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Abstract 
The annotation of enzyme function is a fundamental challenge in industrial biotechnology and pathologies. Numerous computational 
methods have been proposed to predict enzyme function by annotating enzyme labels with Enzyme Commission number. However, 
the existing methods face difficulties in modelling the hierarchical structure of enzyme label in a global view. Moreover, they haven’t 
gone entirely to leverage the mutual interactions between different levels of enzyme label. In this paper, we formulate the hierarchy 
of enzyme label as a directed enzyme graph and propose a hierarchy-GCN (Graph Convolutional Network) encoder to globally model 
enzyme label dependency on the enzyme graph. Based on the enzyme hierarchy encoder, we develop an end-to-end hierarchical-aware 
global model named GloEC to predict enzyme function. GloEC learns hierarchical-aware enzyme label embeddings via the hierarchy-
GCN encoder and conducts deductive fusion of label-aware enzyme features to predict enzyme labels. Meanwhile, our hierarchy-GCN 
encoder is designed to bidirectionally compute to investigate the enzyme label correlation information in both bottom-up and top-
down manners, which has not been explored in enzyme function prediction. Comparative experiments on three benchmark datasets 
show that GloEC achieves better predictive performance as compared to the existing methods. The case studies also demonstrate that 
GloEC is capable of effectively predicting the function of isoenzyme. GloEC is available at: https://github.com/hyr0771/GloEC. 
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Introduction 
Enzyme is one of the important proteins in living organisms 
and plays a catalytic role in various processes of life activities, 
including metabolism, nutrition, and energy conversion [1, 2]. It 
is thus of great significance to identify the function of protein 
enzymes expressed by genes [3–5]. According to the Swiss-Prot 
database [6] (as of June 2023), 274,340 out of 570 420 manually 
annotated proteins are enzymes. Such numerous enzymes are 
commonly classified by the Enzyme Commission (EC) system 
[7]. The EC system annotates the function of an enzyme with 
a four-digit EC number. Some machine learning methods have 
been proposed to classify the function of enzymes through pre-
cisely predicting the EC numbers [8]. For example, Tao et al [9] 
used artificial neural networks to capture protein sequences and 
biological prior features to classify proteins into seven distinct 
enzyme major classes. Concu et al. [10] proposed a quantitative 
structure–activity relationship method QSAR to divide proteins 
into seven enzymes and subclasses. Based on the contrast learn-
ing architecture, CLEAN [11] takes protein sequence as input and 
produces a list of EC numbers scored by comparing Euclidean 
distances between sequences. 

Recently, people seek to apply deep learning predictor to encode 
protein [12] and identify enzyme EC numbers. Based on the ratio-
nal, the deep learning methods for predicting enzyme function 

could be categorized into two groups: local approaches and global 
approaches. 

The local approaches adopt level-by-level strategy to build 
hierarchy classification model to predict each EC level label for 
enzyme. DEEPre [13] constructs a convolutional neural network 
(CNN) model to identify the protein sequence as enzyme or non-
enzyme, a model to classify the first EC level of enzyme and 
six models to classify the second EC level of enzyme. Similar to 
DEEPre, DeepEC [14] implements three CNN models to identify 
the enzyme EC numbers. The first CNN of DeepEC classifies 
whether the protein sequence is an enzyme or not. The sec-
ond and third CNN determine the third and fourth EC levels of 
enzyme respectively. HECNet [15] employs Siamese and Triplet 
Networks [16, 17] to perform enzyme classification, in which 5 
models are trained for determining the first EC level of enzyme 
and 13 models are trained for determining the second to fourth 
level of enzyme. Although constructing hierarchy classification 
model level-by-level can precisely capture level-specific features 
for classifying enzymes, they fail to model the enzyme label space 
in a global view. 

To alleviate the abovementioned limitation, the global 
approaches treat the enzyme function prediction as a flat multi-
label classification task and globally utilize one single classifier 
for all enzyme classes at the target level. COFACTOR [18] aligns  
the target protein structure with the template library and assigns
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Table 1. A synopsis on the prediction methods for enzyme EC number. 

Name Description Reference 

CLEAN The protein sequences are used as input to generate a list of EC numbers with scores by comparing the 
Euclidean distances between sequences. 

[11] 

DEEPre A hierarchical strategy is adopted to construct a hierarchical classification CNN model to predict EC level 
label of enzyme. 

[13] 

DeepEC Three CNN models are utilized for the recognition of enzyme EC numbers. [14] 
HECNet Siamese and Triplet Networks are employed to train multiple models for predicting enzymes of various EC 

levels. 
[15–17] 

COFACTOR A single classifier is used to match the target protein structure with template enzyme and assign the target 
protein with the EC number of the most similar template enzyme. 

[18] 

ProteInfer A deep dilated convolutional architecture is designed for enzyme function prediction, allowing the top 
residual layers of the network to build up a representation of high-order protein features. 

[19] 

UDSMProt Self-supervised learning is used to pre-train the unlabeled protein sequences for predicting enzyme EC 
number. 

[20] 

DAttProt Transformer encoders are used to pre-train protein sequences, and multi-scale convolutions are employed to 
extract global features to predict enzyme functions. 

[21] 

ECRECer An extreme multi-label classifier is used for EC number prediction, and a greedy strategy is adopted to 
ensemble and fine-tune the final model. 

[22] 

PredictEFC Random forests are chosen as the base classification algorithm and the classifier is constructed using 
random k-label sets for classifying enzyme functions. 

[23, 24] 

the EC number of the most similar template enzyme to the 
target protein. ProteInfer [ 19] implements a deep extended 
convolutional architecture for predicting enzyme function, in 
which enzyme sequence is gradually expanded through a series 
of convolution within the residual block and continuous filters. 
Strodthoff et al. [20] proposed a self-supervised learning model 
UDSMProt that is pre-trained with the unlabeled protein sequence 
of Swiss-Prot database [6] to globally implement enzyme 
class prediction. Similarly, DAttProt [21] pre-trains transformer 
encoders to find and represent the correlations of protein 
sequences from the Swiss-Prot database, and employs multi-
scale convolutions to extract the global features of the encoded 
protein sequences for predicting enzyme class. A synopsis on 
the prediction methods for enzyme EC number is listed in 
Table 1. 

