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Accurately predicting enzyme functions
through geometric graph learning on
ESMFold-predicted structures

Yidong Song1,6, Qianmu Yuan 1,2,6, Sheng Chen 1, Yuansong Zeng3,
Huiying Zhao4 & Yuedong Yang 1,5

Enzymes are crucial in numerous biological processes, with the Enzyme
Commission (EC) number being a commonly used method for defining
enzyme function. However, current EC number prediction technologies have
not fully recognized the importance of enzyme active sites and structural
characteristics. Here, we propose GraphEC, a geometric graph learning-based
EC number predictor using the ESMFold-predicted structures and a pre-
trained protein language model. Specifically, we first construct a model to
predict the enzyme active sites, which is utilized to predict the ECnumber. The
prediction is further improved through a label diffusion algorithm by incor-
porating homology information. In parallel, the optimum pH of enzymes is
predicted to reflect the enzyme-catalyzed reactions. Experiments demonstrate
the superior performance of ourmodel in predicting active sites, EC numbers,
and optimum pH compared to other state-of-the-art methods. Additional
analysis reveals that GraphEC is capable of extracting functional information
from protein structures, emphasizing the effectiveness of geometric graph
learning. This technology can be used to identify unannotated enzyme func-
tions, aswell as to predict their active sites and optimumpH,with the potential
to advance research in synthetic biology, genomics, and other fields.

Enzymes play an essential role in various biological processes by cat-
alyzing numerous reactions1,2. Identifying enzyme functions is crucial
for the study of metabolism3 and diseases4. Enzyme Commission (EC)
number5 is commonly utilized to formulate the enzyme function as a
four-digit structure, which provides a unified scheme and expedites
advancements in the field of enzyme engineering. However, the
experimental determination6 of EC numbers is time-consuming and
costly. The development of computational approaches for identifying
EC numbers has become imperative.

The computational approaches can be categorized into homology-
based7,8, structure-based9,10, andmachine learning-based11–13 approaches.
Homology-based approaches, assuming that highly similar enzymes

have similar functions, were proposed to annotate the enzyme function
with alignment tools14,15. These methods rely heavily on sequence simi-
larity, which limits their coverage while lacking similar sequences. To
improve the coverage, structure-based approaches9,16 scanned structu-
rally similar protein templates to identify consensus functions. For
instance, COFACTOR10 compared the query structure to proteins with
known structures and functions in the BioLiP library17 for function
annotation. Despite the improvement of these methods, difficulties
remain due to a lack of high-quality templates. To alleviate the con-
straints of similar sequences and templates, machine learning-based
approaches have been developed. The initial machine learning-based
approaches18,19 first extracted vital features before utilizing machine
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learning algorithms to identify the corresponding EC numbers. The
performance of these machine learning algorithms is greatly influenced
by the manually crafted features, which are not adapted to rapidly
expanding enzyme sequences.

Recently, deep learning methods11,20 have achieved success in
enzyme function annotation. To avoid manual feature extraction,
DEEPre21 employed CNN and RNN components to capture convolu-
tional and sequential features. ProteInfer12 utilized a dilated convolu-
tional network to establish a mapping between protein space and
enzyme function space. Utilizing the InterPro signatures as domain
information, GrAPFI22 performed label propagation on a weighted
undirected graph. For ECPICK23, the protein sequence was encoded
using one-hot embedding, which was subsequently employed to
compute the posterior probabilities of around 5000 EC numbers
through convolutional and hierarchical layers. CLEAN11, another deep
learning method that learned abundant embeddings through con-
trastive learning24, achieved better accuracy and EC coverage for EC
number identification. Nevertheless, these methods still suffer from
two limitations. Firstly, they only used protein sequences without
incorporating protein structures, thus losing the crucial features
impliedby the structures. Secondly, the crucial informationonenzyme
active sites was not employed in the analysis of enzyme function.

Due to the lack of native structures, present methods don’t fully
exploit the information from protein structures. AlphaFold225 has
made a breakthrough in protein structure prediction, with the pre-
dicted structures confirmed to be useful in DNA-binding site
prediction26,27, antibiotic discovery28, and the study of intrinsically
disordered proteins29. Regrettably, the high computational demand of
AlphaFold2 limits its applicability for genome-wide use. To address
this issue, Lin et al.30 proposed a pre-trained language model ESMFold
for precise and quick structure prediction, attaining comparable
accuracy to AlphaFold2 while significantly reducing inference time by
up to 60 times. The high efficiency of ESMFold enables the analysis of
protein structures in metagenomics31, which has shown remarkable
achievements in nucleic-acid-binding site prediction32 and drug
discovery33. With the aid of predicted structures, geometric graph
learning34, a technique that has proven beneficial in protein design35,36

and docking37, can extract structural information efficiently. To aug-
ment geometric graph learning, some studies32,38 have attempted to
incorporate informative sequence embeddings using unsupervised
language models (ProtTrans39 and ESM-1b40).

On the other side, enzyme active sites are typically located on the
surface of enzymes and play an important role in catalyzing reactions
or binding substrates41. They exhibit a high level of conservation in the
process of evolution and significantly determine the function of
enzymes42,43. So obviously, it would be highly beneficial to consider the
active sites of enzymes when assigning the EC numbers. Meanwhile,
current methods for predicting enzyme active sites mainly rely on
templates or hand-crafted features, which are unable to keep up with
the rapidly growing data. This highlights the need for a fast and
accurate enzyme active site predictor. Besides active sites, a label
diffusion algorithm44 has been developed for protein function pre-
diction, which can transfer functionally relevant data and aid in iden-
tifying EC numbers.

