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Abstract

Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction
methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the
Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number
of residues and therefore, information about these critical residues can potentially help discriminate detailed functions.
However, because these residues must be identified by mutagenesis experiments, the available information is limited, and
the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed
function prediction methods and computational identification of SDRs. Here we present a novel method for predicting
enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs).
EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions
corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98
and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for
specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally
diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and
superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for
annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily.
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Introduction

Almost all chemical reactions in living organisms are catalyzed

by enzymes [1]. For a thorough understanding of cellular

processes, it is essential to determine enzyme functions, i.e., what

types of reactions are catalyzed, and what chemical compounds

are utilized as substrates or cofactors. Prediction of enzyme

function is a longstanding problem and many methods have been

developed. The targeted functional details range from the broadest

classification level such as enzyme/non-enzyme discrimination to

a highly specific scheme such as the four-digit Enzyme Commis-

sion (EC) numbers [2]. Also, different types of features have been

used, such as sequence/structural similarities, physico-chemical

properties of amino acids, specific sequence/structural motifs, and

their combinations [3–12]. Furthermore, many methods have

been proposed recently for large-scale prediction of protein

functions defined by Gene Ontology (GO) terms [13]. However,

the most widely used method for functional annotation remains

the simplest one: the transfer of functions based on sequence

similarity calculated by BLAST/PSI-BLAST [14,15], despite its

known limitations [16–19]. Moreover, predicting a precise enzyme

function is still a significant challenge, as only a few methods

currently available can predict the full four-digit EC numbers. The

knowledge of such detailed functions can help determine true

substrates for disease-related enzymes and design specific inhib-

itors for drug targets.

Enzymes in a protein family are considered to be evolutionary

related. In many cases, these enzymes have similar but different

functions. Divergence of sequences and functions are different in

each family. Some enzymes, which share the sequence identity of

over 90%, have different functions and differ in the first-digit of

their EC numbers [16–19]. On the other hand, some enzymes, the

sequence identity of which is below 30%, share all four digits of the

EC numbers. This nonlinear correlation between function and

sequence similarity makes the identification of detailed functions of

enzymes such a difficult task.

One solution to overcome this problem is to use the information

about functionally critical residues. The construction and use of

sequence motifs can be considered an example of this approach

[20,21]. Residues critical for functions, mutations of which bring

drastic changes in the catalytic efficacy or substrate specificity, are

sometimes called specificity determining residues (SDRs) or
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function determining residues (FDRs). Proper information about

SDRs is expected to improve the ability to distinguish enzyme

functions [22–24]. However, such information is limited, because

SDRs are determined by mutagenesis experiments. Therefore,

most prediction methods use other properties serving as a proxy

for SDRs [4,6,23–26]: catalytic residues, ligand binding sites or

residues conserved in a functional subfamily. The lack of

information about SDRs has hindered the development of

computational methods for identifying SDRs [27–30] as well as

predicting detailed functions.

Some machine learning methods can construct classifiers from a

large number of attributes and calculate contributions from each

attribute. Random forests [31] are one of the most accurate

machine learning algorithms used for many applications, including

the analysis of microarray data [32,33] and prediction of protein-

protein interactions [34,35]. For enzyme function prediction,

random forests have been applied for assigning the first or second

digit of the EC numbers [7,8,36,37]. These methods used several

hundreds of physico-chemical features calculated from only the

full-length sequences and thus, provided no information about the

importance of each residue for discriminating different functions.

In this study, we applied random forests, for the first time, for

predicting the four-digit EC numbers (rather than only the first or

second digit) in each homologous superfamily and also for

obtaining a putative set of SDRs at the same time by using

residue position specific attributes. We focus on a problem of

discriminating detailed enzyme functions within a single protein

family, since methods for assigning a protein sequence to an

existing family have been well established. Thus, we assume that a

functionally unknown protein has been already classified into a

known protein family by sequence similarity. Given this frame-

work, our objectives were two-fold; first, we aimed to develop a

method that can predict the full four-digit EC number for a given

protein. Second, we aimed to define putative SDRs as the most

highly contributing positions used in our prediction model.

Characterizing these ‘‘computational defined SDRs’’ in a system-

atic manner should mitigate the lack of experimentally defined

SDRs.

Our analysis is based on the CATH domain classification [38];

we created a dataset from the UniProtKB/Swiss-Prot database

[39] by selecting the enzymes, which had complete four-digit EC

numbers and for which CATH homologous superfamilies were

assigned by Gene3D [40]. For each enzyme in each superfamily,

binary predictors were constructed by random forests with full-

length sequence similarities and the residue similarities for active

sites, ligand binding sites and conserved sites as input attributes.

