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Abstract

Given a protein sequence, how can we identify whether it is an enzyme or non-enzyme? If it is, which main functional class it belongs
to? What about its sub-functional class? It is important to address these problems because they are closely correlated with the biological
function of an uncharacterized protein and its acting object and process. Particularly, with the avalanche of protein sequences generated
in the Post Genomic Age and relatively much slower progress in determining their functions by experiments, it is highly desired to
develop an automated method by which one can get a fast and accurate answer to these questions. Here, a top–down predictor, called
EzyPred, is developed by fusing the results derived from the functional domain and evolution information. EzyPred is a 3-layer predictor:
the 1st layer prediction engine is for identifying a query protein as enzyme or non-enzyme; the 2nd layer for the main functional class;
and the 3rd layer for the sub-functional class. The overall success rates for all the three layers are higher than 90% that were obtained
through rigorous cross-validation tests on the very stringent benchmark datasets in which none of the proteins has P40% sequence iden-
tity to any other in a same class or subclass. EzyPred is freely accessible at http://chou.med.harvard.edu/bioinf/EzyPred/, by which one
can get the desired 3-level results for a query protein sequence within less than 90 s.
� 2007 Elsevier Inc. All rights reserved.
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For a newly-found protein sequence the most interesting
thing people wish to know is about its biological function,
and hence the following questions are often asked: Is the
query protein an enzyme or non-enzyme? If it is, which
main functional class does it belong to? Or going further
deeper, what about its sub-functional class? Although the
answers to these questions can be found by conducting
various biochemical experiments, it is both time-consuming
and costly to do so solely by experimental approaches. With
the explosion of newly-found protein sequences entering
into databanks in the Post Genomic Age, it has become a
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major challenge to bridge the gap between the number of
newly generated sequence entries and the number of func-
tionally characterized protein entries. Actually, some efforts
were made in this regard [1,2]. However, the investigation in
[1] was limited within the scope of oxidoreductases while
that in [2] limited among the main enzyme classes only. Par-
ticularly, no web-server was provided in either [1] or [2]. The
present study was initiated in an attempt to develop a top–
down approach to solve all these problems and make it
accessible to the vast majority of experimental scientists
by providing a user-friendly web-server.

Materials and methods

Materials

The ENZYME database at http://www.expasy.org/enzyme/ (released
on 01-May-2007) was used to construct the benchmark datasets for the
enzyme main functional classes and their subclasses.
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Main functional classes. According to their main functions or enzyme
commission (EC) numbers [3], enzymes are classified into the following six
main classes: (1) oxidoreductase (EC.1), (2) transferase (EC.2), (3)
hydrolase (EC.3), (4) lyase (EC.4), (5) isomerase (EC.5), and (6) ligase
(EC.6). To get the high quality benchmark dataset, the data were curated
strictly according to the following procedures. Step 1: to avoid fragment
data, those enzymes whose sequences were annotated with ‘‘fragment’’ or
had less than 50 amino acids were excluded. Step 2: for the uniqueness,
those enzymes that occur in two or more classes were excluded. Step 3: to
reduce the homology bias, a redundancy cutoff was operated by an
in-house program to winnow those sequences which have P40% sequence
identity to any other in a same functional class. Finally, 9832 enzyme
sequences classified into six main functional classes were obtained.
Meanwhile, to construct a non-enzyme benchmark dataset, 9850 non-
enzyme protein sequences were randomly collected from Swiss-Prot at
http://www.ebi.ac.uk/swissprot/ (version 52.0 released on 7-Mar-2007);
these non-enzyme proteins were also subject to the same screening pro-
cedures to exclude the fragment and redundancy sequences. For the
convenience of formulation, suppose the benchmark dataset thus obtained
Fig. 1. A schematic drawing to use tree branches to classify enzyme and non
subclasses.
is denoted by S, which consists of the enzyme dataset Sezy and the non-
enzyme dataset Snon-ezy; i.e.,

S ¼ Sezy [ Snon-ezy
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where [ is the symbol for union in the set theory, S
ezy
1 is the EC.1 subset

containing 1618 oxidoreductase sequences, S
ezy
2 the EC.2 subset of 3450

transferase sequences, S
ezy
3 the EC.3 subset of 2791 hydrolase sequences,

S
ezy
4 the EC.4 subset of 679 lyase sequences, Sezy

5 the EC.5 subset of 518
isomerase sequences, and S

ezy
6 the EC.6 subset of 776 ligase sequences.