In this work, we proposed GraphEC (geometric Graph learning-
based EC number annotation), an accurate network for enzyme func-
tion prediction based on predicted protein structures and enzyme
active sites. Specifically, the enzyme active sites were identified first, as
they play a critical role in predicting enzyme function. With the gui-
dance of active sites, GraphEC was trained through geometric graph
learningwith the protein structures predictedby ESMFold. To improve
the model performance, informative sequence embeddings were
generated via a pre-trained language model (ProtTrans) to augment
the node features. In addition, a label diffusion algorithm was
employed to further enhance the prediction using homology

information. Considering that enzyme-catalyzed reactions require
specific environmental conditions, we further extended the model to
enzyme optimum pH prediction, which can assist in experimental
procedures. Through comprehensive comparisons on several inde-
pendent tests, our model outperformed all the state-of-the-art meth-
ods in the predictions of active sites, EC number, and optimum pH.
Additional analysis demonstrated that GraphEC is able to learn func-
tional information from enzyme structures, further emphasizing the
effectiveness of geometric graph learning.

Results
The overview of the model
GraphEC, an accurate EC number predictor based on geometric graph
learning, incorporates the enzyme active sites and predicted protein
structures into enzyme function prediction (Fig. 1). Given a protein
sequence, its structure is predicted by ESMFold and used to construct
the protein graph. Geometric features were extracted through the
predicted structures, which are enhanced by sequence embeddings
calculated through a pre-trained language model (PtrotTrans). These
features are fed into a geometric graph learning network for learning
geometric embeddings, which are utilized in the prediction of active
sites, EC number, and optimum pH. Here, enzyme active sites are first
predicted by GraphEC-AS, assigning weight scores to each residue.
Guided by the weight scores, the initial prediction of the EC number is
computed with the attention and pooling layers, which is further
improved through a label diffusion algorithm by extracting homo-
logous information. Finally, the model is extended to optimum pH
prediction through attention pooling for better representing the
reaction conditions (GraphEC-pH).

Enzyme active site prediction (GraphEC-AS)
We first evaluated GraphEC-AS for enzyme active site prediction based
on residue using the independent test TS124 (details shown in
“Methods”). Figure 2A displays an AUC (area under the receiver
operating characteristic curve) of 0.9635 for GraphEC-AS on five-fold
cross-validation and 0.9583 for TS124, demonstrating the robustness
of the model. Six competing methods (PREvaIL_RF45, PREvaIL_LR,
CRpred (residues with coordinates)46, CRpred (all residues), HA (resi-
due identity filter)47, and HA (combination filter) are located between
the ROC curves of GraphEC-AS and BiLSTM (the method excluding
structural information), indicating the importance of geometric
information. In terms of MCC (Matthews correlation coefficient),
recall, and precision (Fig. 2B), our method consistently performed the
best. The second-best method (PREvaIL_RF) achieved 0.2939, 0.6223,
and 0.1487, lower than GraphEC-AS by 40.9, 14.5, and 57.1%, respec-
tively. Sourcedata areprovided as a SourceDatafile. In addition, the F1
score for GraphEC-AS on TS124 is 0.4698 (Supplementary Table S1),
while the second-best method, PREvaIL_RF, achieves a score of 0.240,
reflecting a decrease of 48.9% relative to GraphEC-AS. The PREvaIL
needs the calculation of time-consuming evolutionary profiles using
PSI-BLAST48, whereas GraphEC-AS can identify the enzyme active sites
rapidly and accurately. Source data are provided as a Source Data file.

The superiority of GraphEC-AS was further illustrated by its
learned embeddings on TS124. The ProtTrans embeddings (Fig. 2C)
are scattered while the geometric embeddings learned by GraphEC-
AS (Fig. 2D) distinguished active sites from non-active sites clearly.
This demonstrates the capability of geometric graph learning to
identify the crucial distinctions between them. We further evaluated
the impact of the quality of ESMFold-predicted structures using
TM-align49 on TS124. More than 85% of proteins had TM-scores
greater than 0.8 (Supplementary Fig. S1), which reflects the high
quality of the ESMFold-predicted structures. The AUC values
increased with TM-scores (Supplementary Fig. S2), which indicates
the necessity of high predicted structure quality and emphasizes
the importance of employing ProtTrans to enhance the feature
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embeddings. Figure 2E, F compares the three-dimensional structures
of an example (cis-muconate cyclase) predicted by BiLSTM and
GraphEC-AS. GraphEC-AS identified all four active sites, whereas
BiLSTM only detected H149 due to the absence of local structure
characteristics. Compared to H149, the remaining active sites were
located far in sequence (more than 20 residues apart) but close in
structure (less than 16Å). These results indicate the capability of
GraphEC-AS to learn the local structure information. Additional cases
can be seen in Supplementary Fig. S3.