From the most highly contributing attributes, we obtained a set of

putative SDRs and termed them random forests derived SDRs (rf-

SDRs). The predictors (EFPrf) showed a performance comparable

to that of a related method currently available and the rf-SDRs

included many residues, for which functional importance had been

verified by experimental studies. This study revealed a general

tendency that functionally diverged superfamilies tend to include

more active site residues (ASRs) in their rf-SDRs than in less

diverged superfamilies. From the analysis of selected superfamilies,

we also made superfamily-specific observations that conserved

residues across enzymes, even if functionally important, tend not

to be selected as rf-SDRs.

Results and Discussion

Overview of the enzyme function prediction
Figure 1A describes an overview of the enzyme function

prediction method by random forests (EFPrf). A query to the

system is a domain sequence pre-assigned to a CATH homologous

superfamily (indicated as CATH X.X.X.X in the figure) by

Gene3D. We chose a CATH homologous superfamily as a unit of

protein family because a structure-based classification scheme can

capture more distant proteins than a sequence-based one. In

CATH X.X.X.X superfamily, binary predictors for each enzyme

have been developed (Figure 1B). In each predictor, the query is

aligned to the representative sequence by the FUGUE software

[41] with the structure environment-specific substitution tables

(ESSTs). Based on the alignment, the similarity scores for the full-

length sequence and at the functional sites are calculated for the

input to the predictor.

Dataset construction
We selected the enzyme sequences from the UniProtKB/Swiss-

Prot database, for which complete EC numbers are assigned, and

obtained their CATH domain regions from the Gene3D database.

After removing redundancies, predictors have been constructed

for the enzymes that had ten or more sequences and had at least

one other enzyme in the superfamily (with a total of ten or more

sequences) as negative data (Figure 2; see Materials and Methods

for more details). Thus, we have built predictors for 1121 enzymes

distributed over 306 CATH superfamilies. The representative

structures for each enzyme were selected from the CATH S-level

representatives with the longest sequence length and the highest

resolution. In each superfamily, 3.7 enzymes were selected for

constructing predictors on average. In 89 superfamilies, a single

predictor was constructed. Fifteen superfamilies contained more

than ten enzyme predictors and the largest superfamily was the

NAD(P)-binding Rossmann-like domain superfamily (CATH

3.40.50.720) with 65 predictors (Table S1 and Figure S1). All

the superfamilies, for which at least one predictor was created,

were included in the analysis below.

Additional information to BLAST score improved the
precision of the prediction

To investigate whether the use of the information about

functional residues improves prediction performance or not, we

built two types of predictors. First, we created simple decision trees

by C4.5 with the BLAST bit score for the top hit in each enzyme

as an attribute (‘‘the simple model’’). Because BLAST scores are

the most widely used measure for function transfer, the simple

model served as our baseline for predicting enzyme functions.

Next, we constructed a second set of predictors by random forests

(EFPrf) with more attributes. Three scoring matrices, BLOSUM62

[42], position specific scoring matrices (PSSM) [43] and ESST-

based structural profiles, were used to calculate the scores at the

active site residues (ASRs), ligand binding residues (LBRs) and

conserved residues (CSRs), in addition to the full-length scores.

The resulting 12 ( = 364) attributes and the BLAST score were

used as input to the system.

In a cross-validated benchmark assessment (see Materials and

Methods), we followed a previous study [4] and calculated the

maximal test to training sequence identity (MTTSI) for each

query, and evaluated the prediction performance for eight

different MTTSI ranges separately. Figure 3 and Table S2 show

recall and precision averaged in each of the eight MTTSI ranges.

(The average was taken by using only the enzymes, for which

precision or recall was defined in the given MTTSI range.) In

Figure 3A, recall in all ranges shows no significant differences

between the simple model and EFPrf. On the other hand,

precision improved significantly by EFPrf, especially in the lowest

MTTSI range, where distinguishing functions by sequence

similarity alone is known to be difficult (Figure 3B). This result

Enzyme Function Prediction by Random Forests
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indicates that the additional information about functionally

important residues is useful for discriminating detailed functions.

Table 1 shows the prediction performance averaged over the 1121

enzyme predictors (see Table S3 for the individual values).

Although a general trade-off between recall and precision was

observed, the statistically significant increase in the F-measure

achieved by EFPrf over the simple model also suggested the

usefulness of the additional attributes of ASRs/LBRs/CSRs.