The 9832 enzyme sequences classified into six subsets as well as the 9850
non-enzyme sequences are provided in Online Supporting Information A.

Sub functional classes. To reflect the enzyme functions at a deeper level,
each of the aforementioned six main enzyme classes has been further
classified into many sub-classes [3]. For instance, the oxidoreductase
family of EC.1 has 18 sub-classes denoted by EC.1.1, EC.1.2,
EC.1.3, . . . ,EC.1.18 and their functions are briefly described in a highly
condensed Fig. 1. To construct the subclass benchmark dataset for each of
-enzyme as well as the six main functional classes of enzymes and their

http://www.ebi.ac.uk/swissprot/
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the six main enzyme families, the same procedures in the ‘‘Main functional

classes’’ section were used. However, if the number of enzyme sequences
thus obtained for a subclass was less than 10, the subclass and the
sequences therein were left out because of lacking statistical significance.
Similar to Eq. (1), the benchmark datasets thus obtained can be formu-
lated as
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where S
ezy
1:1 represents the EC.1.1 subset with the function acting on the

CH–OH group of donors (Fig. 1), and so forth. Note that in Eq. (2) some
subsets such as S

ezy
3:3 and S

ezy
4:5 are missing because the numbers of their

sequences obtained through the above procedures were less than 10. All
the sequences for each of the subsets in Eq. (2) are provided in Online Sup-
porting Information B.
Method

To develop a top–down predictor, a novel technique was introduced by
fusing the FunD (Functional Domain) approach and the Pse-PSSM
(Pseudo Position-Specific Scoring Matrix) approach.

Functional domain (FunD) composition. Proteins often contain several
modules or domains, each with a distinct evolutionary origin and function.
Based on such a fact, several FunD databases were developed, such as
SMART [4], COG [5], KOG [5], CDD [6]. Pfam database is a large col-
lection of multiple sequence alignments and hidden Markov models cur-
rently covering 8958 common protein domains and families [7]. With each
of the 8958 domain sequences as a vector-base, a given protein sample can
be defined as an 8958-D (dimensional) vector according to the following
procedures. Step 1: use RPS-BLAST (Reverse PSI-BLAST) program [8] to
compare the protein sequence with each of the 8958 domain sequences in
Pfam database. Step 2: if the significance threshold value (expect value) is
60.01 for the ith profile in Pfam meaning a ‘‘hit’’ is found, then the ith
component of the protein in the 8958-D space is assigned 1; otherwise, 0.
Step 3: the protein sample P in the FunD space can thus be formulated as

PFunD ¼ D1 D2 � � � Di � � � D8958½ �T ð3Þ

where T is the transpose operator, and

Di ¼
1; when a hit is found for P in the ith profile of Pfam

0; otherwise

�
ð4Þ

Pseudo position-specific scoring matrix (Pse-PSSM). To incorporate
the evolution information of proteins, the PSSM (Position-Specific Scor-
ing Matrix) [8] was used; i.e., according to the concept of PSSM, the
sample of a protein P can be represented by:

PPSSM ¼
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where Vi!j represents the score of the amino acid residue in the ith posi-
tion of the protein sequence being changed to amino acid type j during the
evolution process. Here, the numerical codes 1, 2, . . . , 20 are used to
denote the 20 native amino acid types according to the alphabetical order
of their single character codes. The L · 20 scores in Eq. (5) were generated
by using PSI-BLAST [8] to search the Swiss-Prot database (version 52.0
released on 6-March-2007) through three iterations with 0.001 as the
E-value cutoff for multiple sequence alignment against the sequence of
the protein P, followed by a standardization procedure given below:

Vi!j ¼
V0

i!j � V0
i

� �
SD V0

i

� � ði ¼ 1; 2; . . . ; L; j ¼ 1; 2; . . . ; 20Þ ð6Þ

where V0
i!j represent the original scores directly created by PSI-BLAST [8]

that are generally shown as positive or negative integers; V0
i

� �
the mean of

V0
i!j over 20 native amino acids; SD V0

i

� �
the standard deviation of V0

i!j.
The standardized scores will have a zero mean value over the 20 amino
acids and will remain unchanged if going through the same conversion
procedure again. The positive score means that the corresponding muta-
tion occurs more frequently in the alignment than expected by chance,
while the negative one means just the opposite. However, according to
the PSSM descriptor (Eq. (5)), proteins with different lengths will corre-
spond to row-different matrices. To make the PSSM descriptor become
a size-uniform matrix, one possible approach is to represent a protein
sample P by