Enzyme EC number identification (GraphEC)
With the guidance of predicted active sites, GraphEC was proposed to
identify enzyme EC numbers. GraphEC was evaluated on two inde-
pendent tests: NEW-392 and Price-149, where NEW-392 comprises 392
enzyme sequences covering 177 different EC numbers, and Price-149 is
an experimental dataset validated by Price et al.50. In comparison to
four state-of-the-art EC number predictors (i.e., CLEAN, ProteInfer,
DeepEC20, ECPred51, GrAPFI, and ECPICK), GraphEC exhibited superior
performance in various metrics. Figure 3A illustrates that GraphEC
achieved an AUC, recall, precision, and F1 of 0.8404, 0.6908, 0.6132,
and 0.6131 on Price-149, surpassing the second-best method (CLEAN)
by 14.6, 47.9, 4.9, and 23.9%, respectively. On NEW-392, GraphEC
achieved optimal values in AUC (0.8910), recall (0.7988), and F1
(0.5910) (Supplementary Fig. S4). Source data areprovided as a Source
Data file. As shown in Supplementary Table S3, GraphEC is able to
achieve high EC number coverage (5106 EC numbers) while main-
taining high performance. Benefiting from the contrastive learning-
based representation, CLEAN achieved high precision, but its recall
and F1 were 39.8% and 15.6% lower than those of GraphEC, respec-
tively. Relying on the label propagation on a protein domain similarity
graph, GrAPFI22 achieved acceptable performance, with AUC values of

0.5095 and 0.5407 on Price-149 and NEW-392 (Supplementary
Table S2). ECPICK23 attained the third-best performance through the
implementation of a convolutional neural network and hierarchical
module, achieving the AUC values of 0.5888 and 0.6502 on Price-149
and NEW-392 (Supplementary Table S2), respectively. Source data are
provided as a Source Data file.

GraphEC was further evaluated on different levels of EC numbers
and the frequency of each EC number in the training set. Considering
the potential impact of EC number frequency in the training set on
model performance, precision on NEW-392 was evaluated based on
the number of times that the EC number appeared in the training set.
(Fig. 3B). More than 66.0% of enzymes have less than ten occurrences,
and only 8.9% of enzymes have more than 100 occurrences, demon-
strating the challenge of the dataset. As expected, predicting EC
numbers with low frequency proved to be difficult. However, GraphEC
consistently exhibited higher precision at different occurrences of EC
numbers compared to other methods, highlighting the superior per-
formance of our model. The four digits of the EC number correspond
to different levels of enzyme functional classification, with the first to
fourth digits indicating a hierarchical breakdown. The recall of Gra-
phEC on NEW-392, compared to CLEAN, improved by 1.1%, 1.7%, 3.4%,
and 66.0% from the first level to the fourth level, with values of 0.9468,
0.9116, 0.8945, and 0.7988 (Fig. 3C). The superiority of GraphEC
becomes more apparent as the level increases, indicating the effec-
tiveness of our model. Source data are provided as a Source Data file.

Considering the utilization of active sites in EC number predic-
tion, we have evaluated the impact of mutations in the active sites.
We first identified the active sites of enzymes on NEW-392 and Price-
149 based on the predicted results (score > 0.5). Subsequently, these
active sites were mutated to Alanine (A), and the predicted scores
for true EC numbers were compared before and after the mutation.

Fig. 1 | The overview of GraphEC. Given protein sequences, ESMFold was
employed to predict the protein structures, which were then utilized to construct
the protein graph and extract geometric features. To augment the features,
informative sequence embeddings were calculated using a pre-trained language
model (ProtTrans). The prepared features were then input into a geometric graph
learning network to learn geometric embeddings. These embeddings were then
used to predict enzyme active sites (GraphEC-AS),with each residue being assigned

aweighted score. Guided by the weight scores of GraphEC-AS, the initial pred of EC
number was predicted with the attention and pooling layers. To improve the pre-
diction, a label diffusion algorithm is employed to account for the overlapping
communities of enzymes with correlative functions. In addition, the model is fur-
ther extended to optimum pH prediction through attention pooling for better
representing the practical situation (GraphEC-pH).
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After mutation, the predicted scores for true EC numbers have
decreased (Supplementary Fig. S6), demonstrating the influence of
mutations in the active sites on the prediction of EC numbers. Among
the mutated enzymes, 59.1% can be identified as non-enzymes, such
as L-2-hydroxyglutarate dehydrogenase (Uniprot ID: A0A011QK89)
and Farnesyl pyrophosphate synthase (Uniprot ID: B4YA15) (more
cases can be seen in Supplementary Table S4). Source data are pro-
vided as a Source Data file. Furthermore, the predicted scores for
active sites before and after the mutation were compared, dis-
covering a reduction in predicted scores for active sites after muta-
tion (Supplementary Fig. S7). This indicates a reduced focus of the
model on themutated active sites. In addition, we have compared the
average computational time per protein of different methods on
Price-149. The average inference time for GraphEC is 0.26 seconds
(s), while CLEAN, ProteInfer, and DeepEC have inference times of
1.28, 0.21, and 0.14 s, respectively (Supplementary Fig. S8). Source
data are provided as a Source Data file. Due to the considerable time
needed to compute the pairwise distances between the query
sequence and each EC number cluster center in CLEAN, GraphEC’s
inference speed is 392.3% faster than that of CLEAN. By combining
the time required for ESMFold to compute protein structures
(11.44 s) with the inference time of GraphEC (0.26 s), a total of 11.7 s is
necessary for each enzyme. In this case, computing the functions of
1000 enzymes requires just 3.25 h, thereby meeting the need for
high-throughput analysis.

