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Abstract 14 
 15 

Recent advancements in sequencing technologies have led to the identification of a vast number of 16 

hypothetical proteins, surpassing current experimental capabilities for annotation. Enzymes, crucial 17 

for diverse biological functions, have garnered significant attention; however, accurately predicting 18 

enzyme EC numbers for proteins with unknown functions remains challenging. Here, we introduce 19 

FEDKEA, a novel computational method that integrates ESM-2 and distance-weighted KNN (k-20 

nearest neighbor) to enhance enzyme function annotation. FEDKEA first employs a fine-tuned 21 

ESM-2 model with four fully connected layers to distinguish from other proteins. For predicting EC 22 

numbers, it adopts a hierarchical approach, utilizing distinct models and training strategies across 23 

the four EC number levels. Specifically, the classification of the first EC number level utilizes a 24 

fine-tuned ESM-2 model with three fully connected layers, while transfer learning with embeddings 25 

from this model supports the second and third-level tasks. The fourth-level classification employs a 26 

distance-weighted KNN model. Compared to existing tools such as CLEAN and ECRECer, two 27 

state-of-the-art computational methods, FEDKEA demonstrates superior performance. We 28 

anticipate that FEDKEA will significantly advance the prediction of enzyme functions for 29 

uncharacterized proteins, thereby impacting fields such as genomics, physiology and medicine. 30 

FEDKEA is easy to install and currently available at: https://github.com/Stevenleizheng/FEDKEA 31 
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1. Introduction 35 

With the development of sequencing technologies, numerous hypothetical proteins are being 36 

discovered through ORF prediction tools(Hyatt, et al., 2010; Shendure, et al., 2017). The speed at 37 

which hypothetical proteins are discovered far exceeds the rate at which they can be experimentally 38 

annotated(Gill, et al., 2006; Qin, et al., 2010). For example, in 2023 alone, 29,526,946 protein 39 

sequences were uploaded to UniProt's TrEMBL database (unreviewed), whereas only 1,699 40 

sequences were added to the Swiss-Prot database (reviewed). Therefore, experimentally validated 41 

protein data represents only about 0.005% of predicted protein data(UniProt, 2021). 42 

Enzymes, as one of the vital protein functions, have always been a focal point of 43 

research(Menendez-Arias, et al., 2017; Simpson, et al., 2024; Wang, et al., 2023). It is evident that 44 

experimentally characterizing enzyme functions of proteins is time-consuming and labor-intensive. 45 

Given the vast number of unannotated protein functions, there is an urgent need for new 46 

computational methods to annotate enzyme functions(Furnham, et al., 2009). Currently, enzyme 47 

function annotation for proteins is standardized using the Enzyme Commission (EC) number 48 

assigned by the International Union of Biochemistry and Molecular Biology Nomenclature 49 

Committee(IUBMBNC) (McDonald and Tipton, 2023). The IUBMBNC has classified over 6,800 50 

enzymes, with a highly uneven distribution of data across enzyme classes. This disparity makes the 51 

accurate annotation of these enzymes' EC numbers both a crucial and challenging task.  52 

To address this issue, various computational methods have been developed for enzyme function 53 

annotation, including those based on sequence similarity(Altschul, et al., 1990; Desai, et al., 2011), 54 

homology modeling(Krogh, et al., 1994; Steinegger, et al., 2019), structure analysis(Zhang, et al., 55 

2017), and machine learning(Ryu, et al., 2018; Sanderson, et al., 2023). The tool based sequence 56 

similarity, such as BLASTp, is widely used for protein function annotation by comparing unknown 57 

protein sequences with those annotated protein sequences. This similarity-based methods always 58 

cause low reliability when the sequence similarity is low. Moreover, sequence alignment approaches 59 

are often inadequate for capturing the intricate connections between protein structure and function. 60 