It’s worth noting that the prediction of higher enzyme EC 
level relies on the identification of the lower enzyme EC level. 
The label-related information between different enzyme EC levels 
thus could enable us to accurately identify enzyme EC numbers. 
Although both local and global approaches have achieved success 
in capturing structure information of enzyme label for enzyme 
function prediction, the holistic label-correlation hierarchy infor-
mation of different enzyme EC levels has not yet been fully 
investigated in enzyme function predictions. 

In order to tackle this problem, we construct a hierarchy-aware 
global model called GloEC for predicting enzyme function using 
Graph Convolutional Network (GCN). It comprises a sequence 
encoder for extracting enzyme sequence features and a hierar-
chy encoder for modeling hierarchical enzyme label correlations. 
GloEC offers the following advantages over its counterparts: 

(1) GloEC globally formulates the taxonomic hierarchy of 
enzyme as a directed enzyme graph and combines the 
enzyme graph to develop a hierarchy-GCN encoder to 
model the hierarchical dependency of enzyme labels, 
thus extracting fine-grained label-correlation hierarchy 
information of enzymes. 

(2) The hierarchy-GCN encoder is bidirectionally computed. 
This can enable us to capture the label correlation infor-
mation of enzymes in both bottom-up and top-down 

manners, which has not been explored for enzyme function 
classification. 

To evaluate the robustness and accuracy of GloEC, we con-
duct comparative experiments on three benchmark datasets. The 
results on the benchmark datasets show that GloEC achieves 
better prediction performance than the state-of-the-art methods. 
Furthermore, study cases also confirm that GloEC is capable of 
accurately predicting isoenzyme functions. These results demon-
strate that GloEC is a feasible and effective model for identifying 
enzyme functions. 

Materials and methods 
Dataset 
In this work, we collated three benchmark datasets for study. First, 
we collected all the enzymes from the Swiss-Prot database [6], 
obtaining a total of 274 340 enzymes (the highest level up to level 
4) as of June 2023. To obtain a high-quality dataset, the enzyme 
data are cleaned by using the following steps: 

(1) To ensure that the data is non-redundant, the CD-HIT [25] 
tool is used to eliminate the enzyme sequences with a 
similarity threshold of 50%. When the similarity between 
sequences exceeds 50%, it is generally considered that 
they have similar functionalities and structures [26, 27]. 
Removing such redundant data can help to reduce bias 
in model development and ensure complete sequence 
coverage. 

(2) To ensure uniqueness and correctness, the enzyme sequences 
associated with multiple EC numbers were removed. 
Enzyme EC numbers provide crucial information regarding 
their functionalities and catalytic activities. Enzymes with 
multiple EC numbers indicate their involvement in various 
functions; however, they are beyond the scope of discussion 
in this work. 

(3) To ensure complete annotations for model training, the 
enzyme sequences with fewer than three EC number levels 
were removed. Higher-level EC numbers provide more 
specific functional descriptions. Enzyme sequences with 
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lower-level EC numbers tend to contain more noise or 
redundant information, thus interfering with the model’s 
learning process. 

(4) Following [15], in order to include as much samples as possi-
ble in each enzyme class for training, the enzyme sequences 
within the enzyme class containing less than 10 enzymes 
were removed. 

After the above three steps, 36 854 enzyme sequences were 
retained, including 1635 EC numbers. Then we screened the 
enzymes included in the database from May 2022 to June 2023 as 
the test dataset. Since this test dataset contains 144 EC numbers 
and has 432 enzyme sequence samples, we call it New-432 
dataset. The remaining data, including 36,422 enzyme sequences 
and 1635 EC numbers, were used as a basic training dataset. 

Besides the benchmark dataset New-432, we also used the 
COFACTOR dataset retrieved from [28] for cross-dataset valida-
tion. The COFACTOR dataset satisfies that the pair-wise sequence 
similarity is less than 30% and no self-BLAST hit exists. This 
ensures no homologous enzymes in the dataset [13]. To avoid 
overlaps, we removed the same samples of the COFACTOR dataset 
and the basic training set, and reduced the number of the enzyme 
sequence samples from 318 to 237. This updated COFACTOR 
dataset is hereinafter referred to as the COFACTOR-237 dataset. 

In addition to the baseline datasets New-432 dataset and 
COFACTOR-237, we also collected all isoenzymes from Swiss-
port (as of June 2023) to test the ability of the proposed model to 
predict the function of enzyme subtypes. First, the enzyme entries 
that are more than 50% similar to the basic training dataset were 
removed in this dataset. Moreover, the enzyme sequences with 
multiple EC numbers and the enzymes whose EC numbers are not 
included in the basic training dataset were also removed. Finally, 
we obtained a dataset containing 237 enzyme EC numbers and 
564 enzyme sequences, which is called Isoenzyme dataset. 

The carbohydrate esterase family is built upon sequence 
homology, which exhibit multiple functions due to minor 
differences in sequences [29]. In order to learn the classification 
performance of the proposed model on enzymes from the same 
family, we also collected the carbohydrate esterase family from 
the TrEMBL database [5], which is called the Carbohydrate 
esterase dataset. This enzyme family contain 354 enzyme 
samples and these samples are classified into seven distinct EC 
numbers, with the allocation being determined by their specific 
catalyzed reaction types and substrate specificity. 

Model 
Problem description 
In the enzyme function prediction problem, a predefined tax-
onomic hierarchy is used to organize the enzyme label space. 
The taxonomic hierarchy mainly includes the directed acyclic 
graph (DAG) structure and the tree-like structure [30]. The DAG 
structure can be transformed into tree-like structure through 
distinguishing the label node to a single-path node. Hence the 
taxonomic hierarchy of enzyme label space can be reducible to 
a tree-like structure [30]. 

