]. This ensures that the predictions for each level are informed by the previous
level’s output. On the other hand, the global flow treats each level independently by
reintroducing the original sequence embeddings into the subsequent encoders:

I; ZA-‘rOjfl, (3)
where I; is the input of the j* encoder, and O;_; is the output of the j — 1
encoder. Note that I} = A. To enable global classification for enzyme prediction,
we add a special classification token as the first token of the input sequence. This
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token serves as a summary representation of the entire sequence. By including this
token, the model can aggregate sequence-level information efficiently for downstream
classification tasks. By combining both local and global flows, HIT-EC considers both
the specific relationships at each hierarchical level and the overall context of the protein
sequence.

HIT-EC includes a hierarchical structure of four encoders to predict each level of
the EC hierarchy, where each encoder is composed of a multi-head self-attention mech-
anism and a position-wise feed-forward neural network. The multi-head self-attention
mechanism captures relationships between amino acids within a sequence, identify-
ing multiple relevant interactions in parallel. The position-wise feed-forward network
refines the representations learned by the attention mechanism to detect more com-
plex patterns. Layer normalization and residual connections are also incorporated to
stabilize training and enhance convergence. Each encoder generates both a sequence
representation and a level-specific prediction.

Fourth, HIT-EC simultaneously generates global predictions for all levels of the
EC hierarchy using a linear layer after processing through the encoders. The input of
this layer is the representation of the classification token from the fourth encoder.

Finally, the final prediction is produced by aggregating the local (P) and global
(Pg) predictions:

Pfinal :ﬂPQ—’_(l_B)Pﬁv (4)
where 8 € [0,1] is a hyperparameter that determines the balance between the hier-
archical specificity provided by the local predictions with the comprehensive view
captured by the global prediction.

2.2 Training with incomplete EC number data

HIT-EC incorporates a novel masked objective function to handle incompletely labeled
data in hierarchical multi-label classification settings. Specifically, the masked loss
function adjusts the contribution of unannotated levels in the EC hierarchy, such
that only the annotated levels contribute to the computed loss during training. This
approach utilizes binary cross-entropy (BCE) loss to quantify the discrepancy between
predicted and ground truth values. Let y;; be the label for the sequence ¢ at level j.
We define a binary mask M, with m;; = 1 if the ground truth y;; is available and
m;; = 0 otherwise. The total loss for a batch of N sequences across the four levels of
the EC hierarchy is computed as:

1
L= szmijLi_j, (5)

where L;; is the BCE loss for the predicted probability 7;; at level j of the EC
hierarchy, given the ground truth y;;.
2.3 Model interpretation for domain-specific evidence

HIT-EC’s interpretation scheme integrates attention flow with gradient-based rel-
evance propagation, offering a comprehensive view of the model’s decision-making
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Fig. 2 Performance comparison on the cross-validation dataset containing 200,000
sequences from Swiss-Prot and PDB. (A) Micro-averaged Fl-scores over ten experiments, (B)
macro-averaged Fl-scores, and (C) micro-averaged F1-scores with only underrepresented EC classes
(N<25). HIT-EC showed statistically significant improvement by training incomplete data (p<0.01).
** indicates statistically significant improvement with p<0.01 using the Wilcoxon ranked signed test.

process. HIT-EC identifies biologically significant regions in protein sequences, such as
conserved motifs or functional domains like active sites or binding pockets, that con-
tribute to enzymatic activity. Additionally, it accommodates multi-label classification,
allowing for separate relevance scores to be assigned for each level of the EC number
prediction, thereby providing independent explanations for each hierarchical level.
Relevance scores are computed for each amino acid by adapting an explainable
framework for transformer-based models [27]. The method propagates gradients of
the output prediction with respect to the input tokens through the attention layers
and combines them with the attention weights to generate the final relevance scores.
The contribution of each input feature is appropriately reflected in the corresponding
relevance score. The relevance score r; for an input token z; is computed as:

T S
_ l l
Ty = Yya ija;;,

=1 j=1

(6)

where T is the number of attention layers (i.e., T = 4), S is the number of tokens (i.e.,
S =1,024), a';; is the attention weight from token i to token j at layer I, and y is the
model’s final prediction.