Machine learning models such as DeepEC and ProteInfer address enzyme function prediction by 61 

using multi-label classification and large-scale labeled datasets. However, the performance of these 62 

models is frequently hindered by poor generalization, limited accuracy, and insufficient coverage, 63 

primarily due to a lack of diverse and representative training data.  64 
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Transformer-based language models, initially developed for natural language processing 65 

(NLP), have been increasingly applied in the protein field to address various biological problems 66 

by treating protein sequences as a form of biological language(Elnaggar, et al., 2022; Lin, et al., 67 

2023). Protein language model-based annotation shows unique advantages, effectively annotating 68 

low-similarity proteins with high throughput. These models employ pre-training on large protein 69 

datasets, gaining a comprehensive understanding of protein evolution, structure, and function. 70 

CLEAN and ECRECer are notable tools based on the protein language model ESM-1b for enzyme 71 

annotation(Shi, et al., 2023; Yu, et al., 2023). However, these two models have not been fine-tuned, 72 

resulting in their poor performance on enzyme annotation and limited applicability in practical 73 

scenarios. 74 

Here, we propose a model that continues to utilize the protein language model-based strategy. 75 

Among various protein language models such as ESM and T5, the embeddings extracted by ESM, 76 

given the same parameter scale, have been found to be more conducive to downstream protein 77 

function classification(Thumuluri, et al., 2022). Recently, ESM released its second version, ESM-78 

2, which outperforms ESM -1b in all aspects(Lin, et al., 2023; Rives, et al., 2021). Therefore, We 79 

fine-tune the ESM-2 model for specific tasks, including enzyme identification and EC number 80 

annotation, using a hierarchical classification strategy across the four levels of the EC numbering. 81 

The approach involves a series of models tailored for each level, employing transfer learning and a 82 

combination of MLP heads and distance-weighted KNN to ensure comprehensive enzyme 83 

annotation, even for classes with limited data. This approach aims to excel in EC number annotation 84 

without strictly relying on similarity. 85 

 86 

2. Materials and methods 87 

2.1 The dataset for model training 88 

The dataset of UniProtKB SwissProt, released on March 2024, was collected for fine-tuning 89 

ESM-2 model and training MLP model. A total of 571,609 proteins was first filtered by sequence 90 

identity. A subset of 483,428 proteins containing 234,482 enzymes and 248,946 non-enzymes was 91 

split by the created time of proteins. For the binary classification task of determining whether a 92 

protein is an enzyme, protein data up to 2024 will be divided into training, validation, and test sets 93 

in an 8:1:1 ratio. Protein data from after 2024 will be used as an independent test set to evaluate the 94 
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model's performance. For the EC number classification tasks at various levels, we will use 234,482 95 

enzyme sequences for model training and subsequently remove multi-functional enzymes. For the 96 

classification tasks of level 1 and level 2 EC numbers, we will similarly split the enzyme data up to 97 

2024 into training, validation, and test sets in an 8:1:1 ratio, and use post-2024 enzyme data as an 98 

independent test set to assess the performance of the models. 99 

Due to the scarcity of some enzyme classes, we will not create an independent test set based 100 

on the year for level 3 and level 4 EC number classification tasks. Instead, we will split the data into 101 

training and validation sets in an 8:2 ratio to determine the optimal K value for the KNN model. 102 

 103 

2.2 Model structures and training processes 104 

The overall framework of the model involves fine-tuned ESM-2 and distance-based KNN 105 

enabled enzyme annotation (FEDKEA). The structures of FEDKEA are shown in Fig.3. The model 106 

framework consists of two main parts: determining whether a protein is an enzyme and predicting 107 

the enzyme's EC number. For the binary classification task of determining if a protein is an enzyme, 108 

we use the ESM-2 model with 33 layers and 650M parameters. First, the amino acid sequence of 109 

the protein is tokenized. We then fine-tune the weights of the last few layers, finding that fine-tuning 110 

four layers yields the best performance. The embeddings from the fine-tuned model are averaged 111 

according to the sequence length, resulting in a 1280-dimensional vector. This vector is fed into a 112 