As shown in Fig. 1, we use a directed enzyme graph G = 
(V,

−→
E ,

←−
E ) to formulate the taxonomic hierarchy of enzyme label 

space. In G = (V,
−→
E ,

←−
E ), V =  {v1, v2, . . .  vi, . . .  , vC} refers to the 

node set of enzyme labels in G and C denotes the number of 
enzyme label nodes.

−→
E = {(

vi, vj
) ∣∣vi ∈ V, vj ∈ child (vi)

}
is the top-

down hierarchy path in G and child(vi) denotes the set of children 
for the enzyme label vi. 

←−
E = {(

vj, vi
) ∣∣vi ∈ V, vj ∈ child (vi)

}
is the 

bottom-up hierarchy path. We call this tree-like directed graph 
G = (V,

−→
E ,

←−
E ) as enzyme taxonomic hierarchy graph. 

Given an enzyme sequence x and an enzyme taxonomic hier-
archy graph G = (V,

−→
E ,

←−
E ), the goal of enzyme level classification 

is to classify x to an enzyme label vi ∈ V in G. 
In order to solve this problem, as can be seen in Fig. 2, our  

model GloEC consists of a sequence encoder and a hierarchy 
encoder. The sequence encoder extracts the features of the 
given enzyme sequence. The hierarchy encoder utilizes GCN 
to encode the extracted sequence features with the known 
enzyme taxonomic hierarchy graph to predict enzyme label for 
the given sequence. The following section will discuss our model 
in detail. 

Sequence encoder 
The first step of our model is to extract the features of the given 
protein sequence using sequence encoder. ESM-1b [31] is a protein 
language model, which is capable of encoding protein embeddings 
with semantically rich information. In our sequence encoder, 
we first use ESM-1b to encode the given enzyme sequence x 
into the protein embedding E ∈ R1280. Then a layer normaliza-
tion module [32] is adopted to normalize the feature vector of 
the protein embedding E to reduce the dependence of neural 
network on batch size. Finally, self-attention mechanism [33] 
is utilized to extract the entire enzyme sequence information 
in the normalized feature vector from different representation 
subspaces. 

Specifically, for the protein embedding E, we subtract the mean 
vector of E from E to produce the vector U. We then divide U by 
the standard deviation vector of E to obtain the normalized vector 
X̂ ∈ Rdn , dn is the output dimension of the layer normalization 
module. 

Then self-attention mechanism takes the normalized vector X̂ 
as input to capture the enzyme sequence features. Given h groups 
of trainable matrices WQ 

j ∈ Rdn×dk , WK 
j ∈ Rdn×dk , WV 

j ∈ Rdn×dk , j ∈ h, 
we use formula (1) to calculate the Qj ∈ R

dk (Query), Kj ∈ Rdk (Key) 
and Vj ∈ Rdk (Value) matrices of X̂ for the attention module in 
self-attention mechanism. dk is the output dimension of the self-
attention module. 

Based on the  matrices  Qj, Kj and Vj, we first use formula (2) 
to calculate the attention vector headj ∈ Rdk for the jth head of 
the attention module and then concatenate all attention vectors 
together to produce an enzyme sequence feature matrix S ∈ Rdk×h 

for the hierarchy encoder: 

Qj, Kj, Vj ← X̂WQ 
j , X̂WK 

j , X̂WV 
j (1) 

headj = softmax

(
Qj • (

Kj
)T√

dk

)
• Vj (2) 

Hierarchy encoder 
The second component of our model is the hierarchy encoder, 
which acts as an aggregation of information for the enzyme label 
space. The graph convolutional neural network GCN [34] has  
been widely utilized as structure encoder for aggregating node 
information. We combine the enzyme taxonomic hierarchy graph 
G = (V,

−→
E ,

←−
E ) to design a three-layer hierarchy-GCN encoder to 

obtain fine-grained enzyme label hierarchy information. 
We first use deductive method to align the enzyme sequence 

features of S with the label features of G to produce the node
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Figure 1. An example of enzyme taxonomic hierarchy graph. There are four enzyme label levels in the graph and each node is an enzyme EC label. The 
dependencies of each label are represented by arrows. 

Figure 2. The overall structure of our global classification model GloEC. GloEC consists of two components: the sequence encoder and the hierarchy 
encoder. The sequence encoder extracts the enzyme features from the input enzyme sequence x by self-attention mechanism. The hierarchy encoder 
builds a hierarchy-GCN encoder with three-layer GCN network to aggregate the taxonomic hierarchy of the extracted enzyme features with the known 
enzyme taxonomic hierarchy graph G, and produce the prediction probability of the enzyme label nodes of G for the input enzyme sequence x. 

inputs T of GCN [ 30].  The feature matrix  S is reshaped into T by 
the linear transformation: 

T = MlSMc (3) 

where Ml ∈ RC×dk and Mc ∈ Rh×dt are trainable weight matrices, 
and dt is the dimension for each label node of G. 

In G, each directed edge represents a pair-wise label correlation 
feature. To formulate enzyme label correlations, given an enzyme 
label node vk in G, we describe the label hierarchy direction of vk 

with the following adjacent matrices: 

∼ 
A 

↑ 

k = I + A−→
E k 

(4) 

∼ 
A 

↓ 

k = I + A←−
E k 

(5) 
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where A = {
a0,0, a0,1, . . . , aC−1,C−1

}
is the adjacent matrix of 

G, I ∈ R
C×C is identity matrix and C is  the enzyme label  

number of G.
−→
E k = {(

vk, vj
) ∣∣vk ∈ V, vj ∈ child (vk)

}
and 

←−
E k ={(

vj, vk
) ∣∣vk ∈ V, vj ∈ child (vk)

}
are the top-down and bottom-up 

hierarchy paths of vk in G. In  A, we can employ ak,j = 1 to obtain 
A−→

E k 
and employ aj,k = 1to obtain A←−

E k 
. 

