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Abstract
Background: Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new
structures, but often these have no known molecular functions. One approach to recover this information
is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and
may suggest functional similarity when geometrically matched to other structures. Since experimentally
determined functional sites are not common enough to define 3D templates on a large scale, this work
tests a computational strategy to select relevant residues for 3D templates.

Results: Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA)
pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant
structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first
three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most
likely function could be predicted as the annotation with the most matches, and in these cases such a
plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary
to sequence homology-based annotations. When matches are required to both geometrically match the
3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is
greater than either method alone, especially in the region of lower sequence identity where homology-
based annotations are least reliable.

Conclusion: These data suggest that knowledge of evolutionarily important residues improves functional
annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method
bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large
scale, and general adjunct to combine with other methods to decipher protein function in the structural
proteome.
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Background
Structural genomics projects such as the Protein Structure
Initiative ("PSI") aim to provide an experimental structure
for all proteins [1-3], but as of May 2007 over one third of
the nearly 4,400 protein structures deposited into the pro-
tein structure databank (PDB) [4] with the keyword
"structural genomics" were either hypothetical proteins or
without known function. The annotation of these struc-
tures remains an important goal essential to understand-
ing their biological meaning. Ideally, such annotations
might be obtained experimentally, through automated
generalized screens for some enzymes [5]. However, fur-
ther efforts are required to develop efficient and large scale
assays that cover the most relevant protein functions, and
so far just 5% of current annotations are from direct exper-
iments [6].

Thus 95% of annotations rely on the computational iden-
tification of similarity between a protein of unknown
function and one of known function. Most frequently this
similarity is common ancestry, identified by BLAST [7] or
PSI-BLAST [8]. This is most reliable when sequence iden-
tity is above 40% and matched with a profile [9-11], but
errors will occur at lower sequence identity [9,12-16].
Probably some fraction of annotations are misleading
[17,18] and may even propagate to other proteins [19-
21]. It is thus imperative to develop and combine new
techniques to increase annotation reliability. Meta-servers
such as ProFunc [22] and JAFA [23] pool annotations
from multiple sources. In order to raise the predictive
value of these servers it is important to continue to
improve each individual method.

These other methods exploit other types of functionally
relevant similarities between proteins: one such is general
structural similarity (DALI [24], VAST [25], SSM [26],
Grath [27], PDBFun [28], TOPS [29], SuMo [30,31], CM
[32]); another is local sequence similarity of a few resi-
dues that are highly specific to function, such as pre-
defined sequence motifs [33,34]. Such motifs can be gen-
eralized to structures as 3D templates that represent key
functional residues and their geometry. Examples include
the geometric matching of 3D templates to proteins of
unknown function (Jess [35,36], Rigor [37], Pints [38],
ASSAM [39], GASPS [40], and several methods used by
ProFunc [22,41]), the comparison of surface patches or
clefts (Surfnet [42], VOIDOO [43], CASTp [36], SiteEn-
gine [44], pvSOAR [45]), or of structural binding site loca-
tions (Surfnet-ConSurf [46], eF-site [47], Cavbase [48],
PDBSiteScan [49,50]). Such 3D templates may identify
functional analogs that converged to perform the same
function despite sharing no discernable homology [51].
Overall, though, the total number of motifs that are exper-
imentally identified remains small compared to the vast
number and functional diversity of proteins [52].

The goal of this study is to generalize 3D template anno-
tation methods by addressing the limited number of
experimentally determined templates. Our hypothesis is
that even without prior knowledge of a catalytic mecha-
nism, evolutionary information can suffice to identify
functional sites, extract representative 3D templates and
search for relevant geometric matches in other structures.
To test this possibility, we use the Evolutionary Trace (ET)
[53-57]and build an automated Evolutionary Trace Anno-
tation (ETA) pipeline. Benchmarks on 98 enzymes show
that the annotation accuracy of ETA is high and remains
so at low sequence identity, making it a useful comple-
ment to homology annotations.

Results and Discussion
Annotation Pipeline Overview
The ETA functional annotation pipeline integrates the
steps in Figure 1. The input, or query X, is a protein struc-
ture of unknown function. Step one constructs a 3D tem-
plate: points in a precise relative geometry that represent
the locations and types of amino acids deemed necessary
and sufficient for the activity of X. Next, the 3D template
is matched in other structures from the PDB, or targets, to
identify those with similar local structures – meaning that
the 3D template can be superimposed to closely match
some part of the target. To further increase functional rel-
evance, a filter only accepts matches that fall on evolution-
arily important sites in the target. The function of X is then
predicted to be one of the functions among the remaining
matches, and specifically to be the one found most often
if such a plurality exists.

Each of these tasks is broken down into smaller steps. To
build templates, the method first uses ET to rank the resi-
dues of a protein structure by their relative evolutionary
importance [56] and to locate a functional site by identi-
fying the largest structural cluster of top-ranked residues.
A template picker routine then uses heuristics to select spe-
cific residues and choose points to represent them (see
below). To search for local structural similarity between a
template and a structure in the PDB, the Match Augmen-
tation (MA) algorithm [58,59] searches for sub-structures
with geometric and chemical similarity to the template
residues and organizing the search by ET ranks. Next, a
geometric filter selects the most statistically significant
matches based on the least root-mean-squared-deviation
(RMSD) relative to the template, and a support vector
machine (SVM) further selects matches based on the evo-
lutionary importance and geometric similarity of the
matched residues. The Enzyme Commission annotations
(EC numbers) [60] of these significant matches represent
a set of possible functions for the query protein. Since spu-
rious matches should involve random functions, we
hypothesize that a function with the most matches – the
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one with a plurality of matches – is most likely to be accu-
rate.