five-layer MLP (1280-960-480-120-30-2), with each layer using ReLU activation for further feature 113 

extraction. The output of the MLP is then passed through a softmax layer to calculate the probability 114 

for each class, classifying a protein as an enzyme if the probability is ≥0.5 and not an enzyme 115 

otherwise. 116 

For the EC number classification task, we adopt a hierarchical prediction strategy based on the 117 

four-level structure of EC numbers. For the first-level classification, a seven-class task, we use the 118 

same strategy as the binary classification: fine-tuning the 33-layer, 650M parameter ESM-2 model, 119 

and find that fine-tuning three layers yields the best performance. The MLP for this task is adjusted 120 

to four layers (1280-960-480-120-classes), and considering the class imbalance, we add a batch 121 

normalization layer after the MLP, followed by ReLU activation. The binary cross-entropy loss 122 

function is replaced with Focal Loss to solve the problem of class imbalance. 123 

For the second and third-level EC number classification tasks, we use the same model 124 
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framework, incorporating transfer learning to utilize embeddings learned from the first-level 125 

classification. Additionally, enzyme classes with few samples are grouped into an "others" category. 126 

For the fourth-level classification, due to the scarcity of enzymes in most classes, we use a distance-127 

weighted KNN model, inheriting the embeddings from the first-level classification. Testing revealed 128 

that K=3 yielded the best performance. 129 

Throughout the training process, we employ early stopping and the Adam optimizer (Kingma 130 

and Ba, 2015), with a learning rate of 5e-6 and a weight decay of 1e-5. 131 

 132 

2.3 Test process and Evaluation metrics 133 

For the binary classification task of determining if a protein is an enzyme, the accuracy (ACC), 134 

precision, recall, F1, AUC, and AP value. The formulas for ACC, precision, recall, and F1 are as 135 

follows (1)-(4): 136 

ACC = 	
TP + TN

TP	 + 	FP	 + 	TN	 + 	FN 	(1) 137 

Precision = 	
TP

TP	 + 	FP	 	(2) 138 

Recall = 	
TP

TP	 + 	FN	 	(3) 139 

F1 = 	2 ×
Precision	 × 	Recall
Precision	 + 	Recall	 	(4) 140 

 141 

where TP, FP, TN, and FN mean the number of true positive, false positive, true negative, and false 142 

negative samples during a test. The metrics mentioned above are typically calculated assuming a 143 

probability threshold of 0.5. However, altering the classification threshold results in different metric 144 

values. By evaluating these metrics at various thresholds, ROC and PR curves can be plotted. The 145 

ROC curve illustrates the relationship between the true positive rate (TPR) and false positive rate 146 

(FPR), while the PR curve demonstrates the relationship between precision and recall. The formulas 147 

for TPR and FPR are given in equations (5) and (6). 148 

TPR =	
TP

TP	 + 	FN	 	(5) 149 

FPR = 	
FP

TN	 + 	FP	 	(6) 150 

 151 

The AUC represents the area under the ROC curve, and the AP represents the area under the PR 152 
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curve. Combining the above metrics could evaluate and analyze the performance of different models 153 

from multiple perspectives, especially the F1, AUC and AP metrics. 154 

For multiple classification problems, the evaluation criteria included mACC (macro-average 155 

accuracy), mPR (macro-average precision), mRecall (macro-average recall), and mF1(macro-156 

average F1 value). These formulas are given in equations (7) - (10). 157 

mACC =	
∑ ACC!"
!#$

n 	 , n = 1, 2, 3,⋯ , N	(7) 158 

mPrecision = 	
∑ Precision!"
!#$

n 	 , n = 1, 2, 3,⋯ , N	(8) 159 

mRecall = 	
∑ Recall!"
!#$

n 	 , n = 1, 2, 3,⋯ , N	(9) 160 

mF1 = 	2 ×
mPrecision	 × 	mRecall
mPrecision	 + 	mRecall	 	(10) 161 

 162 

We will use all protein data uploaded in 2024, totaling 415 proteins, including 148 enzymes 163 

and 267 non-enzyme proteins, as an independent test set to validate the model's accuracy. 164 