The ablation studies of GraphEC
The ablation studies of GraphEC were conducted to investigate the
contribution of eachmodule. When removing label diffusion, the AUC

values slightly decreased (Fig. 3D) likely because of the ability of Gra-
phEC to learn homology information. The removal of active site gui-
dance resulted in a decrease of 2.8% and 3.5% in AUC on NEW-392 and
Price-149, demonstrating its great importance. For evaluating the
impact of ESMFold-predicted structures, a geometrically agnostic
baseline (BiLSTM) was constructed. Without structural information,
the AUC decreased by 4.8% and 2.1% on NEW-392 and Price-149, indi-
cating the crucial role of predicted structures. The ProtTrans embed-
dings were used to enhance the node features, and the removal of
them led to a decrease in AUC by 6.6% and 2.8%. The PortTrans
embeddings used here are residue-level representations, which are
different from the protein-level ESM-1b representations (mean
representations) used inCLEAN (Supplementary Fig. S9). Source data
are provided as a Source Data file. In addition, we have evaluated the
effects of physicochemical properties in reference to previous
studies52,53. The incorporation of these physicochemical properties
failed to further improve the performance of GraphEC (Supplemen-
tary Table S5), suggesting that the geometric features and language
model embeddings used in this study may have already inherently
captured the physicochemical properties. Source data are provided
as a Source Data file.

As shown in Fig. 3E, the learned geometric embeddings (GraphEC
embeddings) were comparedwith ProtTrans embeddings and one-hot
embeddings on NEW-392. Among the ten most frequent EC numbers,
theone-hot embeddings exhibited limiteddiscriminative capacity. The
ProtTrans embeddings can roughly distinguish these EC numbers, yet
they cannot cluster the categories to which 3.1.2.22 and 4.2.1.113
belong. In contrast, GraphEC embeddings can clearly separate
these EC numbers, demonstrating their strong expressive ability for

Fig. 2 | The enzyme active site prediction. A The receiver operating characteristic
curves of GraphEC-AS and the geometrically agnostic baseline BiLSTM, as well as
their comparison with other state-of-the-art methods. The error band of 5-fold
cross-validation represents the standard deviation. B Evaluation of GraphEC-AS’s
performance using three metrics (MCC, recall, and precision). Six methods were
compared, where PREvaIL_RF and PREvaIL_LR represent the PREvaIL model using
random forest and logistic regression algorithms; Crpreda and Crpredb represent

the CRpred model using residues with coordinates and all residues; and HAc and
HAd represent the HA model using residue identity filter and combination filter.
C, D Visualization of the raw ProtTrans embeddings and geometric embeddings
learned by GraphEC-AS. E The three-dimensional structure of one example (cis-
muconate cyclase, P38677) annotated by BiLSTM and (F) GraphEC-AS. Source data
are provided as a Source Data file.
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different EC numbers. Similarly, on Price-149, the one-hot embeddings
lacked the ability to distinguish, while the ProtTrans embeddings can
provide a basic distinction, and the GraphEC embeddings were able to
further differentiate them (Supplementary Fig. S10). Source data are
provided as a Source Data file.

To evaluate the importance of predicted structures, we replace
the ESMFold-predicted structureswith those predicted by AlphaFold2.
Utilizing the AlphaFold2-predicted structures, the AUC, recall, preci-
sion, and F1 on NEW-392 are 0.9004, 0.8267, 0.5745, and 0.6044,
respectively (Supplementary Table S6), slightly higher than those of
using ESMFold-predicted structures. On Price-149, comparable per-
formance was obtained when utilizing AlphaFold2-predicted and
ESMFold-predicted structures. These results indicate that ESMFold can
generate structures with comparable accuracy in much less time than
AlphaFold2. In addition,we alsoevaluated the impactof various cut-off
distances (8 Å, 12 Å, and 14Å) relative to 10 Å on model performance.
When thedistance is8 Å, theAUC, recall, precision, andF1of themodel
are 0.8761, 0.7729, 0.5577, and 0.5459 on NEW-392 (Supplementary
Table S7), lower by 1.7%, 3.2%, 2.3%, and 7.6%when the distance is 10Å.
This may be due to the decreased distance, which reduces the number
of neighbor nodes associatedwith each node, ultimately causing some
information loss. When the distance is 12 Å, and 14 Å, the AUC of the

model is 0.8876 and 0.8753 on NEW-392, respectively, 0.4% and 1.8%
lower thanwhen the distance is 10 Å (0.8910). This might be because a
larger distance allows each node to have more edges, resulting in
excessive aggregation of information from neighbor nodes during
the iterative process, which eventually reduces the node specificity.
Similar results on Price-149 are presented in Supplementary Table S7.
Source data are provided as a Source Data file.

GraphEC captures the functional regions of enzymes
To verify whether GraphEC can identify functional regions, we studied
the connections between predicted enzyme active sites, multi-head
attention scores, and true active sites. As shown in Fig. 3F, the true
active sites of Acyl-protein thioesterase 2 are S122, D176, and H210,
whichwere correctly predicted throughGraphEC-AS andused to guide
the EC number prediction. The multi-head attention scores tended to
be higher near the true active sites, suggesting that the model can
focus on the functional regions. Similarly, the enzyme active sites of
Proline racemase were accurately identified, and the muti-head
attention scores were prominent when approaching the true active
sites (Fig. 3G). Additional cases can be seen in Supplementary Fig. S11.
These results indicate that GraphEC could capture the functional
regions of enzymes.