Then we utilize each layer of our hierarchy-GCN encoder to 
aggregate the dataflows of the enzyme label structure within the 
top-down and bottom-up edges connecting vk in G. Formally, for  
the node inputs T, the first layer of GCN encodes the hidden state 
gk of the enzyme label node vk as follows: 

e↑ 
k = D̂− 1 

2 
∼ 
A 

↑ 

k D̂
− 1 

2 TW↑ (6) 

e↓ 
k = D̂− 1 

2 
∼ 
A 

↓ 

k D̂
− 1 

2 TW↓ (7) 

ebi 
k = Relu

(
e↑ 

k ⊕ e↓ 
k

)
(8) 

gk = T + ebi 
k (9) 

Here D̂ ∈ RC×C represents the normalized node degree matrix 
of G, W↑, W↓ ∈ Rdt×dg are trainable weight matrices, ⊕ indicates 
the concatenation of matrices and dg is the output dimension of 
GCN layer. First, in order to model the enzyme label correlations 
of vk, we can separately use equations (6) and  (7) to bidirectionally 
calculate the edge-wise transformation matrices e↑ 

k ∈ Rdt×dg and 
e↓ 

k ∈ Rdt×dg for the edges connecting vk in bottom-up and top-down 
manners. 

We next can use formula (8) to fuse  e↑ 
k with e↓ 

k to obtain the 
bidirectional enzyme label correlation matrix ebi 

k ∈ Rdt×dg of vk. 
Then we employ formula (9) to fuse the node inputs T with ebi 

k to 
produce the final hidden state gk of vk. 

Finally, the hidden state gk is fed into the next layer of GCN 
as the enzyme sequence feature vector. A similar process will 
be iteratively repeated until three layers of GCN have been com-
puted. Once this repetition is completed, the output value of gk 

is mapped to the final prediction probability of vk for the given 
enzyme sequence x through a fully connected layer. 

Loss function 
Loss function is usually adopted to measure the difference 
between the real value and the predicted value. Cross-entropy loss 
function [35] is commonly used in multi-classification problems. 
Given a predicted enzyme label Y and its corresponding true label 
Y, we use the following cross-entropy loss function to optimize 
the distribution between real labels and the predicted labels: 

F = −
[
YlogY + (1 − Y) log

(
1 − Y

)]
(10) 

Considering that the weight parameters of the fully connected 
layer are susceptible to the data imbalance of the enzyme hier-
archy classes in GCN, we utilize the following recursive regular-
ization term [36] to regularize the parameters of the final fully 
connected layer: 

λ (ω) =
∑

vi∈V

∑ 1 
2

∥∥wi − wj

∥∥2 (11) 

where the parameter set ω for the enzyme label node vi 

and its associated child node vj can be denoted as ω ={(
wi : wj ∈ L

) ∣∣vi ∈ V, vj ∈ child (vi)
}
, wi, and wj are the parameters 

Figure 3. The training curves of GloEC model on the basic training dataset. 

of the final fully connected layer L for vi and vj in G. Finally, we 
add the recursive regularization term formula (10) to the cross-
entropy loss as the final loss function to optimize the model: 

J = F + Hλ (ω) (12) 

where H is the penalty parameter. 

Model training 
The complexity of model introduces a heightened risk of over-
fitting. We employ three methods to avoid overfitting in the 
predictions. The first approach is dropout [37]. The key of this 
technique lies in randomly dropping out a portion of neurons 
during training to prevent the network from relying on spe-
cific details, thereby reducing the risk of overfitting. The second 
approach involves dynamic adjustment of learning rates and 
early stopping for training. Specifically, during model training, 
we monitor the model’s performance on a validation set under a 
dynamic learning rate with fixed decay strategy. Training is halted 
when the performance no longer improves, thereby preventing 
overfitting. The third approach is to allocate different weights to 
different enzyme classes. By this way, we can ensure that the 
model performs well across different enzyme classes, avoiding 
overfitting in the predictions and mitigating the impact of data 
imbalance issue. 

To develop our model, we train GloEC on the basic training 
dataset for 216 epochs using a Tesla T4 GPU. Each epoch takes 
approximately 1 hour to execute. The Adam optimizer [38] is  
chosen, with a batch size set to 256. Figure 3 illustrates the 
training curves of GloEC. In these curves, both the training loss 
and validation loss decrease as the number of training epochs 
increases, and training concludes when the validation set loss 
stops decreasing. Overall, the model demonstrates good conver-
gence speed throughout the training process. 

Results and discussion 
Evaluation criteria 
To evaluate the effectiveness of GloEC, we compared GloEC with 
three available state-of-the-art methods ProteInfer [19], DeepEC 
[14], and CLEAN [11] on three different benchmark datasets
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Table 2. Performance comparison of GloEC, ProteInfer, DeepEC, and CLEAN on the New-432 dataset. 

Enzyme EC 
levels 

GloEC ProteInfer DeepEC CLEAN 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 92.0 92.7 91.4 71.4 69.2 75.0 68.7 65.6 75.8 87.4 87.0 88.2 
Level 2 84.3 85.6 84.1 60.2 67.7 60.4 50.4 49.5 55.8 69.3 68.8 71.9 
Level 3 78.1 81.5 77.5 44.7 48.9 43.4 39.6 42.1 43.5 63.7 66.9 64.3 
Level 4 53.7 55.9 54.1 29.2 32.3 28.6 28.7 30.8 29.1 23.9 24.7 24.4 

The best performers are highlighted in bold. 

New-432, COFACTOR-237, and Isoenzyme. It is worth noting 
that DeepEC can only divide enzymes into six categories from 
EC1 to EC6 and, therefore, it cannot predict the EC7-related 
enzymes. To make fair comparisons, we removed the EC7-related 
enzymes from these three benchmark datasets and test DeepEC 
on the adjusted benchmark datasets, and tested other competing 
methods on the complete benchmark datasets. 

The parameters of the comparative methods are the default 
values given by their articles [11, 14, 19]. To assess the competing 
methods, we use precision, recall, and macro-F1 scores, which 
are defined below in terms of false negatives (FN), false positives 
(FP), true negatives (TN), and true positives (TP), to evaluate the 
classifier’s performance: 

Precision = 
TP 

TP + FP 
(13) 

Recall = 
TP 

TP + FN 
(14) 

F1 − score = 2TP 
2TP + FP + FN 

(15) 

Macro − F1 =
∑B 

i=1 F1 − scorei 

B 
(16) 

Noted that, for each enzyme sequence dataset, Macro-F1 is 
the average of the F1-scores for each enzyme category and B 
represents the number of EC number categories for each enzyme 
EC level of the dataset [39]. 