3 Results

In this section, we present the performance evaluation of HIT-EC through intensive
experiments in various settings: (1) the micro- and macro-averaged F1 scores on the
cross-validation dataset, (2) the performance of HIT-EC on underrepresented classes
within this dataset, (3) the predictive performance on newly registered enzymes, and
(4) the performance on various species from the KEGG database [28].

3.1 Cross-validation for performance comparison

We evaluated the performance of HIT-EC by comparing it to state-of-the-art models
in a cross-validation setting. We considered manually curated protein sequences from
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Swiss-Prot [29] and the Protein Data Bank (PDB) [30], released prior to September
2022. Sequences were filtered to retain only non-redundant entries with a maximum
length of 1,023 amino acids. We excluded EC numbers associated with less than
ten sequences. This data preprocessing resulted in the cross-validation dataset that
includes approximately 200,000 sequences categorized into 1,938 EC numbers. The
dataset was split into training (80%), validation (10%), and test (10%) sets by stratified
sampling, preserving the class ratios, for the assessment. We considered three state-
of-the-art benchmark methods, CLEAN [22], ECPICK [20], and DeepECtransformer
(DeepECT) [21], for the comparison. For the hyper-parameter tuning, we used a frame-
work for hyper-parameter optimization, Optuna [31], where the hyper-parameters
were optimized to minimize loss on the validation set. For the final predictions, we
selected class-specific thresholds which maximize the F1-score on the validation set for
each EC number. The optimal hyper-parameter values of HIT-EC were an attention
head count of 2, an embedding dimension (d) of 1,024, a dropout rate of 0.1, a § of
0.59, and a learning rate of 8.75e-5. For the benchmark models, we used the optimal
hyper-parameters reported in their original papers. For training HIT-EC, the Stochas-
tic Weight Averaging method was applied during the last 15 epochs to improve the
model’s generalization performance and stability [32]. All models were trained on the
same dataset, ensuring a consistent and fair comparison across all evaluation tasks.
To ensure reproducibility, this experiment was conducted ten times.

HIT-EC achieved the highest micro-averaged F1-score of 0.93 £ 0.01, followed by
CLEAN (0.88+0.01), ECPICK (0.81 4+ 0.07), and DeepECT (0.79 £ 0.05) (Fig. 2A).
HIT-EC demonstrated an 18% improvement over DeepECT, a 15% improvement over
ECPICK, and a 6% improvement over CLEAN. The statistical outperformance was
assessed by Wilcoxon signed-rank tests (p < 0.01 for all comparisons). Note that
CLEAN always predicts at least one EC number for any protein sequences, which
showed relatively high F1-scores but can lead to a large number of false positives and a
False Discovery Rate (FDR) of 1 with non-enzymes. In contrast, other models employ
thresholding for the final predictions, which assign EC numbers for high confidence
scores only. We considered any prediction failures due to low confidence as negatives
in the evaluation. The FDRs computed using non-enzyme protein sequences with
taxonomy information in Swiss-Prot were 0.15, 0.17, and 0.16 for DeepECT, ECPICK,
and HIT-EC, respectively. However, the FDR of CLEAN was 1.

HIT-EC also showed the highest macro-averaged F1-score of 0.8440.02, surpassing
CLEAN (0.80 £ 0.02), ECPICK (0.75 £ 0.05), and DeepECT (0.58 &+ 0.07) (p < 0.01
for all comparisons) (Fig. 2B). The higher macro-averaged Fl-score indicates HIT-
EC’s robust performance across all EC numbers, while micro-averaged F1-scores can
be biased towards the majority classes.

We further evaluated the performance considering only underrepresented EC
classes, which contain fewer than 25 sequences. The cross-validation dataset included
799 underrepresented EC numbers. HIT-EC also demonstrated superior performance
in this setting, achieving the highest micro-averaged F1-score of 0.77 £ 0.02, followed
by CLEAN (0.73+0.04), ECPICK (0.67£0.05), and DeepECT (0.47+0.04) (Fig. 2C).
HIT-EC outperformed DeepECT by 64%, ECPICK by 15%, and CLEAN by 5%
(p < 0.01 for all comparisons).
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sequences with predictable EC numbers (N=200). (C) Performance using the pre-trained models that
are publicly available.