Template design without prior knowledge of functional 
sites
In order to design 3D templates we tested several heuris-
tics to choose how many residues to include; which ones
to pick; and how to represent them geometrically. In turn,
several heuristics for one of these choices were tested in a
training set of 53 diverse enzymes while the other two
choices were held at reasonable values. For example, to
select which residues to pick, the template size was set at
six residues and the template representation was set to Cα
atoms only. Then, starting from a protein surface cluster of
at least 10 top-ranked ET residues, alternative templates
were constructed based on heuristics that biased tem-
plates towards ET rank, sequence conservation, solvent
accessibility, or local topology (see Methods). These tem-
plates were then processed in the ETA pipeline and, as
shown in Figure 2(a), the ET Rank heuristic, which picks
the most evolutionarily important residues, had the best
positive predictive value (PPV) of about 80% – in line
with other choices – but a 2- to 3-fold improvement in
sensitivity over the other heuristics.

To choose the best geometric representation, we consid-
ered either one or many points per template residue, cen-
tered on atoms or pseudo-atoms. A simple backbone Cα
representation was chosen given its 2- to 3-fold higher
sensitivity with little decrease in PPV compared to other
methods (see Figure 2b). Finally, after testing template
sizes between 4 and 8 residues per template we chose 6,
because it yields the best combination of PPV and sensi-
tivity (Figure 2c). In summary, reasonable 3D templates
appear to consist of the six most evolutionarily important
residues from a surface trace cluster represented them by
their Cα atoms.

Functional relevance and optimality of templates
The rationale for building templates from clusters of top-
ranked ET residues is that the latter usually overlap func-
tional sites [55]. In order to confirm the functional rele-
vance of the automated 3D templates, they were therefore
compared with SITE records (functional site residues
identified in PDB structure files [4]) and CSA (Catalytic
Site Atlas) records [52]. Consistent with the lack of exper-
imentally identified functional sites, only 10 and 33 of the
53 training set enzymes had SITE and CSA records, respec-
tively. Of these, half (5 and 18 respectively) consisted of
only two residues, and only two in each case had six or
more residues.

The ET-based templates fully identified the SITE residues
once, and partially overlapped them in six other cases, as
shown for the Rieske iron-sulfur protein shown in Figure

Illustration of the automated functional annotation pipelineFigure 1
Illustration of the automated functional annotation pipeline.
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Average positive predictive value (black bars) and sensitivity (white bars) in the training set for several heuristicsFigure 2
Average positive predictive value (black bars) and sensitivity (white bars) in the training set for several heuristics: (a) choosing 
residues for the 3D template; (b) representing those residues as points, with single-point methods left of the grey line and mul-
tiple-point methods right of it; or (c) choosing the size of the template.
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3(a). In the three remaining cases, the SITE record was not
matched yet the templates were still biologically relevant.
In casein kinase II (Figure 3(b)), the SITE records describe
only one of two metal-binding sites (Zn and Mg), while
the template picker identified the other one. In beta-lacta-
mase, there are three ligands, and the ETA template sur-
rounding the two non-metal ligands is not described in
the SITE records. In the final example, the template over-
laps with records in the CSA [52]. Thus the templates are
functionally relevant in all 10 cases, although neither they
nor the SITE records are a complete representation of the
proteins' functional sites.

Likewise, comparison with CSA shows the ET-based tem-
plates typically overlap the known functional sites. Of the
33 proteins with CSA records (89 residues total), 24
(73%) proteins include one of these residues in the tem-

plate itself, and 26 proteins (79%) found at least one of
these residues at the same rank that the template was
picked from. Furthermore, all but one of the templates
were chosen from the same region as the CSA templates.
In the single exception, 1goiA, the template residues were
picked from a highly-ranked arm of the protein whereas
the CSA annotations form a cluster of less highly-ranked
residues in a cleft near the center.

Although ETA templates are functionally relevant, they
may not be optimal. To test this possibility we compared
them, in the training set, to a random sample of up to 500
unique, six residue, Cα-only templates randomly sampled
from surface ET clusters. As shown in Figure 4, the PPV of
ETA templates is best in 35 of the 53 proteins, often by a
wide margin. In 32 proteins, the surface trace cluster had
only 11 residues, so all 462 possible choices were tested.

Overlap (purple spheres) of ET Rank template residues (red spheres) with SITE records (green spheres) provided by the PDB, in the context of the surface trace cluster (red sticks) from which the template residues were chosenFigure 3
Overlap (purple spheres) of ET Rank template residues (red spheres) with SITE records (green spheres) provided by the PDB, 
in the context of the surface trace cluster (red sticks) from which the template residues were chosen. (a) Rieske iron-sulfur 
protein (PDB 1RIE); (b) Casein kinase II (PDB 1QF8, chain A).
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ETA templates had the best PPV in 24 of these 32 cases,
and the second best one in 2 more. In 16 cases where ETA
templates do not perform well, none of the random tem-
plates achieves a large PPV. Overall, ETA templates are
close to optimal, suggesting that they typically do capture
a small number of top-ranked surface residues that are
functionally informative and yield high PPV.

Template Matching
The next step is to identify template matches. A search
against the PDB finds on the order of 5,000 matches that
fit the template's amino acids and geometry over a wide
range of RMSDs, from 0–10Å, and a statistical filter then
retains only those with p-values below 1%. Most of these
remaining matches are still functionally irrelevant, as seen
in Figure 5(a), because a single p-value cannot be biolog-
ically relevant in all cases: Some, like kinases or proteases,
will have very many functional homologs and analogs
while other proteins will have very few.