New-432 dataset 
The New-432 dataset was not included in any model’s training, 
which ensures us to perform fair comparisons on different mod-
els. Table 2 shows the results of GloEC, ProteInfer, DeepEC, and 
CLEAN on the New-432 dataset. 

As shown in Table 2, GloEC performs better than other methods 
on almost all levels. For example, on level 4, GloEC reports a 
macro-F1 score of 53.7% while ProteInfer, DeepEC, and CLEAN 
scores 29.2, 28.7, and 23.9%, respectively. Similarly, on level 3, 
GloEC achieves a macro-F1 score of 78.1% as compared to 44.7, 
39.6, and 63.7% achieved by ProteInfer, DeepEC, and CLEAN, 
respectively. The evaluation on the New-432 dataset indicates 
that GloEC is an effective method for predicting enzyme function. 

COFACTOR-237 dataset 
In this experiment, we directly compared the performance of 
different methods in predicting the first-digit to fourth-digit 
of the enzyme using the benchmark dataset COFACTOR-237. 
COFACTOR-237 has been proved to be a tough dataset in the field 
of enzyme function prediction [28]. All samples of COFACTOR-237 
have the latest enzyme annotation in UniPort database [40] (July  

2023) and COFACTOR-237 has less than 80% sequence similarity 
to the GloEC basic training dataset. We manually input the 237 
sequences contained in COFACTOR-237 into each comparative 
model and collect their prediction results. 

As shown in Table 3, although DeepEC’s overall performance 
is superior to comparative methods for the first digit predic-
tion, GloEC achieves better performance than other methods 
for the second-digit to fourth-digit prediction. On level 2, GloEC 
gives a macro-F1 score of 87.8% as compared to 76.3, 86.9, and 
82.1% obtained by ProteInfer, DeepEC, and CLEAN, respectively. On 
level 3, GloEC reports a macro-F1 score of 80.8% as compared to 
79.6, 77.1, and 75.6% achieved by ProteInfer, DeepEC, and CLEAN, 
respectively. Similarly, on level 4, GloEC improves macro-F1 score 
by at least 7% over the other models. These results demonstrate 
that GloEC has better generalization ability for cross-dataset val-
idation, especially for deeper EC number prediction. 

Isoenzyme dataset 
Isoenzymes [41] are protein subtypes of enzymes that come from 
a single gene or family of genes and differ due to genetic differ-
ences, but these isomers usually perform the same function with 
different sequence length. It is thus a challenging task to correctly 
predict the function of isomers with different lengths. To further 
evaluate our method, we compared the performance of GloEC 
and other enzyme function prediction tools using the Isoenzyme 
dataset and the results are shown in Table 4. 

As can be seen in Table 4, GloEC outperforms other methods 
in terms of precision, recall and macro-F1 scores on almost all 
levels. Although the precision of ProteInfer is higher than other 
methods for the first level due to the data imbalance in the main 
class of the training dataset, GloEC obtains the best precision for 
the second to fourth levels and achieves the highest recall and 
macro-F1 scores for the first to fourth levels. The results of Table 4 
demonstrate that GloEC can effectively predict the function of the 
isoforms. 

Carbohydrate esterase dataset 
Below, we discuss the classification performance of GloEC on 
enzyme promiscuity. Carbohydrate-active enzymes (CAZymes) 
are a class of enzymes involved in carbohydrate metabolism in 
organisms [42]. Many CAZymes families such as the carbohydrate 
esterase family are built on sequence homology, which is expected 
to reflect similar three-dimensional structures [29]. However, 
minor differences in these sequences may lead to enzymes 
performing more than one function, albeit with less specificity. 
As of now, according to the classification in the CAZy database 
(Carbohydrate-Active enZYmes Database), carbohydrate esterase 
is divided into 20 different families (CE1–CE20) [43]. We curate 
the carbohydrate esterase family from the TrEMBL database 
[44], which included 354 enzyme samples with 7 different EC 
numbers. Then we test the performance of GloEC, ProteInfer,
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Table 3. Performance comparison of GloEC, ProteInfer, DeepEC, CLEAN, and COFACTOR on the COFACTOR-237 dataset. 

Enzyme EC 
levels 

GloEC ProteInfer DeepEC CLEAN 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 88.4 87.4 89.8 87.6 94.8 86.5 92.2 93.5 91.3 83.9 84.9 83.7 
Level 2 87.8 86.8 90.7 76.3 79.9 75.9 86.9 86.7 87.7 82.1 81.6 85.3 
Level 3 80.8 83.2 81.2 79.6 83.6 78.6 77.1 78.6 77.9 75.6 77.3 76.7 
Level 4 72.4 73.4 73.1 65.4 65.6 65.2 63.9 64.5 63.7 62.6 63.1 63.3 

The best performers are highlighted in bold. 

Table 4. Performance comparison of GloEC, ProteInfer, DeepEC, and CLEAN on the Isoform dataset. 

Enzyme EC 
levels 

GloEC ProteInfer DeepEC CLEAN 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 90.2 91.2 91.3 89.9 92.3 87.9 83.6 84.0 83.4 87.3 85.4 90.1 
Level 2 87.6 87.8 86.2 71.2 76.3 69.1 70.8 71.2 72.2 75.4 75.8 78.7 
Level 3 83.8 86.3 83.4 65.0 69.1 63.1 65.8 67.0 66.4 76.4 77.8 78.7 
Level 4 75.5 76.6 74.9 62.4 64.3 61.8 50.2 52.8 49.1 66.0 67.5 66.1 

The best performers are highlighted in bold. 

Table 5. The performance of GloEC, ProteInfer, DeepEC, and CLEAN on predicting EC numbers for carbohydrate esterase family. 