Furthermore, we examined HIT-EC’s performance with and without incompletely
annotated data when training to assess the proposed learning strategy. The HIT-
EC model that was trained with incomplete data showed an improvement of at least
2% over the model trained without incomplete data in the micro-/macro-averaged
F1-scores and underrepresented EC classes (p < 0.01) (Fig. 2A-C).

3.2 External validation using newly registered enzymes

For the external validation, we conducted experiments using newly registered enzyme
sequences in Swiss-Prot, referred to as the New-392 dataset [22, 33]. This dataset
consists of 392 protein sequences, released after September 2022, which ensures that
none of these sequences were part of the training process for any of the models.

First, we considered the models trained in the cross-validation experiments, where
ten optimal models were available for each benchmark method. We applied the models
to the New-392 dataset and computed micro-averaged F1-scores. The models which
were trained on the cross-validation dataset covered only 1,938 EC numbers. Thus, any
sequences falling outside of this coverage were considered as negatives when computing
the confusion matrix. Out of the 392 sequences, 192 were outside of the coverage in
this experiment. HIT-EC produced the highest micro-averaged F1-score of 0.69+0.04,
surpassing ECPICK by 3% (0.67=+0.09), DeepECT by 15% (0.60+0.05), and CLEAN
by 44% (0.48 £ 0.07) (p < 0.01 for all comparisons) (Fig. 3A).

In the second evaluation setting, we only considered sequences within the cov-
erage of the cross-validation models. HIT-EC achieved a micro-averaged F1-score of
0.94 + 0.05, significantly outperforming CLEAN by 7% (0.88 + 0.06), ECPICK by
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Table 1 Performance Comparison across species using KEGG.

Species (strains) ECPICK DeepECT CLEAN HIT-EC Samples #
Shigella flexneri (strain 301) 0.85+0.12 0.79 £0.04 0.83£0.01 0.90 + 4e-3** 1,346
Acinetobacter pittii (strain PHEA-2) 0.76 £ 0.06™ 0.63+0.08  0.74+0.02 0.73£0.01 1,365
Campylobacter jejuni (strain NCTC 11168) 0.77 £ 0.04 0.57 £0.03 0.81+0.01** 0.79 £ 0.02 658
Staphylococcus aureus (strain NCTC 8325) 0.79 £+ 0.06 0.64 £0.03 0.79 £0.01 0.80+0.01" 991
Pseudomonas aeruginosa (strain PAO1) 0.79+0.07  0.62+£0.02  0.77 £0.02 0.79 4+ 0.01** 1,829
Bacillus subtilis (strain 168) 0.79+£0.12 0.78 £0.04 0.75 £ 3e-3 0.87 4+ 0.02** 1,370
Escherichia coli (strain O157:HT) 0.83 £0.03 0.78 £0.03 0.82+£0.01 0.91 £+ 0.01** 1,547
FEscherichia coli (strain K-12) 0.83 £0.03 0.79 £0.03 0.82£0.01 0.91 4+ 0.01"* 1,579
Mycobacterium tuberculosis (strain H37Rv) 0.76 £ 0.06 0.61 £0.05 0.67 4 0.03 0.76 + 0.01 1,412
Klebsiella pneumoniae (strain HS11286) 0.83+0.14 0.74+0.01 0.77£0.01 0.83 £0.01 1,907
Caulobacter vibrioides (strain NA1000) 0.70£0.05  0.60£0.09 0.73+0.01" 0.73+0.01 1,907
Chlamydia trachomatis (strain D/UW-3/CX) 0.77+0.04  0.55+0.04 0.78+0.01** 0.76 £ 0.01 303
Listeria monocytogenes (strain EGD-e) 0.724+0.10  0.72£0.01 0.79+£0.03 0.80+0.01"" 1,026
Coziella burnetii (strain RSA 493) 0.79 +0.03**  0.60 £ 0.03 0.77 £0.02 0.78 £ 0.01 659
Average 0.78 £0.04 0.67 £0.09 0.77 £0.04 0.81 +£0.06

Note: Underlined bold font face indicates the best performance for each species. * and ** indicate
statistical significance compared to all other methods using the Wilcoxon signed-rank test, p < 0.05 or
0.01 respectively.