The evolutionary importance of the matched target resi-
dues is an essential criterion to distinguish true from irrel-
evant matches [56]. The rationale is that biologically
relevant matches should fall on evolutionarily important
sites while a random match will fall anywhere, regardless
of evolutionary importance. Figure 5(b) shows that
indeed the ET ranks of target residues separate many false
matches. Once an SVM was trained (see Methods) to sep-
arate matched targets based on RMSD and evolutionary
importance, it considerably narrowed the range of possi-
ble annotations as only a handful of matches are left.

Functional Annotation
The ETA pipeline was tested first in 49 enzymes with
known EC numbers picked randomly from the PDB (see
Methods). ETA extracted templates from each, matched
them in the PDB90 (see Methods), and extracted targets
accepted by the SVM. Matches to target proteins with the
same first 3 EC number digits as the query protein were
deemed correct. On average each template had 3.3

PPV for each of the 53 proteins in the training set (highest PPV in red squares, others in purple diamonds) and for the tem-plates with randomly chosen residues (green triangles, highest PPV; blue 'X's, others)Figure 4
PPV for each of the 53 proteins in the training set (highest PPV in red squares, others in purple diamonds) and for the tem-
plates with randomly chosen residues (green triangles, highest PPV; blue 'X's, others). All residue combinations were sampled 
for the 32 proteins on the left; 500 templates were randomly sampled for the 21 proteins on the right.
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(a) Stacked cumulative histogram of RMSDs of significant (p-value ≤ 1%) matches, including matches with the same function (red) and different function (blue)Figure 5
(a) Stacked cumulative histogram of RMSDs of significant (p-value ≤ 1%) matches, including matches with the same function 
(red) and different function (blue). (b) Scatterplot of these same matches, adding the average absolute value of the difference in 
evolutionary importance between the matched and query residues to allow separation of true and false matches.
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matches, and 2.1 were correct. The range was variable,
however: 10 templates had no matches at all, while two
templates had 34 hits and 10 hits, respectively. As
described in Table 1, 33 of the 39 templates match at least
one protein with the correct identical function (85%).
Strikingly, 32 templates achieve a plurality of matches to
a single EC annotation and 30 of these identify the correct
function (94%).

To test ETA in the most stringent and relevant case, these
retrospective control experiments were repeated in 49 ran-
domly chosen PSI enzymes with known EC numbers, the
PSI test set (Table 2). Again, the templates averaged 3.3
matches, of which 2.1 were correct. Of 38 templates with
at least one match, 30 find at least one correct hit (79%).
Among the 28 templates that achieve a plurality of hits to
one function, that function is correct in 22 cases (79%).

The ultimate goal of ETA is to provide functional annota-
tions for PSI proteins, which are more stringent than most
PDB proteins because they are required to have less than
30% sequence identity with any other PDB protein [61-
66]. Since these proteins represent a sparser sampling of
structures than the PDB set, a concern is that the plurality
voting procedure, which relies on multiple matches to the
same function, will yield far fewer correct predictions in
such cases, and indeed accuracy is reduced from 94% in

the PDB set to 79% in the PSI set and availability is
reduced from 65% to 57%. To more fully account for the
effects of this structural sampling bias present in the target
dataset, we removed matches with progressively decreas-
ing levels of sequence identity to other matches by the
same template in the PSI set [see Additional file 1, Table
S1]. While this does not remove most of the biases inher-
ent in the PDB (towards small, globular, easily-crystalliz-
able proteins, for instance), it at least accounts for
proteins that are more highly represented – a problem
that is not completely alleviated by use of the PDB90. At
80% or 60% sequence identity, no changes are observed;
however at 40% there are 2 fewer correct predictions and
1 fewer incorrect prediction, which provides similar pre-
diction accuracy (80%) and only slightly lower availabil-
ity (51%). Even at the extremely low level of 15%
sequence identity, prediction accuracy only decreases to
73% and availability to 53%, indicating that the accuracy
and availability of ETA and the plurality voting procedure
remains high even when structural sampling is very low,
as it is with most PSI proteins.

Complementarity with homology information
In order to understand the nature of ETA annotations,
they were compared with BLAST and PSI-BLAST, and Fig-
ure 6 suggests that most ETA matches are homologs. ETA,
however, produces fewer false positives so that the specif-

Table 1: PDB set annotation performance with all matches

ETA BLAST PSI-BLAST BLAST + ETA PSI-BLAST + ETA PEAS (voting) PEAS (scoring) PRT (voting) PRT (scoring)

Matches 164 292 365 122 134 18 18 211 49
True matches 102 186 225 93 101 13 13 53 21
Proteins 49 49 49 49 49 49 49 49 49
With matches 39 44 46 36 36 12 12 49 49
With at least one true match 33 39 40 33 33 9 9 30 21
With vote winners 32 40 39 33 33 10 12 30 49
With correct winners 30 39 37 33 33 7 8 28 21
Prediction accuracy 94% 98% 95% 100% 100% 70% 67% 93% 43%
Prediction availability 65% 82% 80% 67% 67% 20% 24% 61% 100%

PDB set annotation performance from the methods: ETA, BLAST, PSI-BLAST, the BLAST+ETA, PSI-BLAST+ETA, and PEAS using either voting or 
scoring to pick the most likely function. Prediction accuracy and prediction availability refer to the voting procedure: prediction accuracy = true 
predictions (i.e., correct vote winners)/total predictions (i.e., vote winners), while prediction availability = total predictions (vote winners)/total 
number of proteins in that set.