�PPSSM ¼ �V1
�V2 � � � �V20

� �T ð7Þ

where

�Vj ¼
1

L

XL

i¼1

Vi!j ðj ¼ 1; 2; . . . ; 20Þ ð8Þ

where �Vj represents the average score of the amino acid residues in the
protein P being changed to amino acid type j during the evolution process.
However, if �PPSSM of Eq. (7) was used to represent the protein P, all the
sequence-order information during the evolution process would be lost.
To avoid complete loss of the sequence-order information, the concept
of the pseudo amino acid (PseAA) composition as originally proposed
in [9,10] was adopted; i.e., instead of Eq. (7), let us use the pseudo posi-
tion-specific scoring matrix (Pse-PSSM) as given by

Pn
Pse-PSSM ¼ �V1

�V2 � � � �V20 Un
1 Un

2 � � � Un
20

� �T ð9Þ

to represent the protein P, where

Un
j ¼

1

L� n

XL�n

i¼1

Vi!j �VðiþnÞ!j

� �2 ðj ¼ 1; 2; . . . ; 20; n < LÞ ð10Þ

meaning that U1
j is the correlation factor by coupling the most contiguous

PSSM scores along the protein chain for the amino acid type j; U2
j that by

coupling the second-most contiguous PSSM scores; and so forth. Note
that, as mentioned in the Material section, the length of the shortest pro-
tein sequence in the benchmark dataset is L = 50, and hence the value al-
lowed for n in Eq. (10) must be smaller than 50. When n = 0, Un

j becomes a
naught element and Eq. (9) is degenerated to Eq. (7).

Optimized evidence-theoretic k nearest neighbor (OET-KNN) classifier.
The OET-KNN classifier is a very powerful classification engine as dem-
onstrated by its role in enhancing the success rates of predicting protein
subcellular localization [11], where a detailed mathematical formulation
for OET-KNN was also provided in the Appendix B. Here, we just give a
brief description of how to use it to identify enzyme, its main-class and
subclass. First of all, let us consider the top-level problem, i.e., to identify a
protein as enzyme or non-enzyme with the benchmark dataset
S ¼ Sezy [ Snon-ezy(Eq. (1)). Suppose the process in identifying the query
protein P among the two classes by OET-KNN is formulated as

OET-KNN .P¼
OET-KNN.PFunD ¼K1ðK; iÞ; for FunD frame

OET-KNN.Pn
Pse-PSSM ¼K2ðK;n; iÞ; for Pse-PSSM

�

ð11Þ

where x represents an action operator, K1(K, i) the creditability score for
the query protein believed in the ith class when it is defined in the FunD
frame (Eq. (3)), K is the parameter selected for the OET-KNN classifier
[11], K2(K,n, i) the corresponding creditability score when the prediction
is operated in the Pse-PSSM frame (Eq. (9)), and n the parameter selected
for defining Pn

Pse-PSSM (Eqs. (9) and (10)). Accordingly, using different



Table 1
Success rates by the jackknife test in identifying the enzyme proteins and
non-enzyme proteins

Protein type Number of
proteins

Number of
correct predictions

Success
rate (%)

Enzyme 9832 9089 92.4
Non-enzyme 9850 8875 90.1

Overall 19,682 17,964 91.3

Table 2
Success rates by the jackknife test in identifying enzyme main functional
classes

Enzyme main
functional class

Number of
proteins

Number of
correct predictions

Success
rate (%)

EC.1: Oxidoreductase 1618 1478 91.4
EC.2: Transferase 3450 3260 94.5
EC.3: Hydrolase 2791 2711 97.1
EC.4: Lyase 679 578 85.1
EC.5: Isomerase 518 433 83.6
EC.6: Ligase 776 749 96.5

Overall 9832 9209 93.7
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descriptors to represent protein samples may lead to different results; even
if the same descriptor is adopted, selecting different parameters may lead
to different results as well. In order to get a unique result, the fusion
approach is introduced as formulated below.