13% (0.83 £ 0.09), and DeepECT by 21% (0.78 & 0.06). (p < 0.01 for all compar-
isons) (Fig. 3B). There were 15, 17, and 12 failures in the EC number assignments in
ECPICK, DeepECT, and HIT-EC, respectively.

Additionally, we performed the experiments using the pre-trained models that are
publicly available. We downloaded the latest version of the pre-trained models from
GitHub. For HIT-EC, we re-trained the model using all available datasets (before
September 2022), including Swiss-Prot, PDB, and manually curated entries from the
KEGG database. To increase the coverage of HIT-EC’s predictable EC numbers, we
incorporated enzymes from the TrEMBL database. For the EC numbers represented
by fewer than 80 sequences, additional sequences were added from TrEMBL, where
the EC numbers of the TrTEMBL data were re-labeled by aligning these sequences with
sequences in Swiss-Prot and PDB using DIAMOND (minimum percent identity of 50%
and coverage of 75%). The augmentation produced around 450,000 sequences for the
training dataset. The coverage of the resulting HIT-EC model was 4,255 EC numbers.
HIT-EC still showed the highest micro-averaged F1-score of 0.65, followed by CLEAN
(0.52), DeepECT (0.45), and ECPICK (0.34) (Fig. 3C). Note that the pre-trained
models were trained with different datasets and various EC number coverages.

3.3 Species-specific performance comparison using KEGG

We assessed the models’ performances on complete genome datasets derived from
KEGG to further evaluate the robustness of these models, using the benchmark
models trained in the cross-validation experiments. In this experiment, we consid-
ered microbial genomes that exhibit a great diversity in sequence composition and
evolutionary trajectories. Unlike human proteins which have been extensively stud-
ied and annotated, microbial proteomes often include novel or poorly characterized
sequences. Specifically, we evaluated the models using fourteen microbial species,
including Shigella flexneri (strain 301), Acinetobacter pittii (strain PHEA-2), Campy-
lobacter jejuni (strain NCTC 11168), Staphylococcus aureus (strain NCTC 8325),

10


https://doi.org/10.1101/2025.02.01.635810
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.01.635810; this version posted February 6, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Pseudomonas aeruginosa (strain PAO1), Bacillus subtilis (strain 168), Escherichia coli
(strains O157:H7 and K-12), Mycobacterium tuberculosis (strain H37Rv), Klebsiella
pneumoniae (strain HS11286), Caulobacter vibrioides (strain NA1000), Chlamy-
dia trachomatis (strain D/UW-3/CX), Listeria monocytogenes (strain EGD-e), and
Coxiella burnetii (strain RSA 493).

HIT-EC exhibited the highest F1-scores in eight of the fourteen species and showed
the best performance on average. HIT-EC achieved the micro-averaged F1-score of
0.81 £ 0.06 on average, which was significantly higher than ECPICK (0.78 £ 0.04),
CLEAN (0.77 £ 0.04), and DeepECT (0.67 £ 0.08) (p < 0.05 for all comparisons)
(Table 1). The overall superior performance of HIT-EC on this comprehensive genome
dataset indicates its robustness and capability in large-scale enzyme function predic-
tion. The experimental result also implies that HIT-EC effectively captures patterns
in diverse protein families and is robust to variations in sequence composition.

This experimental setting reflects realistic genomic contexts, where complete pro-
teomes are to be annotated. Given the broad diversity of microorganisms and the
complexity of their protein sequences, this evaluation provides insight into the models’
ability to handle genome-wide predictions effectively.