Table 2: PSI set annotation performance with all matches

ETA BLAST PSI-BLAST BLAST + ETA PSI-BLAST + ETA PEAS (voting) PEAS (scoring) PRT (voting) PRT (scoring)

Matches 163 177 243 107 117 10 10 75 42
True matches 93 103 120 87 90 6 6 44 27
Proteins 49 49 49 49 49 49 49 49 49
With matches 38 37 35 31 31 7 7 42 42
With at least one true match 30 31 31 28 28 5 5 30 27
With vote winners 28 30 29 25 25 6 7 29 42
With correct winners 22 24 24 24 24 4 5 26 27
Prediction accuracy 79% 80% 83% 96% 96% 67% 71% 90% 64%
Prediction availability 57% 61% 59% 51% 51% 12% 14% 59% 86%
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Venn diagram showing the overlap with true (purple) and false (white) matches to a) the PDB set and b) the PSI set, found by ETA (blue), BLAST (yellow), and PSI-BLAST (orange)Figure 6
Venn diagram showing the overlap with true (purple) and false (white) matches to a) the PDB set and b) the PSI set, found by 
ETA (blue), BLAST (yellow), and PSI-BLAST (orange). Sum of all matches found in each category are at right.
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icity of functional annotation is increased by combining
methods. In the first test set (Figure 6(a)), BLAST finds
186 true matches and 73 false ones, its positive predictive
value, PPVBLAST, is thus 72%. The intersection of BLAST
with ETA has fewer true matches (93) but even fewer false
ones (29) so the combined PPVETA+BLAST is 76% – a relative
increase of 6% over PPVBLAST. Similarly, PPVPSI-BLAST is
68%, whereas PPVETA+PSI-BLAST is 75%, a relative increase of
10%.

The complementarity of ETA and homology methods is
even greater in the PSI set (Figure 6(b)). PPVBLAST is 62%
whereas PPVETA+BLAST is 82% – a 32% relative increase –
and PPVPSI-BLAST is 52%, whereas PPVETA+PSI-BLAST is 77%, a
relative increase of 48%. Thus, ETA is complementary to
homology-based annotation and substantially increases
the predictive value of either BLAST or PSI-BLAST when
combined with them.

One possible concern is that the increased in PPV from
ETA is not significant because it can be achieved with
BLAST alone simply with a more stringent e-value thresh-
old. But, Figure 7 shows that the PPV improvement from
ETA persists across a wide range of e-values and when,
eventually, PPVBLAST and PPVETA+BLAST do converge, at an e-
value of 1e-25, this is at the price of much reduced sensi-
tivity. Otherwise, for higher BLAST e-values, ETA signifi-
cantly increases in PPV – especially in the PSI set where
homologous structures are fewer. For example, at an e-
value of 0.05, the combined method shows a 32% relative
increase in PPV above that of BLAST alone.

A second and related concern is that ETA matches might
mostly arise among proteins with high sequence identity
– a trivial result. Even if this were the case, ETA would still
be of some use to identify residues likely to be the most
functionally important in the target protein and add struc-
tural and functional evidence to that provided by
sequence; however, Tables 3 and 4 suggest that these con-
cerns are unfounded. When matches with sequence iden-
tity above a given threshold are removed, the gains in PPV
from adding ETA to BLAST, or PSI-BLAST, persist as
shown by Figures 8(a) and 8(b). The PPV advantage of the
combined methods is about 50% greater in either the PDB
or PSI test sets. For example, in the latter and at less than
20% sequence identity, PPVBLAST+ETA is 72% greater than
PPVBLAST, and PPVPSI-BLAST+ETA is 68% greater than PPVPSI-

BLAST alone. Thus, combining local structural matches of
ETA templates with homology considerably improves
functional annotation specificity, and does so most at low
sequence identity.

Finally, we asked whether these increases in PPV, meas-
ured over all templates and their matches, translate to
greater annotation accuracy by plurality voting when ETA

is combined with homology methods. Figure 9a shows
that in the PDB test set, BLAST+ETA plurality voting is
always 100% accurate, even when only considering
matches with less than 20% sequence identity (by com-
parison, the plurality voting accuracy of BLAST at less than
20% sequence identity is 88%). Likewise, plurality voting
accuracy in the PSI set, while not 100%, is increased from
11% to 42%, relative to BLAST alone (Figure 9c).
Although this increase in specificity is a trade-off with sen-
sitivity Figures 9(b) and 9(d), these data confirm that ETA
increases the predictive value of homology-based func-
tion annotations, particularly when there are no close
homologs.

Comparison with other template annotation methods
To further benchmark these results, we compared ETA to
two of the template-based methods of ProFunc, since they
also seek to find local geometric similarity between tem-
plates and protein structures. ProFunc offers four tem-
plate-based methods of functional annotation, differing
primarily in the source of their templates: ProFunc's
Enzyme Active Site ("PEAS"), DNA-binding, ligand-bind-
ing, and reverse templates [22]. We first performed the
comparison with the individual method used in ProFunc
that most closely matches our own, PEAS. This method is
both conceptually and methodologically similar to our
own, with the major difference being the source of the
input used to build the motifs: PEAS uses the available lit-
erature on catalytic sites, which is highly desirable for
accuracy but due to the current paucity of such literature
is much less so for usability, while ETA instead predicts
functional residues by the well-known and experimen-
tally-validated ET approach, which we hoped would pro-
vide similar levels of accuracy and much greater
availability. To test this, we submitted each of the proteins
in our PDB and PSI sets to the ProFunc server, whereupon
PEAS annotations were taken as either the result of a plu-
rality voting procedure, or as the top-scoring PEAS match.