Fig. 3 | The enzyme EC number prediction. A The comparison between GraphEC
and several state-of-the-art methods using AUC, recall, precision, and F1 on Price-
149. B The model’s precision varies depending on the frequency of the EC number
in the training set. C The analysis of GraphEC and three methods (CLEAN, Pro-
teInfer, andDeepEC) at four different levels.D Themethod ablation focused on the
label diffusion algorithm, active site guidance, predicted protein structures, and
ProtTrans embeddings. E Three embeddings were visualized on NEW-392,

including the GraphEC embeddings, which represent the geometric embeddings
learned by GraphEC, as well as the One-hot embeddings and ProtTrans embed-
dings, which represent the one-hot vector and ProtTrans vector, respectively.
F, G The three-dimensional structures of Acyl-protein thioesterase 2 (O95372) and
Proline racemase (E3PTZ4) were visualized, with the highlighted portion indicating
higher attention scores. Source data are provided as a Source Data file.
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The prediction of enzyme optimum pH
Since enzyme pH values are important for enzyme functions, we have
also included enzymeoptimumpHpredictions. To train themodel, we
have curated a new dataset constructed from the Brenda database
(released in January 2023)54 (Supplementary Fig. S12), including 4110
proteins with sequence identity of < 25%. The dataset was divided into
a training set (Brenda-train, 3297 enzymes) and an independent test set
(Brenda-test, 813 enzymes) with a ratio of 4:1 according to the deposit
time. As shown in Fig. 4A, GraphEC-pH achieved an AUPR (area under
the precision-recall curve) of 0.9321 for five-fold cross-validation and
0.9170 on the test, indicating themodel’s robustness. By removing the
structural information, the AUPR of GraphEC-pH w/o structures
decreasedby 1.4%. In comparison, the two latestmethods, EpHod55 and
EpHod_SVR, achieved lower performance with points located below
the precision-recall curve of GraphEC-pH. Correspondingly, the F1,
recall, and precision of GraphEC-pH were 0.8487, 0.8672, and 0.8461,
surpassing the second-best method (EpHod) by 9.2%, 16.5%, and
0.09%, respectively (Fig. 4B). Source data are provided as a Source
Data file. These results have demonstrated the superior performance
of our model. We then evaluate the model’s ability to discern differ-
ences among 289 homologous enzyme pairs searched byDIAMOND in
the Brenda test. More than 87.9% (254 pairs) of the homologous
enzymepairs have the same typeof optimumpH (i.e., “acidic” - “acidic”

and “non-acidic” - “non-acidic”), andGraphEC-pHcancorrectly identify
95.7% of them (243 pairs). Only 35 pairs of enzymes exhibit different
optimal pH types (i.e., “acidic” - “non-acidic”), with GraphEC-pH cor-
rectly distinguishing 14 pairs (Supplementary Table S8), which is 75%
more thanEpHod (8 pairs). These results indicate thatGraphEC-pHcan
discern the differences among homologous enzymes to some extent.
Source data are provided as a Source Data file.

GraphEC learns functional information from enzyme structures
To discover new enzyme functions, a total of 570,830 protein
sequenceswere collected fromSwiss-Prot (January 2024 release). After
removing the proteins with sequence identity greater than 25% and
those with identity above 25% to the training dataset, 52,037 proteins
without EC number annotations remained. These proteins were
annotatedbyGraphEC andCLEAN,with over 21%of them including the
same EC number annotations. For each protein, the predicted EC
number was obtained, and the TM scores were calculated with pro-
teins sharing the sameECnumber in the training set. Subsequently, the
maximum TM scores of proteins were further used to analyze. Gra-
phEC generally has a higher score, with over 82% of the proteins found
by Foldseek56 showing a higher TM score compared to CLEAN. When
comparing the number of enzymes whose maximum TM-scores
exceeded various thresholds (Fig. 5A), GraphEC surpassed CLEAN by

Fig. 4 | The prediction of enzyme optimum pH. A The precision-recall curves of
GraphEC-pH on Brenda test, compared with 5-fold cross-validation, geometrically
agnostic baseline (GraphEC-pH w/o structures), and two of the latest methods

(EpHod and EpHod_SVR). The error band of 5-fold cross-validation represents the
standard deviation. B F1, recall, and precision were compared for GraphEC-pH,
EpHod, and EpHod_SVR. Source data are provided as a Source Data file.

Fig. 5 | GraphEC can extract functional information from protein structures.
A Comparison of the number of enzymes whose maximum TM-scores exceeded
various thresholds. For each protein, the predicted EC number was obtained, and
the TM scores were calculated with proteins sharing the same EC number in the
training set. Subsequently, the maximum TM-score was further used to compare.
The “w/o structures” represents the baselinemodel (MLP) that only uses ProtTrans
embeddings without structures. GraphEC has a higher TM-score compared to
CLEAN in over 82% of the proteins found by Foldseek.BThe alignment of ESMFold-
predicted structures with low sequence similarity, where Q6GIA3 represents the

enzyme in the training set, and P96284 represents the protein from Swiss-Prot with
less than 25% identity to the training set. Despite low sequence similarity, GraphEC
has the ability to learn the functional information from enzymes with high struc-
tural similarity. C Despite a low TM-score, the enzyme pocket around the enzyme
active sites can still be aligned (the highlighted area represents the enzymepocket),
demonstrating that GraphEC is able to learn functional information from structures
even with low structural similarity. Q9GZX3 and O29655 represent the proteins in
the training set and Swiss-Prot, respectively. Source data are provided as a Source
Data file.
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158, 136, 128, and 128% at thresholds of 0.5, 0.7, 0.8, and 0.9, respec-
tively. Source data are provided as a Source Data file. Compared to
CLEAN, the newly discovered enzyme functions identified by GraphEC
with maximum TM-scores surpassing 0.8 are listed in Supplementary
Dataset 1 partially. Despite low sequence similarity, GraphEC can learn
functional information from enzymes with high structural similarity
(Fig. 5B). Even when the TM-score is low, the enzyme pocket (details
shown in “Methods”) around the enzyme active sites can still be
aligned (Fig. 5C), demonstrating the capacity of GraphEC to learn cri-
tical functional information from enzyme structures. In addition, an
example (Q9NWA0) with disorder regions was found to be aligned to
the enzyme pocket of Q980B8 in the training set (Supplementary
Fig. S13F), which indicates the potential of our method for identifying
disordered protein functions. More cases are available for reference in
Supplementary Fig. S13. Source data are provided as a Source Data file.