Enzyme EC 
levels 

GloEC ProteInfer DeepEC CLEAN 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 49.8 50.0 67.7 27.4 25.0 24.5 24.1 25.0 23.2 31.9 3.33 30.6 
Level 2 27.0 28.1 45.9 17.4 16.4 27.9 12.8 14.5 11.9 26.3 27.3 26.4 
Level 3 24.0 25.2 41.4 14.1 15.0 13.4 16.7 18.7 15.6 20.6 21.1 20.2 
Level 4 13.9 30.5 32.3 7.91 10.8 7.03 7.16 10.7 6.66 13.0 13.6 12.6 

The best performers are highlighted in bold. 

DeepEC, and CLEAN on predicting EC numbers for carbohydrate 
esterase family and the results are shown in Table 5. As  can  be  
seen in Table 5, GloEC exhibits the best macro-F1 scores (49.8, 27.0, 
24.0, and 13.9%) across various levels. The classification results 
on the carbohydrate esterase family demonstrate that GloEC is 
able to classify the enzyme family built on sequence homology. 

The results of Table 5 show that, although GloEC can effectively 
classify most enzymes of carbohydrate esterase family, GloEC is 
still struggling with distinguishing the enzyme sequences with 
low specificity. For example, in UniProt database [40], glucuronoyl 
esterase (EC 3.1.1.117) is classified to the carbohydrate esterase 
family. Although GloEC predicts glucuronoyl esterase as a mem-
ber of the carbohydrate esterase family (EC 3.1.1.-) since the 
sequences of glucuronoyl esterase are similar to the members 
of the carbohydrate esterase family, GloEC does not correctly 
identify the fourth EC number of glucuronoyl esterase. The minor 
differences in enzyme sequences with low specificity makes it 
difficult for the model to learn effective features, leading GloEC 
to tend towards conservative results during inference. 

Comparison of computing resource 
In order to learn the runtime complexity of different models 
on large dataset, we randomly select 400, 800, 1200, 1600, 
and 2000 enzyme sequences (see the data shared in https:// 
github.com/hyr0771/GloEC/tree/master/02.Datasets/Different_ 
sizes) from the TrEMBL database [44] and compare the memory 
and time usage of GloEC and three other tools in predicting 
EC numbers for these sequences. As shown in Fig. 4(a), among 
these four prediction tools, ProteInfer exhibits significantly higher 
memory requirements and time consumption compared to other 

tools. DeepEC and CLEAN have approximately only one-fifth 
of ProteInfer’s memory requirements. GloEC has moderate and 
stable memory requirements, with a smaller increase in memory 
demand as the dataset size grows. As we can see in Fig. 4(b), 
both GloEC and CLEAN are the fastest EC prediction tools, with a 
significant advantage in time consumption compared to DeepEC 
(<2 times) and ProteInfer (<10 times). 

The impact of limited samples 
Data imbalance is a common issue, for example, in the basic 
training dataset, some EC numbers have over 1000 samples 
available for model learning, while some other rare EC numbers 
have only 10 samples. Severe data imbalance can result in model 
exhibiting prediction bias towards categories with more samples. 
In order to learn the model performance on classifying rare EC 
numbers, we curate a validation dataset consisting of enzymes 
associated with rare EC numbers from Swiss-port database [6]. 
This dataset comprises over 3000 enzyme samples, covering more 
than 1000 unique EC numbers, each EC number appearing no 
more than five times in enzyme samples (see the data shared 
in https://github.com/hyr0771/GloEC/tree/master/02.Datasets/ 
Limited_Samples). Table 6 presents the performance of GloEC 
and other models on this dataset. As shown in Table 6, GloEC 
demonstrates the best prediction performance, indicating that it 
can correctly predict the majority of rare enzyme categories and 
showcase superior generalization compared to other models. 

Ablation experiment 
In GloEC, each layer of GCN is used to encode the enzyme label 
structure information. Generally speaking, the more encoding
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Table 6. Performance comparison of GloEC, ProteInfer, DeepEC, and CLEAN on the dataset with rare EC numbers. 

Enzyme EC 
levels 

GloEC ProteInfer DeepEC CLEAN 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 98.6 98.5 98.6 92.5 97.1 90.3 93.8 94.4 93.2 96.0 96.7 95.2 
Level 2 93.1 92.9 93.4 75.4 80.4 74.9 82.6 85.1 83.6 86.9 87.0 88.5 
Level 3 90.4 90.8 90.4 67.7 71.5 66.1 79.4 82.5 79.6 85.8 86.7 86.5 
Level 4 80.9 81.4 81.7 72.9 74.0 72.8 73.9 74.5 74.3 74.5 74.3 76.2 

The best performers are highlighted in bold. 

Figure 4. (a) The memory usage for different methods in annotating 
enzyme sequences. (b) The time usage for different methods in annotat-
ing enzyme sequences. 

layers are used, the better enzyme label structure information 
could be aggregated [ 45]. In order to evaluate the effectiveness 
of the enzyme label structure information employed in GloEC, 
we construct five different GloEC models based on the number 
of GCN layers, namely GloEC-0, GloEC-1, GloEC-2, GloEC-3, and 
GloEC-4, which represent different GloEC modes using 0, 1, 2, 3, 
and 4 layers of GCN, respectively. Table 7 shows the macro-F1 
score, precision, and recall of different GloEC models obtained 
from a 10-fold cross-validation experiment on the basic training 
dataset. 

As can be seen in Table 7, in the prediction of four levels for 
enzyme EC number, all performance metrics of GloEC-0 are lower 
than those of other models. Especially at the fourth level, GloEC-
0 has a macro-F1 score of 53.3%, while the macro-F1 scores of 
GloEC-1 to GloEC-4 are 73.5, 74.8, 75.7, and 72.1%, respectively. 
Considering that GloEC-0 does not encode enzyme label infor-
mation, these results indicate that the performance of enzyme 

function prediction can be improved by incorporating the label 
structure information of enzyme into model training. 