ETA provides nearly four times as many predictions as
PEAS and achieves an overall prediction accuracy that is
10% to 34% greater, as shown in Table 1. If only remote
homologs with less than 20% sequence identity are
allowed to match, ETA provides three times more true top
predictions with the same level of accuracy as PEAS. PEAS
builds templates from the available literature on known
catalytic sites. This limited it to only 189 templates at the
time of this analysis (spring 2007), and highlights the
advantage of computing templates from evolutionary and
structural considerations rather than relying on sparse
experimental data.

Even when PEAS templates are available, ETA performs as
well, or better. When PEAS templates predict a most-likely
function, they achieve at most 71% accuracy, while in
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PPV of BLAST (cyan dashed hollow circle) and BLAST+ETA (blue solid circle) as the maximum e-value cutoff for BLAST varies (horizontal axis)Figure 7
PPV of BLAST (cyan dashed hollow circle) and BLAST+ETA (blue solid circle) as the maximum e-value cutoff for BLAST varies 
(horizontal axis). ETA shown as a single point (black diamond) at e-value = 0.05. (a) PDB set; (b) PSI set.
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these cases ETA achieves 100% accuracy in the PDB set
and only provides an incorrect prediction for a single tem-
plate in the PSI set, for a minimum accuracy of 83%, or
74% at less than 20% sequence identity. For example in

the case of glucose dehydrogenase (PDB 1SPX, chain A,
EC 1.1.1), PEAS identifies a single match to a trihydroxy-
naphthalene reductase (PDB 1YBV, chain A, EC 1.3.1)
with 27% sequence identity and a score of 358.094. ETA,
however, finds 24 matches to the correct function (and
none to a different function), 23 of which have less than
30% sequence identity. In another example, ubiquitin car-
boxyl-terminal hydrolase (PDB 1VJV, chain A, EC 3.1.2),
PEAS identifies a single match to the sulfhydryl proteinase
Papain (PDB 9PAP, EC 3.4.22, cysteine endopeptidase)
with 17% sequence identity and a low score of 137.805.
ETA finds a single match to a ubp-family deubiquitinating
enzyme (PDB 1NBF, chain E, EC 3.1.2) with 20%
sequence identity, which is the correct function.

Next we compared ETA with ProFunc's reverse-template
approach ("PRT"), which like ETA also bypasses the need
for experimental knowledge of the catalytic mechanism,
although its method of doing so is quite different. Instead
of defining a single template based on the available func-
tional evidence, it instead tries several likely possibilities
and scores the resulting large set of matches to identify
likely functions [41]. Here the methodological differences
and especially the level of access provided to this method
by the ProFunc web server made such a comparison more
difficult. First, only 5 of perhaps 20 significant matches
are reported by ProFunc, leaving many of the matches
with low sequence identity below the reporting cutoff.
Thus, we were not able to perform the comparison with
low sequence identity matches as we did for PEAS (the
low number of hits by PEAS allows it to avoid this restric-
tion). Second, the larger number of hits also exaggerated
concerns about redundancy between matches, so we
restricted our consideration to those in the PDB90 (this
was not done in PEAS, as only 2 proteins contributed
more than one match). Self-matches (matches sharing the
same PDB code as the query) were also removed in all
three methods.

Similar to PEAS, PRT annotations were taken as either the
result of a plurality voting procedure, or as the top-scoring
PRT match. Unlike PEAS, however, PRT sometimes found

Match PPV of ETA (black dashed hollow diamond), BLAST (cyan dashed hollow circle), PSI-BLAST (orange dashed hol-low square), the intersection of BLAST+ETA (blue solid cir-cle), and the intersection of PSI-BLAST+ETA (red solid square)Figure 8
Match PPV of ETA (black dashed hollow diamond), BLAST 
(cyan dashed hollow circle), PSI-BLAST (orange dashed hol-
low square), the intersection of BLAST+ETA (blue solid cir-
cle), and the intersection of PSI-BLAST+ETA (red solid 
square). The horizontal axis represents decreasing levels of 
match sequence identity. (a) PDB set; (b) PSI set.

Table 3: PDB set annotation performance with matches having ≤20% sequence identity

ETA BLAST PSI-BLAST BLAST + ETA PSI-BLAST + ETA PEAS (voting) PEAS (scoring)

Matches 55 119 191 13 25 9 9
True matches 18 73 113 9 17 6 6
Proteins 49 49 49 49 49 49 49
With matches 24 26 33 11 16 5 5
With at least one true match 10 16 20 7 10 3 3
With vote winners 13 17 25 7 12 5 5
With correct winners 8 15 19 7 10 3 2
Prediction accuracy 62% 88% 76% 100% 83% 60% 40%
Prediction availability 27% 35% 51% 14% 24% 10% 10%
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matches to non-enzymes, and these cases were counted as
false predictions in the scoring method, although like ETA
they did not contribute a vote in the EC plurality voting
method. Overall, PRT identified a comparable number of

matches to the other individual methods, but strikingly,
only 25% of these were to the correct function (PPV =
25%, whereas that of ETA is 2.5-fold higher at 62%).
These matches are contributed by all 49 proteins (no

Table 4: PSI set annotation performance with matches having <20% sequence identity.