Discussion
GraphEC is a geometric graph learning-based EC number predictor
based on the enzyme active sites and predicted structures. The
predicted active sites can guide the learning because of their
crucial role in enzyme function. Based on the ESMFold-predicted
structures, geometric graph learning can efficiently extract structural
information, which is especially necessary when lacking homology
information. In addition, a label diffusion algorithm and ProtTrans
embeddings are able to improve the model performance. For an
enzyme, the EC number, active sites, and optimum pH can be ana-
lyzed comprehensively.

Despite the essential role of EC numbers, current EC number
prediction technologies have not fully recognized the importance of
enzyme active sites and structural characteristics. The enzyme active
sites represent the chemical reaction regions, which we first predict
and use to guide subsequent learning. Due to the limitations of native
structures, current methods for EC number prediction don’t fully
exploit the information from protein structures. Benefiting from the
rapid and precise structure prediction of ESMFold, GraphEC utilizes
geometric graph learning to extract important structural information
and surpass state-of-the-art methods. Experiments demonstrate the
efficacy of our model in predicting active sites, EC numbers, and
optimum pH. Furthermore, GraphEC is proven to be able to extract
functional information from enzyme structures even in the absence of
homology information, emphasizing the effectiveness of geometric
graph learning.

Although GraphEC has shown great performance, there is still
room for improvement in several aspects. Considering the impact of
predicted structure quality, we can explore enhancing the stability
of the model by either improving the structural quality or incorpor-
ating additional sequence features. In addition, as large language
models continue to advance, we can utilize them to extract essential
information from textual descriptions and enhance our model’s
predictions.

In summary, we have developed an accurate and fast EC number
predictor, GraphEC. Researchers can use it to accurately predict
enzyme function solely from the enzyme sequences. For specific
enzymes, we can further analyze their functional regions (active sites)
and determine their reaction conditions (pH), which will be helpful for
experimental investigations.

Methods
Dataset construction
To predict the enzyme active sites, we collected eight enzymedatasets
and constructed new training and test sets from them. The eight
datasets, namely NN57, PC58, HA superfamily47, EF family59, EF super-
family, EF fold, T-37, and T-12446, collectively contain a total of 987
proteins. T-124, containing 124 proteins, was used as the test set
(TS124), while the remaining 863 proteins were utilized as a training

set. For excluding the sequences with high identity, the chains in the
training set that share > 25% identity with TS124 were removed using
MMseqs260, resulting in 588 sequences in the training set (Train588).
For EC number prediction, referring to CLEAN11, more than 220, 000
enzyme sequences were extracted fromUniProt61, and a training set of
size 74, 487 for enzyme EC number identification was constructed
through 70% clustering. Two independent test sets were used to
evaluate themodel performance. The first is NEW-392, which collected
data from Swiss-Prot released after April 2022. In NEW-392, 392
enzyme sequences were included, encompassing a total of 177 EC
numbers. The second is Price-149, an experimental dataset of 149
enzyme sequences described by Price et al.50. For predicting the
enzyme optimum pH, 11383 enzymes were collected from BRENDA
(released in January 2023)54, which provides the experimental opti-
mum pH for enzyme-catalyzed reactions. After removing the similar
sequences with > 25% identity, 4110 enzymes remained and were
ranked by the released time. The latest 813 sequences (about 20%)
were utilized as the test set (Brenda-test), while the remaining were
used as the training set (Brenda-train).

The architecture of the model
As shown in Fig. 1, protein structures are predicted using ESMFold to
construct the protein graph, and sequence embeddings are extracted
via ProtTrans, which are then fed into a featurizer layer to obtain node
and edge features. These features are employed to obtain geometric
embeddings through geometric graph learning. Based on the
embeddings, enzyme active sites are predicted, and a weighted score
is assigned to every residue. Using these weight scores, enzyme EC
numbers are identified with an attention layer and label diffusion. In
addition, for better determining the reaction conditions, the model is
subsequently expanded to optimum pH prediction by incorporating
attention pooling.

Featurizer layer
A protein is represented as a radius graph constructed by the cα atoms
of residues, where the radius defaults to 10 Å. The protein graph
comprises the adjacency matrix, as well as node and edge features,
which are derived from a local coordinate system. The Cα,C, and N
atoms of residue i are employed to build the coordinate system
Qi = ½bi,ni,bi ×ni�. Formally, we define:

ui =Cαi
� Ni, vi =Ci � Cαi

,bi =
ui � vi

k ui � vi k
,ni =

ui × vi
k ui × vi k

ð1Þ

Based on the local coordinate system, the node and edge features
are defined as follows:

(i) Node features. Given two atoms A 2 fCi,Cαi
,Ni,Oi,Rig and

B 2 fCi,Cαi
,Ni,Oi,Rig, whereCi, Cαi

,Ni, andOi represent four atomsof
residue i and Ri denotes the centroid of sidechain atoms. By analyzing
the characteristics between A and B, the distance, direction, and angle
features are computed for each residue. The distance features are
RBFðk A� B kÞ, where A≠B and RBF is a radial basis function. The
direction features are regulated as QT

i
A�Cαi

kA�Cαi
k, indicating the direction

of other atoms relative to Cαi
. For adequately reflecting the geome-

trical information of the backbone, the torsion angles (ϕi,ψi,ωi) and
bond angles (αi,βi,γi) have been exploited and their sine and cosine
values are applied as angle features.