Additionally, when validating the EC number of enzymes, considering the presence of multi-165 

functional enzymes, we define a prediction as correct if any one of the enzyme's functions is 166 

correctly predicted. 167 

 168 

2.4 Computing resources 169 

Up to eight 40G NVIDIA A40 and two 32G NVIDIA Tesla V100 PCle GPUs were utilized for 170 

model training and inference, and these GPUs were all from the public platform of School of 171 

Medicine, Tsinghua University. 172 

 173 

3. Results 174 

3.1 Model development and evaluation 175 

The overall framework of the model involves fine-tuned ESM-2 and distance-based KNN 176 

enabled enzyme annotation (FEDKEA). Initially, protein sequences are subjected to analysis within 177 

the fine-tuned ESM-2 model, where the last four layers are specifically adapted to discern enzymatic 178 

attributes. Following this initial assessment, should the protein be identified as an enzyme, it 179 

undergoes further embedding step within the ESM-2 model, wherein the last three layers are fine-180 

tuned. During this process, embedding data are shared globally, and subsequently subjected to 181 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.12.604109doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.604109


diverse Multi-Layer Perceptron (MLP) models. Ultimately, the processed data are fed into a KNN 182 

model, utilizing distance weighting, to ascertain the final prediction at the concluding stage (Fig 1). 183 

With the development of the large language model (LLM), ESM-2 model as a state-of-the-art 184 

protein language model, at scales from 8 million parameters up to 15 billion parameters, is trained 185 

to predict the identity of amino acids that have been randomly masked out of protein sequences. 186 

ESM-2 model is used to help us acquire rich protein information embedded inside the protein 187 

sequence. Since our task is enzyme commission annotation rather than protein structure prediction, 188 

we used a fine-tuned ESM-2 model trained by annotated proteins with enzyme function so that it 189 

could help us extract more protein information about enzyme functions. Considering the hierarchical 190 

organization of enzyme classification, which spans four levels with increasing specificity and a 191 

sparse distribution of categories at the final level, we have adopted a hierarchical approach. By 192 

integrating this strategy with distance-weighted K-nearest neighbor (KNN) algorithms, our goal is 193 

to enhance the accuracy of enzyme function prediction, particularly at the fourth level. 194 

In the training stage, a universal protein knowledgebase UniProt released before 2024 was used 195 

for model development and evaluation. For both the enzyme identification and enzyme commission 196 

first-level classification tasks, we fine-tuned the ESM-2 using data before 2021 and evaluated its 197 

performance using a validation set from 2021-2023, achieving a best 91.27% F1 score under fine-198 

tuned last four layers of ESM-2 (Fig 2A, 2B) and a best 88.27% F1 score under fine-tuned last three 199 

layers of ESM-2 (Fig 3A, 3B, 3C), respectively. The layer 33 as the embedding data better improves 200 

the ability of model enzyme identification than the layer 32 as the embedding data (Fig 2C). 201 

3.2 Benchmarking FEDKEA with previous EC number annotation tools 202 

After training, the prediction performance of FEDKEA was systematically investigated by 203 

comparing it with two recently published state-of-the-art deep learning-based EC number annotation 204 

tools [i.e., CLEAN and ECRECer]. One independent dataset, named UniProtKB_2024_02, 205 

consisted of 172 enzyme sequences and 243 non enzyme sequences that not included in any model’s 206 

development. The prediction scenario fully represented a practical situation, where the labeled 207 

knowledgebase was the Swiss-Prot database and related enzyme information of query sequences 208 

were unknown. In the enzyme identification task, FEDKEA achieved the highest value in various 209 

multilabel accuracy metrics, including accuracy (0.9205), precision (0.9542) and F1 (0.8985) (Fig 210 