ETA BLAST PSI-BLAST BLAST + ETA PSI-BLAST + ETA PEAS (voting) PEAS (scoring)

Matches 71 59 123 15 25 4 4
True matches 17 15 31 11 14 1 1
Proteins 49 49 49 49 49 49 49
With matches 23 22 22 9 9 4 4
With at least one true match 9 8 14 6 7 1 1
With vote winners 18 17 18 9 8 4 4
With correct winners 7 8 11 6 6 2 2
Prediction accuracy 39% 47% 61% 67% 75% 50% 50%
Prediction availability 37% 35% 37% 18% 16% 8% 8%

Annotation performance of ETA (black dashed hollow diamond), BLAST (cyan dashed hollow circle), PSI-BLAST (orange dashed hollow square), the intersection of BLAST+ETA (blue solid circle), and the intersection of PSI-BLAST+ETA (red solid square)Figure 9
Annotation performance of ETA (black dashed hollow diamond), BLAST (cyan dashed hollow circle), PSI-BLAST (orange 
dashed hollow square), the intersection of BLAST+ETA (blue solid circle), and the intersection of PSI-BLAST+ETA (red solid 
square). The horizontal axis represents decreasing levels of match sequence identity, and the vertical axis represents: (a) PDB 
set voting accuracy; (b) PDB set voting availability; (c) PSI set accuracy; (d) PSI set availability.
Page 13 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:17 http://www.biomedcentral.com/1471-2105/9/17
other method compared herein found predictions for all
proteins), but only 30 proteins contribute a true match.
Using the plurality voting procedure, 30 proteins have a
vote winner, 28 of which are correct. This high level of
accuracy and availability of predictions is only slightly
lower than that of ETA. The scoring method increases the
availability of predictions, as every protein has a top-scor-
ing match, but this match is correct in only 43% of cases,
thus decreasing prediction accuracy to less than half that
provided by any other method except PEAS. This suggests
that the results provided by PRT are more likely to be true
when multiple hits are found to the same function. Even
so, only 21 proteins with at least one true match were
found out of 49 with matches (43%). The proportion of
proteins contributing at least one true match out of the
total that contribute matches is quite low in comparison
to the other methods in Table 1. For example, even the use
of plurality voting on PRT's matches yielded only 30 pro-
teins with one true match out of 49 with matches (61%),
whereas ETA finds 33 of 39 with matches (85%) and
BLAST finds 39 of 44 (89%).

While the prediction accuracy and availability of PRT and
ETA is similar in the PDB set (although the proportion of
proteins with at least one true match is much lower), PRT
performs better in the PSI set. Overall PRT identified 75
matches, 44 of which are correct (59% PPV, in compari-
son to ETA's 57%). Here, only 42 proteins contributed
matches, but again this is a higher number than any other
method, although only 30 provide a correct match. As in
the PDB set, this proportion is lower than any of the other
methods (PRT, 71%; ETA, 79%; BLAST, 84%). Using plu-
rality voting on these matches, however, yields the highest
accuracy of any individual method, with 26 correct votes
out of 29 total (90% accuracy, 59% availability), com-
pared to ETA's 22 correct votes out of 28 (79% accuracy,
57% availability). Again though, using the function of the
top-scoring hit only provides 64% accuracy, the lowest of
any method in Table 2, with 86% availability.

These results indicate that while PRT finds many false
matches (as do all of the individual methods), and while
the top-scoring hit is only correct about half of the time in
the PDB and PSI sets, using plurality voting brings its
accuracy to a level comparable with other methods in the
PDB set and even exceeding that of the other methods in
the PSI set, while maintaining nearly the same availabil-
ity. ETA, in comparison, has slightly higher voting accu-
racy and availability in the PDB set, and much higher PPV
and proportion of proteins with at least one true match.
In the PSI set, ETA has lower voting accuracy, comparable
voting availability and PPV, and again a much higher pro-
portion of proteins with at least one true match. These
results are remarkable considering that ETA uses but a sin-
gle template whereas PRT uses many.

Sensitivity Limitations
ETA's failure to match and annotate convergent proteins
[67] is worth noting. It may have arisen for many reasons.
First, examples may be lacking from the dataset. But, an
ETA search on a serine protease (query PDB 1SPX, EC
3.4.21) produced 21 hits to other serine proteases, none
of which was to a protein with a different fold than the
query. Thus the templates are fold-specific. One reason
may be that they are too large, as choosing six Cα atoms
from a surface trace cluster is less precise than and may not
be as general as specific atoms from the classic "catalytic
triad" of serine proteases. Or perhaps the ETA templates,
which are rigid, cannot overcome tolerated conforma-
tional differences. Finally, 3D templates would be
unlikely to identify wholesale rearrangements of the cata-
lytic residues or changes in the mechanism itself [51]. In
the future, multiple geometric representations of smaller
templates may improve sensitivity across folds.

ETA also failed to identify some homologs with identical
functions. These arose for one of three reasons. First, the
amino acid type allowed to match at each template posi-
tion was occasionally incomplete because representative
sequences were missing from or too infrequent in the
alignment. Such infrequent variations may be genuine
allowable substitutions, such as the case of the nitrile
hydratase (PDB 2AHJ, chain A) and the glutathione s-
transferase (PDB 1E6B, chain A); a similar event occurs in
the case of the cellulase (PDB 1CEN) where none of the
sequences chosen for inclusion in the multiple sequence
alignment contained the appropriate substitution, which
is found in just one of the BLAST matches.

Second, the SVM does not perfectly separate relevant from
random matches. Some matches fall on the wrong side of
the separating hyperplane, as happened for a glutathione
s-transferase (PDB 1F2E, chain A) – a problem that may
be reduced with additional training data or features.

Third, the problem occasionally lies in confused annota-
tion of multi-domain proteins, when ETA incorrectly
treats the entire protein as having one function. If it then
picks template residues from the domain that is missing
annotation, as happened in the case of the topoisomerase
(PDB 1EJ9, chain A), an error ensues.