Fusion approach. The parameter K in Eq. (11) is the number of the
nearest proteins counted against the query protein during the prediction
process [12]. Generally speaking, for most training datasets, when K > 10
the success rate drops down remarkably and hence we can narrow the
scope of K from 1 to 10. Also, the parameter n must be smaller than 50, the
number of amino acids for the shortest protein sequence in the benchmark
dataset. Therefore, the final predicted result should be determined by a
fusion approach through the following voting mechanism. According to
Eq. (11), the voting score for the query protein P belonging to the ith class
is given by

Pi ¼
X10

K¼1

w1
KK1ðK; iÞ þ

X10

K¼1

X49

n¼0

w2
K;nK2ðK; n; iÞ; ði ¼ 1; 2Þ ð12Þ

where i = 1 is for enzyme and i = 2 for non-enzyme, w1
K and w2

K;n are the
weight factors and were set at 1 for simplicity, thus the query protein P

is predicted belonging to the class or subset for which the score of Eq.
(12) is the highest; i.e.,

l ¼ arg max
i

Pif g; ði ¼ 1; 2Þ ð13Þ

where l is the argument of i that maximize Pi. If there is a tie, then the

final predicted result will be randomly assigned to one of their correspond-

ing subsets although this kind of tie case rarely happens and actually was

not observed in the current study.

By changing (i = 1,2) to (i = 1,2, . . . ,6) and working on the bench-
mark dataset S

ezy (Eq. (1)), Eqs. (11)–(13) can be automatically used to
solve the 2nd-level problem; by changing to (i = 1,2, � � � ,18) and working
on S

ezy
1 (Eq. (1)), solve the 1st problem at the 3rd-level; and so forth. Such

a procedure is the so-called top–down approach, and the entire predictor
called EzyPred.

The above fusion approach not only can incorporate both the func-
tional domain information and the protein evolution information but will
also automatically solve the problem caused by the incompleteness of the
FunD database. For example, if a query protein has no hit whatsoever
Fusion
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when searching the Pfam database, it will correspond to a naught vector
according to Eq. (3). The creditability score for a naught vector is zero by
default (i.e., K1(K, i) = 0) according to Eq. (11), and the creditability score
will be solely determined by K2(K,n, i) derived from the Pse-PSSM frame.

To provide an intuitive picture, a flowchart to show how to fuse the
FunD approach and Pse-PSSM approach is given in Fig. 2A, and that to
show the top–down approach process of the 3-layer predictor is given in
Fig. 2B.
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Table 3
Success rates by the jackknife test in identifying sub-classes of the six main functional classes

Number of
proteins

Number of
correct predictions

Success
rate (%)

Subclass of oxidoreductases (EC.1)
EC.1.1: Acting on the CH–OH group of donors 449 440 98.0
EC.1.2: Acting on the aldehyde or oxo group of donors 158 138 87.3
EC.1.3: Acting on the CH–CH group of donors. 149 101 67.8
EC.1.4: Acting on the CH–NH2 group of donors 72 56 77.8
EC.1.5: Acting on the CH–NH group of donors 117 92 78.6
EC.1.6: Acting on NADH or NADPH 207 186 89.9
EC.1.7: Acting on other nitrogenous compounds as donors 35 17 48.6
EC.1.8: Acting on a sulfur group of donors 76 65 85.5
EC.1.9: Acting on a heme group of donors 69 66 95.7
EC.1.10: Acting on diphenols and related substances as donors 42 34 81.0
EC.1.11: Acting on a peroxide as acceptor 71 68 95.8
EC.1.12: Acting on hydrogen as donor 17 14 82.4
EC.1.13: Acting on single donors with incorporation of molecular oxygen 47 32 68.1
EC.1.14: Acting on paired donors, with incorporation or reduction of molecular oxygen 173 157 90.8
EC.1.15: Acting on superoxide as acceptor 25 23 92.0
EC.1.16: Oxidizing metal ions 20 14 70.0
EC.1.17: Acting on CH or CH2 groups 67 58 86.6
EC.1.18: Acting on iron–sulfur proteins as donors 26 16 61.5

Overall 1820 1577 86.7

Subclass of transferases (EC.2)
EC.2.1: Transferring one-carbon groups 529 512 96.8
EC.2.2: Transferring aldehyde or ketone residues 34 34 100
EC.2.3: Acyltransferases 324 294 90.7
EC.2.4: Glycosyltransferases 467 443 94.9
EC.2.5: Transferring alkyl or aryl groups (other than methyl groups) 277 267 96.4
EC.2.6: Transferring nitrogenous groups 114 112 98.3
EC.2.7: Transferring phosphorous-containing groups 1039 1007 96.9
EC.2.8: Transferring sulfur-containing groups 63 57 90.5