4A). It is worth noting that CLEAN is not capable of recognizing enzymes.  211 
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We then compared the predictive performance of three tools at each level of enzyme 212 

commission number under the assumption that the protein sequence is an enzyme (172 enzyme 213 

sequences). Overall, FEDKEA resulted in better prediction accuracy (69.77 to 50%) compared with 214 

CLEAN (65.12 to 41.28%) and ECRECer (61.05 to 38.95%) (Fig 4B).  215 

 216 

4. Discussion 217 

Protein function annotation has long been a challenging problem in biology. Enzymes, as 218 

proteins involved in various biological processes, have consistently attracted the attention of 219 

researchers. Accurate annotation of enzyme functions remains a significant challenge. While 220 

experimental methods can precisely annotate enzyme functions, they are time-consuming and labor-221 

intensive. Enzyme function annotation methods based on sequence similarity, homology, and 222 

structural alignment have been employed but often fall short in accurately predicting enzyme 223 

functions, particularly specific EC numbers. 224 

With the rise of large language models in the past five years, there is new potential to further 225 

understand the rich information embedded within protein sequences from an evolutionary 226 

perspective. Our model addresses this by incorporating a protein large language model in its first 227 

module, using a fine-tuning strategy to tailor it for specific enzyme function annotation tasks. 228 

Additionally, recognizing the hierarchical nature of enzyme numbering, we have implemented a 229 

tiered approach to maintain high accuracy at each level of prediction. For the fourth-level categories, 230 

where data distribution is imbalanced, we use a distance-weighted K-nearest neighbor (KNN) model 231 

for final classification. This design enables our model to outperform other protein large language 232 

model-based tools, such as CLEAN and ECREC, in terms of generalization and prediction accuracy 233 

on unknown datasets. However, during the model training process, we remain reliant on well-234 

annotated enzyme data, and the model still struggles to provide high-confidence results for novel 235 

proteins. Additionally, almost models, including our model, only consider the prediction of enzyme 236 

function but not predict the catalytic site of enzyme.  237 

  238 
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 293 
Fig. 1. The fine-tuned ESM-2 and distance-based KNN framework of FEDKEA. The model employs fine-tuned 294 
ESM-2 for enzyme detection, followed by global sharing of embedding data and MLP processing, culminating in 295 
KNN-based prediction. 296 
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 318 
Fig. 2. Fine-tuned model for the enzyme identification (A) The performance metrics (accuracy, precision, recall, 319 
AUC, AP, and F1 score) of the fine-tuned model on datasets from 2021-2023 and 2024 are evaluated across layers 320 
1-7. (B) The performance metrics (accuracy, precision, recall, AUC, AP, and F1 score) comparison of model 321 
between fine-tuned four layers and fine-tuned zero layer on datasets from 2021-2023. (C) The performance metrics 322 
(accuracy, precision, recall, AUC, AP, and F1 score) comparison of models with the 32nd layer as the embedding 323 
layer and the 33rd layer as the embedding layer on datasets from 2021-2023 324 
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 346 

Fig. 3. Fine-tuned model for enzyme commission first-level classification (A) The performance metrics (accuracy, 347 
mPrecision, mRecall, and mF1 score) of the fine-tuned model on datasets from 2021-2023 and 2024 are evaluated 348 
across layers 3-4. (B) The tSNE plot of the 33rd layer in the non-fine-tuned model. (C) The tSNE plot of the 33rd 349 
layer in the model fine-tuned on four layers. 350 
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 354 
Fig. 4. Quantitative comparison of FEDKEA with the state-of-the-art EC number prediction tools. (A) 355 
Evaluation of FEDKEA’s performance toward four multilabel accuracy metrics (accuracy, precision, recall and F1 356 
score) in the task of enzyme identification on the UniProtKB_2024_02 dataset. (B) Accuracy comparison of 357 
FEDKEA, CLEAN and ECRECer at each level of enzyme commission number on the UniProtKB_2024_02 dataset.  358 
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