To enhance the node features, a pre-trained language model
(ProtTrans) was utilized to extract informative protein embeddings
from sequences. ProtTrans is a transformer-based pre-trained lan-
guage model with 3B parameters, trained on BFD and fine-tuned on
UniRef50 using the BERT’s denoising objective. Besides the sequence,
we also attempted to extract more information from structures. DSSP
was used to compute valuable structural properties, including one-hot
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secondary structure profile and relative solvent accessibility, which
were used to further enhance the node features.

(ii) Edge features. For atom pairs A 2 fCi,Cαi
,Ni,Oi,Rig and D 2

fCj ,Cαj
,Nj,Oj ,Rjg representing residues i and j respectively, the edge

features are defined similarly, including distance, direction, and
orientation features. The distance features between residues i and j
are RBFðk A� D kÞ, indicating the distance characteristics of given
residue pairs. The direction features are defined as QT

i
D�Cαi

kD�Cαi
k,

denoting the direction of atoms in residue j to Cαi
. To represent the

relative rotation between the local coordinate systems, qðQT
i QjÞ is

computed as orientation features, where q represents a quaternion
encoding function62.

Geometric graph learning
The node and edge features obtained from featurizer layer were fed
into several GNN layers for geometric graph learning. To learn the
multi-scale residue interactions, node update, edge update, and global
context attention modules were employed at node, edge, and global
context levels, respectively.

(i) Nodeupdate. Due to the transformer’s reputation as a powerful
model for both sequence and graph data63,64, we employed its multi-
head attention mechanism for efficient message passing. The feature
vectors of node i and edge j ! i in layer l were represented as hl

i and
elji, whichwere transformed into ad-dimensional spacebefore theGNN
operation. To update node i in layer l, we execute themessage passing
in the following manner:

ĥ
l + 1

i =hl
i +

X
j2NBi ∪ i

αl
ji W l

Vh
l
j +W

l
Ee

l
ji

� �
ð2Þ

the attention weight αl
ji is computed as follows:

wl
ji =

Wl
Qh

l
i

� �T
Wl

Kh
l
j +W

l
Ee

l
ji

� �
ffiffiffi
d

p

αl
ji =

e
wl
jiP

k2NBi ∪ i
e
wl
ki

8>>>><
>>>>:

ð3Þ

Where the Wl
Q, W

l
K , and Wl

V are three weight matrices utilized to
convert the node vectors to query, key, and value representations,
respectively. The key and value representations are further supple-
mented by edge vectors using weight matricesWl

E . NBi represents the
neighbors of the node i. The queries, keys, and values are translated
multiple times, with parallel attention functions being performed
before concatenating them together.

(ii) Edge update. The edge features are updated through the
neighbor nodes to enhance the model performance.

el + 1ji = elji + EdgeMLP ĥ
l + 1

j k elji k ĥ
l + 1

i

� �
ð4Þ

where EdgeMLP denotes the MLP operation for edge updates and k
represents the concatenation operation.

(iii) Global context attention. Although local interactions are
crucial for learning residue representations, global information has
also been shown to be beneficial in enhancing method performance.
However, the increased computational overhead in calculating global
attention poses a major challenge. To reduce the complexity, an
alternative is proposed to calculate a global context vector before
employing it for node representations with gate attention36.

cl =
Pn�1

k =0
ĥ
l + 1
k

n

hl + 1
i = ĥ

l + 1

i �σ GateMLP cl
� �� �

8><
>: ð5Þ

where n represents the quantity of residues in a protein, σ is the sig-
moid function,� is the element-wise product operation and GateMLP
denotes the MLP for gated attention.

Enzyme active site prediction (GraphEC-AS)
Due to the important role of enzyme active sites in enzyme function,
we first predict the active sites before identifying the EC numbers.
The geometric embeddings obtained from the geometric graph
learning were fed into an MLP layer to assign a score to each residue,
indicating its likelihood of belonging to an active site. Using these
scores, each residue was assigned a weight to represent its level of
importance.

The identification of EC numbers (GraphEC)
Under the guidance of weight scores generated by GraphEC-AS, an EC
number predictor was proposed. The previously generated geometric
embeddings were further input to an attention layer, where the
attention functions were performed in parallel with the multi-head
attention mechanism. By integrating the multi-head attention and
weight scores, the residue-level information was aggregated to the
protein level through a pooling layer. After pooling, the initial pre-
diction was obtained, and a label diffusion algorithmwas employed to
enhance the prediction using DIAMOND. The label diffusion algorithm
was used to extract homologous information, as referenced by S2F44.
Following the label diffusion, the final pred was generated to identify
the EC numbers as a multilabel classification task.

Enzyme optimum pH prediction (GraphEC-pH)
Since enzymes require certain environmental conditions to exert their
catalytic activity, we further predicted the optimal pH of the enzyme.
The pH values were categorized into three groups: acidic (less than 5),
neutral (between 5 and 9), and alkaline (greater than 9). To get the
characterization for predicting the enzyme's optimum pH, multi-head
attention was utilized to process the geometric embeddings derived
from the geometric graph learning. Then an MLP layer was used to
predict the optimum pH. By combining the previous identification of
enzyme function with the current prediction of pH, a more effective
method can be provided to guide actual experiments.

Hierarchy of catalytic functions
The Enzyme Commission (EC) number is a numerical system used to
classify enzymes according to the reactions they catalyze. Each
EC number comprises four digits, which hierarchically categorize
enzymes based on their catalytic reaction types and specific
substrates65 (e.g., EC: 1.3.1.32 represents the maleylacetate reductase).
In this study, we collected 5106 EC numbers from the training set and
defined a label of length 5106, where each position corresponds to a
specific EC number.