Finally, to further understand false negatives missed by
both ETA and BLAST, we compared functional sites as
defined by both SITE [4] or CSA [52] but found no simi-
larities that would have been recognized by ETA or BLAST.
Such remote homologs and analogs may perform the
same function via a different mechanism or geometry
[51], which would be very difficult if not impossible for
3D template methods to find.
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Specificity Limitations
False positives are also a concern. These arose often due to
missing, partial, or wrong EC annotations. For example,
two matches to a Rieske iron-sulfur protein template
(PDB 1RIE) lack EC annotation in the PDB and a third
had an EC number different at the second digit. Yet all
three, considered false, in fact have identical Gene Ontol-
ogy (GO) [68] biochemical function annotation with the
query ("ubiquinol-cytochrome-c reductase activity").
Likewise, two matches to a cAMP-dependent protein
kinase template (PDB 1RGS) have no EC annotation but
they share the same GO biochemical function annotation
("cAMP-dependent protein kinase regulator activity").
Similarly, a match to a beta-lactamase template (PDB
1K55, chain A) without EC annotation in the PDB also
shares GO biochemical annotation ("penicillin-binding,
beta-lactamase activity") with the query. Finally, in one
instance, a match to a glutathione transferase (PDB 6GSV,
chain A) template failed to be recognized as correct
because the EC annotation of the match (PDB 1HNL) was
not extracted from its non-standard PDB file (released
Dec. 22, 1994). These examples taken from the training
set suggest that at least 7 of 8 matches classified as false
positives are in fact correct.

Conclusion
To address a key limitation of 3D templates to annotate
enzyme function – the sparseness of available experimen-
tal data to define templates [56], this study tested the
hypothesis that evolutionary information could be used
instead. Evolutionary data are often plentiful, and easily
analyzed to identify key functional sites and residues with
which to search for functional similarities among pro-
teins. Thus, evolution-based 3D template annotation
could be attempted in any protein with known structure
and sufficiently diverse sequence homologs.

The automated ETA method was implemented to pick six
of the most evolutionarily important residues from the
surface of a protein, represent them by their Cα atoms,
identify their relevant matches in the PDB and to pick the
function with a plurality of matches. The most stringent
tests, on 49 PSI proteins, show that ETA narrows the list of
likely functions to just a few possibilities and correctly
identifies the single most likely function in 79% of cases.
Although these predictions are currently limited to
homologs, they are not trivial since they involve predic-
tions on proteins with low sequence identity. Thus ETA is
complementary to homology-based annotation: in the
PSI set, combining these approaches raises voting accu-
racy by 20% relative to BLAST alone. Significantly, this
improvement is even greater in the region of low sequence
identity – precisely where homology methods are known
to be less accurate.

These results prove the hypothesis, extend the range of
application of 3D template functional annotation to a
majority of enzymes with little or no information on their
catalytic activity, and highlight the central role that evolu-
tionary information can play at every step of function pre-
diction: template definition, geometric matching, and
filtering matches based on their ET ranks. The results also
show that despite the fairly low atomic resolution of 3D
templates, limited to Cα-only representation, the evolu-
tionary information provided by ET captures some of the
key determinants of catalysis, and leads to a general
method to build 3D templates and improves the accuracy
of functional annotation.

Future directions should include more refined descrip-
tions of side chain atoms; taking into account experimen-
tal information when available; exploring new matching
strategies to allow larger-scale application; and integrating
functional prediction with alternative methods of annota-
tions. The approach could be extended to non-enzymes,
using ET ranks to suggest 3D templates for co-factors,
small ligands, or macromolecular interactions, and using
GO annotations [68] for functional predictions. This
approach may also have application beyond function
annotation, for example fold-specific rather than func-
tion-specific residues could be used to annotate SCOP
fold classifications [69,70]. For now, this fully automated
functional annotation pipeline (to be available at our web
site [71]) increases the accuracy of enzyme annotations
for structural genomics, often narrowing experimental
confirmation to one or just a few likely functions for
which to assay.

Methods
Datasets
The training set was chosen to be diverse at the levels of
sequence, structure, and function. It contains 53 diverse
enzymes with less than 25% sequence identity to one
another, representing 33 4-digit EC numbers and 13 3-
digit EC numbers. The first test set, the PDB set, includes
49 enzymes with known function randomly chosen to be
representative of the PDB. The second, the PSI set, was
built similarly with structures from the PSI to assess per-
formance in structural genomics proteins. Both originally
contained 50 proteins, but one from each was also found
in the training set (with the same PDB code) and
removed. The remaining proteins in the PDB and PSI sets
have no more than 38% and 44% sequence identity to
any protein in the training set, respectively. These proteins
had available functional annotations in the form of com-
plete 4-digit EC numbers. The PDB code, EC annotation,
SCOP class, SCOP fold, and functions of each protein in
these three datasets are available in the supplementary
tables [see Additional file 1, Tables S2–S4]. Templates
were searched against one of two target sets of annotated
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proteins. For the optimization experiments (Figure 2),
matches were searched against 13,600 chains from the
2002 PDB. This set includes only a single chain for pro-
teins with multiple chains due to crystallographic symme-
try. Mutants, ionically perturbed structures, and small
peptide fragments were manually identified and removed.
For all other experiments, templates were searched against
the 2004 PDB-SELECT-90, (PDB90) [72,73], a represent-
ative, non-redundant subset of the PDB with less than
90% sequence identity to one another (at the time the
most computationally-intensive portion of this work was
done, the 2006 version was not yet available). This dataset
of 8,600 proteins decreases bias towards overrepresented
proteins such as lysozyme, which lead to incorrect results
from our statistical and machine learning filters in cases
where such proteins represent more than 1% of the entire
set of structures in the PDB, and also makes the computa-
tionally-intensive template matching step (see below)
more practical. In the 2002 PDB and PDB90 sets, 5,200
and 2,800 proteins have full, unambiguous (only one) 4-
digit EC annotation while 7,900 and 5,400 have none.
Only 500 (<4%) and 400 (<5%) matches have partial or
ambiguous (i.e. more than one) EC annotation. These
matches were discarded and not counted as either true or
false.