3.4 Model interpretation for trustworthy predictions

We validated the domain-specific evidence derived from the relevance scores computed
by the final HIT-EC model. For the assessment, we compared the relevance scores with
characterized motif sites within enzyme sequences of the Cytochrome P450 (CYP)
family, specifically CYP106A2 [EC 1.14.15.8]. CYP106A2 functions as a bacterial
steroid hydroxylase, capable of hydroxylating various steroids, and its protein struc-
ture has also been extensively studied [34]. We considered thirteen protein sequences
of the well-characterized bacterial CYP106A2 enzyme family: two from the PDB and
eleven from Swiss-Prot, all sharing over 90% sequence similarity with 5XNT [35]
and 4YT3 [36]. Then, we computed the relevance scores for each protein sequence,
illustrated using multiple sequence alignment (MSA) (e.g., Clustal Omega [37]). We
compared the relevance scores of HIT-EC with ECPICK’s ones, as ECPICK was the
only approach that provided evidential scores for amino acids.

The interpretation results showed that HIT-EC enhanced the detection of key
motif sites (oxygen-binding, EXXR, and heme-binding motifs). Fig. 4 illustrates the
CYP106A2 sequences, with functional domains emphasized using colored boxes. Con-
served sequences are highlighted in red using ESPript3 [38]. Motif sites, including
oxygen-binding, EXXR, and heme-binding domains, are outlined with blue boxes,
while substrate recognition sites (SRS 1-6) within the CYP106A2 family are marked
with green boxes. The signature regions of the enzyme within the CYP106A2 fam-
ily are illustrated by purple boxes. The relevance scores of ECPICK and HIT-EC are
visualized in Fig. 4 using a color scale, such that high scores are in red and low scores
are in white. Both models effectively located the key motif sites within the CYP106A2
family with high scores, including the oxygen-binding motif and heme-binding domain,
which are pivotal for defining the first and second levels of EC classification (e.g.,
1.14). However, HIT-EC produced more discriminative scores for critical motif regions,
including the oxygen-binding site, EXXR motif, and heme-binding motif, compared to
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Fig. 4 Model interpretation for trustworthy prediction. HIT-EC identifies key amino acids
contributing to the prediction, specifying the critical regions essential for the enzyme’s activity as
domain-specific evidence for the trustworthy predictions. The blue box corresponds to the main
function site of enzymes, the purple box represents the signature region of the enzyme, and the green
box denotes the Substrate Recognition Sites (SRS)

ECPICK. Significantly, HIT-EC clearly identified the EXXR motif, which ECPICK
did not recognize.
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4 Discussion

In this study, we demonstrated that HIT-EC significantly advances EC number predic-
tion through its innovative hierarchical interpretable transformer approach. HIT-EC
achieved superior predictive performance in various evaluation settings, including
cross-validation with large datasets, external validation, and species-specific eval-
uation. Importantly, HIT-EC significantly outperformed the benchmark models in
predicting underrepresented EC numbers, which can be attributed to its innovative
architectural design and novel learning strategy that handles incomplete annotations.

HIT-EC’s transformer-based hierarchical framework captures complex dependen-
cies between the four levels of the EC hierarchy, while preserving broader contextual
information of the protein sequence, which results in enhanced predictive power for
overall and underrepresented EC classes.

Furthermore, we enhanced the trustworthiness in the predictions through eviden-
tial deep learning. By incorporating attention mechanisms and relevance propagation,
HIT-EC produces domain-specific evidence for the prediction, which aligns with
established biological knowledge. HIT-EC accurately identifies conserved motifs and
functional regions in enzymes, as demonstrated in the CYP106A2 family analysis.
The evidential approach not only ensures the reliability of its predictions, but also
highlights regions of potential biological significance, offering insights that could guide
further research and experimental validation.

As a future research direction, further improvement of the predictive power for
underrepresented EC numbers would be critical. HIT-EC, while superior to state-of-
the-art models, still showed low-performance when classifying underrepresented EC
numbers (micro-averaged Fl-score of 0.77). Additionally, the computational cost of the
hierarchical transformer architecture may pose challenges for large-scale deployments.
Future work could focus on optimizing the model’s efficiency without compromising its
predictive and interpretative capabilities. HIT-EC represents a significant step forward
in EC number prediction, advancing deep learning techniques with interpretability to
deliver accurate and trustworthy results.
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