In Table 7 we can see that GloEC-2 outperforms GloEC-1 and 
GloEC-0 in predicting all four levels. This implies that increasing 
encoding layers can enhance the aggregation of enzyme label 
information so as to further improve the prediction performance. 
However, except for levels 1 and 4, the macro-F1 scores of GloEC-
2 are higher than those of GloEC-3 for levels 2 and 3, and the 
performance metrics of GloEC-4 are lower than those of GloEC-
3 across all four levels. The rationality behind is that the aggre-
gation for enzyme label information relies on its neighborhood 
labels’ information and can only be enhanced by adding encoding 
layers based on the available neighborhood label information. 
The results in Table 7 suggest that three-layer GCN is the upper 
limit for aggregating available neighborhood label information of 
enzyme to infer 4-level EC number. However, people still can try 
more GCN layers in GloEC to infer label classification task with 
higher label level. 

On the other hand, we also evaluated the effectiveness of 
hierarchy encoder and recursive regularization used in GloEC. We 
construct two different GloEC variants, namely GloEC-GCN and 
GloEC-Sin. GloEC-GCN is the variant that the recursive regulariza-
tion is removed from GloEC. GloEC-Sin the variant that recursive 
regularization and our proposed hierarchy encoder are removed 
from GloEC. We perform a 10-fold cross-validation experiment for 
these two different GloEC variants on the basic training dataset. 
Table 8 shows the macro-F1 scores, precision, and recall for differ-
ent variants on different levels of EC numbers. 

As shown in Table 8, GloEC-GCN achieves better performance 
than GloEC-Sin for the first to fourth levels. Especially on the 
third and fourth levels, GloEC-GCN has the macro-F1 scores of 
72.4 and 91%, which are at least a 9% improvement over GloEC-
Sin, respectively. This result demonstrates the proposed hierarchy 
encoder could play a critical role in predicting enzyme function. 
In addition, as illustrated in Table 8, GloEC obtains higher macro-
F1 score than those of GloEC-GCN for almost all levels. This 
demonstrates that recursive regularization could be an effective 
complementary to our proposed architecture. 

Interpretability analysis 
In order to learn the interpretability of the predictions of our 
model, we use the sequence of threonine-protein kinase (EC 
2.7.11.1) [46] as a test input for GloEC and trace the enzyme label 
weights of the enzyme graph in Fig. 5. In Uniport database [40], 
the EC number of threonine-protein kinase is classified to 2.7.11.1. 
In this example, GloEC first computes the initial weight of each 
enzyme label in the enzyme graph for threonine-protein kinase 
based on enzyme sequence features, and the results are shown in 
Fig. 5(a). Then based on the hierarchical dependency of enzyme 
labels, the hierarchy-GCN encoder bidirectionally updates the 
initial weights of enzyme labels with enzyme sequence features
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Table 7. Performance comparison of GloEC-0, GloEC-1, GloEC-2, GloEC-3, and GloEC-4 on the basic training dataset. 

Enzyme EC 
levels 

GloEC-0 GloEC-1 GloEC-2 GloEC-3 GloEC-4 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 99.1 99.1 98.4 99.1 99.2 98.7 99.2 99.2 99.0 99.2 99.2 98.8 99.1 99.1 99.0 
Level 2 95.1 95.2 94.0 95.8 94.9 94.4 97.4 97.2 97.8 96.9 97.6 96.3 95.6 95.5 93.9 
Level 3 82.1 82.7 78.9 91.9 90.7 88.7 92.5 91.4 93.5 92.4 90.9 92.7 89.2 87.4 89.4 
Level 4 53.3 52.0 56.4 73.5 72.5 70.9 74.8 75.2 73.4 75.7 76.7 74.1 72.1 73.1 70.8 

The best performers are highlighted in bold. 

Table 8. Performance comparison of GloEC, GloEC-GCN, and GloEC-Sin on the basic training dataset. 

Enzyme 
EC levels 

GloEC GloEC-GCN GloEC-Sin 

Macro-F1 Pre Rec Macro-F1 Pre Rec Macro-F1 Pre Rec 

Level 1 99.2 99.2 98.8 99.1 99.1 99.0 99.0 99.1 98.7 
Level 2 96.9 97.6 96.3 96.1 94.6 96.5 92.1 90.4 92.0 
Level 3 92.4 90.9 92.7 91.0 90.4 89.4 80.5 78.4 80.1 
Level 4 75.7 76.7 74.1 72.4 75.0 71.7 63.2 60.6 65.6 

The best performers are highlighted in bold. 

within the same enzyme group. After updating weights by the 
abovementioned way, as can be seen in Fig. 5(b), the weights of 
enzyme label nodes in each enzyme group update towards to 
agree due to their hierarchical connectivity and the weight of the 
enzyme label 2.7.11.1 is updated to the maximum value in the 
graph. Finally, GloEC correctly identifies the enzyme label 2.7.11.1 
with maximal weight as the EC number of threonine-protein 
kinase. 

In this example, we can see that, bidirectionally updating 
enzyme label weights based on hierarchical dependency of 
enzyme labels could be an effective method to capture fine-
grained label-correlation hierarchy information of enzymes to 
make prediction. 

Case study 
In this section we applied GloEC to predict enzyme function in 
practical applications. The classification of two specific isoen-
zymes will be discussed below. Glutamine occupies a central posi-
tion in cellular metabolism: Glutamine is not only a component 
of most proteins, but also a source of nitrogen in biosynthetic 
pathways [47]. Thus, the enzyme that catalyzes glutamine syn-
thesis (glutamine synthetase, EC 6.3.1.2) plays a key role in cell 
metabolism. There are three isoforms of glutamine synthetase II 
in Drosophila melanogaster, all of which have enzyme activity. 

To verify GloEC’s ability for identifying different isoforms of 
glutamine synthetase II, we collected the sequences of these 
three isoforms of glutamine synthetase II from Swiss-Port, among 
which the sequences of the first subtype was included in the 
training set, so we put the sequences of the remaining isoforms 
glutamine synthetase II-2 and glutamine synthetase II-3 into 
our model for prediction. Finally, GloEC identified that both of 
glutamine synthetase II-2 and glutamine synthetase II-3 belong to 
glutamine synthetase, which is consistent with the experimental 
results. 