Because of differences in the training and test datasets, a direct

comparison of performance with other methods is difficult but the

prediction performance of EFPrf (recall = 0.30, precision = 0.78 in

MTTSI ,30%) is comparable to or better than that of EFICAz2

[4,5] (recall = 0.23, precision = 0.74 in MTTSI ,30%), which

combines FDRs recognition, sequence similarity and support

vector machine (SVM) models. Moreover, EFICAz2 and EFPrf

achieved an average precision of above 0.9 for MTTSI $40%,

which is considered to be a ‘‘non trivial achievement’’ [4,17].

General properties of the random forest derived SDRs
In constructing the EFPrf, importance scores for each attribute

were also calculated. We selected the top 36!n attributes as

‘‘highly contributing attributes’’, where n is the number of input

attributes for each enzyme, and defined the residue positions in the

highly contributing attributes (except for the full-length sequence

similarity score) as the ‘‘random forests derived SDRs’’ (rf-SDRs)

(Table S4). (In all enzymes, the full-length sequence similarity

score was included in the highly contributing attributes, consistent

with the result that the simple model was a modestly successful

predictor.) On average, 8.4 residue positions were selected as the

rf-SDRs for each enzyme. Among the position specific attributes

calculated with different scoring matrices, the most frequently

selected were those with PSSMs, suggesting that PSSMs may

represent the amino acid differences among enzymes having

similar structures/functions more clearly than the other scoring

matrices (Table S5).

Figure 1. Outline of the EFPrf system (A) and the predictor for each enzyme constructed by Random Forests (B). A query to the system
is a domain sequence pre-assigned to a CATH homologous superfamily by Gene3D. For each CATH superfamily, binary predictors, each for a known
enzyme, process the query and return their results (A). In each predictor, the query is aligned to a representative sequence by the FUGUE software.
Based on the alignment, similarity scores for the full-length sequence and at the functional sites are calculated for the input to the predictor (B).
doi:10.1371/journal.pone.0084623.g001

Figure 2. Outline of dataset construction. From the UniProtKB/Swiss-Prot database, the enzyme sequences, for which complete EC numbers are
assigned, were obtained and their CATH domain regions from the Gene3D database were selected. After adding CATH entries and removal of
redundancies, the enzymes having less than ten sequences were removed. The representative structures for each enzyme were selected from the
CATH S-level representatives. In the remaining sequences, a predictor was constructed for an enzyme, which has sufficient numbers of positive and
negative sequences (see Materials and Methods for more details). Randomly selected 80% of the sequences were used for training. The remaining
20% of the sequences were used as a test dataset.
doi:10.1371/journal.pone.0084623.g002
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Figure 4 shows the amino acid propensity for the rf-SDRs. The

propensity of amino acid i was obtained as the fraction of amino

acid i in the rf-SDRs divided by the fraction of amino acid i in all

representative enzyme domains. In general, polar or charged

residues were overrepresented in the rf-SDRs and non-polar

residues were underrepresented. In polar, aromatic and charged

residues, Trp, Tyr, Cys, Asn, Arg and His had a particularly high

propensity value and in non-polar hydrophobic residues, Ala, Val,

Leu and Ile had a low propensity value. In charged residues, Lys

and Glu were underrepresented. This biased distribution of

charged residues suggests that the delocalized charge in the

guanidino group of Arg may be better utilized for SDRs than the

charge in Lys, as observed in protein-protein interactions [44], and

that the short side chain of Asp, with a smaller degree of freedom

than that for Glu, is more suitable to form specific interactions.

Some of the propensity values are different from those observed in

the Catalytic Site Atlas (CSA) [45]; Asn favored for non-catalytic

sites in the CSA [46], was overrepresented in the rf-SDRs and Lys

and Glu, favored for catalytic sites in the CSA, were underrep-

resented. These differences are likely due to different definitions of

functional residues, because the rf-SDRs were selected from not

only catalytic sites but also ligand binding and conserved sites.

To analyze the relationships between functional diversity and

the residues important for distinguishing functions, we classified

superfamilies based on the functional entropy, defined by using the

number of distinct EC numbers up to the third- and forth-digit

levels (see details in Materials and Methods; Table S6). In the

third-digit level classification, the three classes defined, the low-,

medium- and high-degrees of functional diversity, approximately

corresponded to having one, two to four, and more than four

distinct EC numbers at the third-digit level within each

superfamily. In the fourth-digit level classification, the low-,

medium- and high-degrees of diversity corresponded to having

one to five, six to ten and more than ten distinct EC numbers at

the fourth-digit level within each superfamily. The prediction

performance for the most diverged class was shown to be lower

than that for the other classes in both the third- and fourth-digit

based classification schemes (Tables S7 and S8).