3D Template Creation
ET analyses were performed using an automated [55],
real-valued [74] version of the ET algorithm [53]. The evo-
lutionary importance and the alignment provided for ET
will be used to create templates. The Template Picker starts
with the best-ranking residues and then consider lower-
ranking residues until the largest structural cluster (all res-
idues having at least one non-hydrogen atom within 4 Å
of another residue in the cluster) contains at least 10 resi-
dues, excluding those with solvent accessibility less than 2
as measured by DSSP [75] (a cutoff chosen by manual
observation).

Next, template residues are chosen from the surface trace
cluster according to one of the following heuristics. "ET
Rank" picks the most evolutionarily important residues;
"No Surface" eliminates the surface constraint; "Start Sur-
face" starts with the most solvent-accessible residue and
then picks nearby evolutionarily important ones; "Con-
servation" favors residues with the least amino acid varia-
tion in the alignment; "Compact" starts at the centroid of
the cluster and picks nearby residues; "Cleft" starts at the
least solvent-accessible residue and then picks nearby res-
idues that are relatively inaccessible to solvent; and "Sol-
vent Accessibility" picks the most solvent accessible
residues, regardless of their evolutionary importance. All
heuristics break ties by choosing residues closest to the
average position of the centroids of the current template
residues and the trace cluster.

These residues are represented as a set of geometric points
labeled with their evolutionary importance and amino
acid types that appear more than once in the correspond-
ing column of the multiple sequence alignment. Single-
point methods choose points according to one of the fol-
lowing heuristics. "Cα " and "Cβ " use the Cα or Cβ atoms
of the residues; "Average Cα-Cβ " uses a point between the
Cα and Cβ atoms; and "Average All" uses the centroid of
the amino acid (excluding hydrogen atoms). Similarly,
multiple-point methods use the following heuristics:
"Cα+Average Sidechain" uses the Cα atom and the cen-
troid of the sidechain; "Cα+Cβ " uses both the Cα atom and
the Cβ atom; and "All Atoms" uses a set of points repre-
senting each non-hydrogen atom in the amino acid.

Template Matching
To find matches to a template in a set of target structures,
we applied Match Augmentation, a geometric pattern
matching tool that uses the evolutionary importance of
each residue and the amino acid variability information at
those positions [58,59,76]. MA matches a query template
to a target structure in two stages: seed matching first iden-
tifies several low RMSD matches to the template's three
highest-ranked residues; augmentation then iteratively
matches remaining template residues in order of their ET
rank. MA then outputs the lowest RMSD match if one is
found. This enables MA to search the PDB for matches to
a typical template in about 40 minutes on a single proces-
sor. ETA then computes the statistical significance (p-
value) of a match using a nonparametric density estimate
of the distribution of match RMSDs to a target set to
obtain a list of significant matches.

Evaluation of Matches
EC annotations [60] are those reported in the PDB. We
define a true functional match as either exact agreement of
all 4 digits of the hierarchical EC number (optimization
experiments) or those that share the first 3 digits (all other
experiments, unless otherwise stated), excluding matches
to the same PDB code as the query. Matches to proteins
without EC numbers are conservatively classified as false
matches in calculating sensitivity and positive predictive
value, but ignored completely in plurality voting. PPV and
sensitivity measurements are calculated using all matches,
while accuracy and availability refer to the single most
likely function predicted by a plurality of matches. Nega-
tive predictive value and specificity are not reported
because they always exceeded 99% due to the ability of
the SVM and statistical filters to remove the vast majority
of matches to proteins of different functions.

Machine Learning Filtering of Matches
Once MA and the statistical filter identify the matches
with significant chemical and geometric similarity, an
SVM identifies likely functional matches using a 7-dimen-
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sional vector representing the RMSD of the match (one
dimension) and the evolutionary importance of each of
the target residues (6 dimensions, one for each of the 6
matched residues). The former is obtained from the MA
program described above for each match passing through
the statistical filter, and the latter is calculated as simply
the sorted normalized ET rank of each target residue in the
optimization experiments (for the template size experi-
ment, the dimensionality of the vector was adjusted
according to the number of residues in the template), and
in all other experiments as the sorted absolute value of the
difference in ET rank between each of the 6 matching tem-
plate and target residues, with the latter method providing
a modest improvement over the former. SVMs were
implemented using the Spider package for MATLAB [77]
using default settings with a balanced ridge parameter
(calculated as the difference between the proportions of
matches with the same or different functions in the train-
ing data) and an RBF kernel with σ = 0.5 (0.5 was found
to provide the largest increase in SVM PPV over a linear
kernel without decreasing sensitivity amongst a range of
possible parameter values: .01, .05, .1, .25, .5, 1, 2, 5). To
avoid bias in the optimization experiments, predictions
on each training set protein were made by an SVM trained
without representatives of its 4-digit EC number (i.e., 33
SVMs were made, each excluding one of the 33 functions
in the dataset).

BLAST and PSI-BLAST
BLAST and PSI-BLAST searches were performed against
the sequences in the 2004 PDB-90. Matches with an e-
value of 0.05 or better were selected. For PSI-BLAST, 2 iter-
ations were performed and sequences with an e-value
below the cutoff in either iteration were selected.
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