The Cystic fibrosis transmembrane conductance regulatory 
(CFTR) is a channel conductance controlling ATPase (EC 5.6.1.6) 
and its absence in human could lead to cystic fibrosis [48]. Swiss-
Port recorded two other isoforms CFTR-2 and CFTR-3 of CFTR, 
whose sequence lengths are less than half that of the ‘canonical’ 
isoform (1476 amino acids versus 576 and 600 amino acids). 

Despite being much short in length, the isoforms CFTR-2 and 
CFTR-3 do not lose their function. 

To verify our GloEC’s capability of predicting subtypes’ func-
tionality, we obtained the sequence of CFTR-2 and CFTR-3 from 
Swiss-Port and fed them into our model. Particularly, GloEC suc-
cessfully predicted their functions, while none of the other three 
methods, CLEAN, ProteiInfer, and DeepEC, gave correct predic-
tions. This indicates that GloEC is able to capture the function 
of the isoforms of CFTR, even though their sequences are very 
different from the ‘canonical’ sequence. 

Phosphorylases play a crucial role in glycogen metabolism, 
particularly in muscle and liver tissues [49]. Swiss-Prot [6] has  
identified over 10 types of phosphorylases, such as glycogen 
phosphorylase, purine-nucleoside phosphorylase, methylth-
ioadenosine phosphorylase, and adenosylhomocysteine nucle-
osidase. Each type of phosphorylases exhibits analogous catalytic 
capabilities in catalyzing phosphorolysis reactions [50]. We collect 
an enzyme set of phosphorylases from Swiss-Prot database [6], 
comprising 37 sequence samples and 6 types of phosphorylases. 
For these phosphorylases, GloEC and other competitive methods 
can correctly identify the first three levels of EC numbers and, 
therefore, we compare the performance of all methods on 
identifying the fourth-level EC number, and the results are shown 
in Fig. 6. As can be seen in Fig. 6, compared to other tools, GloEC 
achieves the best precision (93.6%), macro-F1 score (81.4%), and 
recall (83.3%) at the fourth-level EC number. The EC number 
identification results for phosphorylases suggest that GloEC 
can effectively distinguish the function of enzymes that exhibit 
comparable enzymatic activities. 

Limitations 
Despite the effectiveness of GloEC in identifying enzyme function, 
there certainly remains room for improvement. Firstly, there is a 
significant need to increase the coverage of rare EC numbers in 
the basic training dataset. As observed in this study, the protein 
sequence coverage for each EC number varies greatly, with 910 
out of 1643 EC numbers having fewer than 10 protein sequence 
samples covered. This is also why GloEC did not correctly assign 
substrate class numbers for glucuronoyl esterase (EC 3.1.1.117). 
Addressing such data imbalance problem has the potential to
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Figure 5. (a) The initial weight of each enzyme label in the enzyme graph for the input sequence of threonine-protein kinase. (b) The weights of the 
enzyme labels in the graph after updating by the hierarchy-GCN encoder. 

Figure 6. The performance of GloEC, ProteInfer, DeepEC, and CLEAN on 
predicting the fourth-level EC numbers of phosphorylases. 

enhance the predictive performance of GloEC, particularly in 
terms of precision and coverage for predicting EC numbers. 

Secondly, GloEC focuses on classifying enzymes into a single EC 
number. However, multifunctional enzymes may exhibit different 
catalytic activities in different contexts. For example, Fatty Acid 
Synthase (FAS) is a multifunctional enzyme complex responsible 
for catalyzing multiple steps in fatty acid biosynthesis. FAS can 
act as a β-ketoacyl synthase (EC 2.3.1.41), catalyzing the conden-
sation of acetyl-ACP and malonyl-ACP to form β-ketoacyl-ACP. 
Meanwhile, FAS also can act as a β-ketoacyl-ACP reductase (EC 
1.1.1.100), reducing β-ketoacyl-ACP to β-hydroxyacyl-ACP [51]. We 
use FAS for testing, but GloEC only provides a prediction for one 
EC number (EC 2.3.1.41) and does not give another EC number 
(EC 1.1.1.100), which is inaccurate in practical applications. In 
the future, we plan to assign enzyme labels with predicted prob-
abilities above a certain threshold to identify whether enzymes 
are multifunctional or monofunctional, helping us to expand the 
model to predict multiple functions of enzymes. 

Lastly, the results of this work are primarily validated by 
computational predictions based on previous benchmark data, 

without experimental validation for new predictions. The 
predicting results should undergo rigorous and thorough anal-
ysis and in-depth study before proceeding with experimental 
implementations. Such implementations could involve verifying 
the model’s predictions in vitro in the future. 

Conclusion 
In this article, we propose a novel hierarchical-aware deep-
learning model GloEC for enzyme function prediction. GloEC 
concentrates on integrating the directed enzyme graph to 
globally build a hierarchy-GCN encoder to model and extract 
the hierarchy information of the enzyme labels. Furthermore, the 
bidirectional calculation of the hierarchy-GCN encoder allows 
it to comprehensively learn the label correlation information of 
enzymes in both bottom-up and top-down directions, enabling 
us to accurately utilize the hierarchy structural information of 
enzyme label for annotating enzyme function. 

The effectiveness of GloEC was validated by comparative 
experiments on gold standard datasets. The results demonstrate 
that GloEC performs better than the existing methods in terms of 
precision, recall, and macro-F1 scores. Case studies demonstrate 
that GloEC can accurately identify the function of isozymes 
even if they contain a big difference in sequence length. GloEC 
thus could be an applicable tool for predicting the catalytic 
function of enzymes, potentially paving the way for the iden-
tification of cost-effective and better enzymes for commercial 
applications. 

Key Points 
• A higher enzyme EC level relies on the lower enzyme EC 

level. 
• GloEC models the hierarchical dependence of enzyme 

labels. 
• The hierarchy-GCN encoder is bidirectionally computed. 
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