The protein language model (ProtTrans)
The informative sequence embeddings were generated through a pre-
trained language model ProtT5-XL-U50 (ProtTrans39). ProtTrans is a
transformer-based autoencoder known as T566, which has been pre-
trained on UniRef5067 to facilitate the prediction of masked amino
acids. The features derived from the final layer of the ProtTrans
encoder were employed to enhance the node representations.

Protein structure prediction using a language model (ESMFold)
ESMFold30 is a large language model with up to 15B parameters,
developed on the premise that language models can capture evolu-
tionary patterns across millions of sequences. Achieving accurate and
fast structure prediction, ESMFold reduces inference time by as much
as 60 times compared to the state-of-the-art method. Benefiting from
its high efficiency, the first evolutionary scale structural characteriza-
tion of a metagenomic resource has been presented. In this study, we

Article https://doi.org/10.1038/s41467-024-52533-w

Nature Communications |         (2024) 15:8180 8

www.nature.com/naturecommunications


employed ESMFold to predict the protein structures, which were then
applied in subsequent geometric graph learning.

Label diffusion algorithm
To enhance the initial predictions of EC numbers, a label diffusion
algorithm44,68 was applied during the testing phase. First, the sequen-
ces in the training set similar to the test sequences were found using
DIAMOND15. Second, based on the sequence identity of protein pairs, a
homology network M 2 RT ×T was constructed (T represents the sum
of the number of proteins in the test set and the number of hits in the
training set). Then, to measure the degree to which a pair of proteins
belongs to the same community within the homology network, a Jac-
card similarity matrix was defined as follows:

Jij =

P
zMizMjzP

z Miz +
P

z Mjz �
P

zMizMjz
ð6Þ

For a target EC number x, the xth column of the final annotation
matrix S (Sx) was learned by minimizing the cost function PðSxÞ:

P Sx
� �

=
XT
i= 1

Six � Y ix

� �2 + ε
2

XT
i = 1

1
di

XT
j = 1

JijMij Six � Sjx
� �2

ð7Þ

Where ε represents the regularization parameter. The first term serves
to preserve the initial labels (Y ix), and the consistency of the labels of
adjacent nodes is accounted for through the second term. And 1

di
is

defined as:

1
di

=
1P

j JijMij
ð8Þ

Furthermore, we define M1 as:

M1
ij =

1
2

1
di

+
1
dj

 !
JijMij ð9Þ

its Laplacian matrix L is:

L=DM �M1 ð10Þ

where DM is the diagonal degree matrix of M1. The closed-form
solution that minimizes PðSxÞ can be converted to:

S= I + εLð Þ�1Y ð11Þ

where S is the updated annotation matrix, I 2 RT ×T indicates an
identity matrix, and Y represents the combination of the training set
labels along with the initial predictions for the test set.

Constructing the enzyme pocket from predicted enzyme
active sites
The construction of the enzyme pocket involved two steps. First, the
predicted enzyme active sites were clustered (k-means), with k set to 2
empirically. To eliminate false positives, we removed the isolated
points that were classified separately. Second, using the cα coordi-
nates, the enzyme pocket is defined as the area within 10 Å of the
cluster center.

Implementation and evaluation
Five-fold cross-validation was performed on training data, where
each time, the model was trained on four folds and validated on the
remaining one-fold data. This operationwas repeated five times, with
the best model saved at each iteration. After training, several inde-
pendent tests were used to test the model performance on different
tasks. In enzyme active prediction, TS124 was employed to compare

the GraphEC-AS to other methods. The performance of GraphEC in
predicting the EC numbers was evaluated on NEW-392 and Price-149.
In order to test the accuracy of GraphEC-pH in predicting the enzyme
optimumpH, a new independent test (Brenda-test) was built and two
of the latest methods were evaluated on it. During testing, the aver-
age predictions of the five models from the cross-validation were
utilized as the final predictions. Specifically, Pytorch 1.13.1 was used
to construct the geometric graph network, which consists of a 3-layer
GNNwith 256 hidden units. The attention layer of GraphEC employed
multi-head attention with 8 attention heads. Based on the
binary cross-entropy loss, the Adam optimizer was employed to
optimize the model. The training process was limited to a maximum
of 35 epochs, and an early stopping with the patience of 4 was
implemented, along with a dropout value of 0.1 to prevent over-
fitting. To comprehensively evaluate model performance, AUC,
AUPR, recall, precision, F1-score (F1), and Matthews correlation
coefficient (MCC)were utilized, as defined in detail in Supplementary
Evaluation metrics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The enzyme function data is obtained from a previous study (CLEAN),
which is available on GitHub (https://github.com/tttianhao/CLEAN/
tree/main/app/data). The data about enzyme active sites is derived
from a preceding work (CRpred), which is available at http://biomine.
cs.vcu.edu/datasets/CRpred/CRpred.html. The data on enzyme opti-
mal pH is curated newly from the Brenda database (https://www.
brenda-enzymes.org/), which is available at https://github.com/
biomed-AI/GraphEC/tree/main/Optimum_pH/data/datasets. A fig-
share version is also available at https://doi.org/10.6084/m9.figshare.
25714305. Source data are provided with this paper.

Code availability
The source code of GraphEC is available at https://github.com/
biomed-AI/GraphEC. A Zenodo version is also available at https://doi.
org/10.5281/zenodo.1337527569.
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