Overall 2847 2726 95.8

Subclass of hydrolases (EC.3)
EC.3.1: Acting on ester bonds 1228 1214 98.9
EC.3.2: Glycosylases 464 446 96.1
EC.3.4: Acting on peptide bonds (peptide hydrolases) 486 446 91.8
EC.3.5: Acting on carbon–nitrogen bonds other than peptide bonds 436 408 93.6
EC.3.6: Acting on acid anhydrides 665 632 95.0

Overall 3279 3146 95.9

Subclass of lyases (EC.4)
EC.4.1: Carbon–carbon lyases 340 329 96.8
EC.4.2: Carbon–oxygen lyases 365 350 95.9
EC.4.3: Carbon–nitrogen lyases 62 50 80.7
EC.4.4: Carbon–sulfur lyases 31 23 74.2
EC.4.6: Phosphorus–oxygen lyases 56 56 100
EC.4.99: Other lyases 38 34 89.5

Overall 892 842 94.4

Subclass of isomerases (EC.5)
EC.5.1: Racemases and epimerases 111 102 91.9
EC.5.2: cis-trans-Isomerases 110 109 99.1
EC.5.3: Intramolecular oxidoreductases 207 186 89.9
EC.5.4: Intramolecular transferases (mutases) 139 133 95.7
EC.5.5: Intramolecular lyases 11 5 45.5
EC.5.99: Other isomerases 61 61 100

Overall 639 596 93.3

Subclass of ligases (EC.6)
EC.6.1: Forming carbon–oxygen bonds 496 493 99.4
EC.6.2: Forming carbon–sulfur bonds 36 34 94.4

(continued on next page)
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Table 3 (continued)

Number of
proteins

Number of
correct predictions

Success
rate (%)

EC.6.3: Forming carbon–nitrogen bonds 364 358 98.4
EC.6.4: Forming carbon–carbon bonds 13 11 84.6
EC.6.5: Forming phosphoric ester bonds 46 44 95.7
EC.6.6: Forming nitrogen–metal bonds 10 9 90.0

Overall 965 949 98.3
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Results and discussion

In statistical prediction the independent dataset test,
sub-sampling test, and jackknife test are often used in liter-
atures for examining the accuracy of a predictor. Among
these three, the jackknife test is deemed the most rigorous
and objective [13], and hence has been increasingly adopted
by investigators in examining the quality of various predic-
tion methods (see, e.g., [14–32] as well as a recent review
[33] in this regard).

The jackknife cross-validation results by EzyPred on the
datasets S and Sezy (cf. Eq. (1) and Online Supporting
Information A) are given in Tables 1 and 2, respectively,
from which we can see that the overall success rate in iden-
tifying the proteins as enzymes or non-enzymes is 91.3%,
and that the overall success rate in identifying the enzymes
among their six main functional classes is 93.7%. The cor-
responding results by EzyPred on the datasets S

ezy
1 , S

ezy
2 ,

S
ezy
3 , S

ezy
4 , Sezy

5 , and S
ezy
6 (cf. Eq. (2) and Online Supporting

Information B) are given in Table 3, from which we can see
that the overall success rates in identifying the subfamily
classes of oxidoreductase, transferases, hydrolases, lyases,
isomerases, and ligases are 86.7%, 95.8%, 95.9%, 94.4%,
93.3%, and 98.3%, respectively.

It was reported [34] that even for the pair fragments with
>50% sequence identity the probability of having a same
EC number (enzymatic function) is <30%, meaning that
enzyme function is much less conserved than anticipated.
However, for the current datasets in which none of
enzymes has P40% sequence identity to any others in a
same subset, the overall success rates by the EzyPred in
identifying the main functional classes of enzymes and their
subclasses are very high. As is well known, the more the
number of classes to be identified, the less the success rate
will be. However, even for the oxidoreductase dataset S

ezy
1

consisting of 18 subfamily classes, the overall success rate
obtained by the EzyPred is above 86%, indicating that Ezy-

Pred is a very powerful predictor in identifying enzymes,
their main classes, and their subclasses.
Conclusion

The reason why EzyPred predictor can yield so high suc-
cess rates is because it operates by fusing the FunD
approach and Pse-PSSM approach. The former is closely
related to the functions of proteins, while the latter can
incorporate their evolution information. It is anticipated
that with more data available in the ENZYME database,
the current top–down EzyPred predictor can be extended
to cover sub-subclass and sub-sub-subclass of enzymes as
well. EzyPred is available to the public at the site http://
chou.med.harvard.edu/bioinf/EzyPred/.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.bbrc.
2007.09.098.
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