We then decided to examine what proportion of the ASRs or

LBRs were selected as rf-SDRs in each superfamily. We excluded

the CSRs from this analysis, because the ASRs and LBRs should

be more directly linked to enzyme functions, whereas the

identification of CSRs depended on the number of available

sequences. If we consider all the superfamilies, the rf-SDRs

included either no ASRs, about half of them or all of them

(corresponding to peaks at zero, 0.5 and one in Figure S2), while in

many superfamilies, about half of the LBRs were selected to be rf-

SDRs (a peak around 0.5). We next examined these quantities as a

function of functional diversity. Figure 5 and Table S9 showed

that the proportion of ASRs to be selected as rf-SDRs increased

with functional diversity, as defined by numbers of the third-digit

EC number level functions. Although this tendency was weak (with

moderate statistical significance for the difference; p-value = 0.019

for the superfamilies with low and medium functional diversity,

and p-value = 0.017 for those with low and high functional

diversity by the Wilcoxon rank sum test), it is consistent with the

notion that enzymes in a superfamily with low functional diversity

often have similar active sites and similar catalytic mechanisms

and thus, ASRs generally do not distinguish different functions.

On the other hand, the proportion of LBRs to be selected as rf-

SDRs decreased slightly from medium to high functional diversity

Figure 3. Prediction performance of EFPrf. The recall (A) and precision (B) at each level of the maximal test to training sequence identity (MTTSI)
are plotted for the simple model (red) and the EFPrf (blue). Error bars represent 95% confidence intervals in each MTTSI range.
doi:10.1371/journal.pone.0084623.g003

Table 1. Prediction performance.

Model Precision Recall F-measure

Simple 0.94 0.91 0.92

EFPrf 0.98 (,2.2e-16) 0.89 (1.3e-5) 0.93 (0.009)

The values in the parentheses represent the p-values calculated against the
simple model by paired t-test.
doi:10.1371/journal.pone.0084623.t001

Figure 4. Amino acid propensities for the rf-SDRs. The propensity
of amino acid i was calculated as the fraction of amino acid i in the rf-
SDRs divided by the fraction of amino acid i in all representative
enzyme domains.
doi:10.1371/journal.pone.0084623.g004
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but almost unchanged between low and high functional diversity,

suggesting that LBRs can discriminate functions in superfamilies

with all ranges of functional diversity. The same tendency was

observed with functional diversity defined by numbers of the

fourth-digit EC number level functions (Figure S3 and Table S10).

The similar tendencies between the two classification schemes,

observed in prediction performance and the proportions of ASRs

and LBRs, may be accounted for by the observation that

superfamilies with high functional diversity at the third-digit level

generally have many distinct fourth digits in each third-digit EC

number function.

Examples of superfamilies and enzymes
In this section, we describe a detailed investigation of the

properties of the rf-SDRs in selected enzymes from superfamilies

with different degrees of functional diversity. To remove potential

biases associated with protein folds, we first show three superfam-

ilies from a single fold, and next we show an additional example

from a different fold. Only three folds, TIM barrel (CATH

3.20.20), a-bplaits (CATH 3.30.70) and Rossmann fold (CATH

3.40.50), satisfied the condition of having superfamilies in each of

all three classes of functional diversity and in each class, containing

at least one enzyme, for which the ASR information was available.

From these three, we selected the TIM barrel fold (CATH

3.20.20). The TIM barrel, (a/b)8-barrel fold, is one of the largest

and oldest fold and in the enzymes belonging to this fold, all the

active sites are located at the C-terminal ends of the b-strands. As

typical examples of superfamilies with low and high functional

diversity, we chose glycosidases (CATH 3.20.20.80) and aldolase

class I (CATH 3.20.20.70), respectively. We then chose phospho-

enolpyruvate-binding domains (CATH 3.20.20.60) as an example

of the superfamilies with medium functional diversity, although the

number of enzymes with available ASR information was limited

and the proportion of ASRs to be selected as rf-SDRs was

somewhat atypical. Therefore, we additionally examined the a/b-

hydrolase superfamily (CATH 3.40.50.1820) as a second example

of the superfamilies with medium diversity, because this super-

family highlighted deviations from the average properties of this

class of superfamilies explained by the well conserved catalytic

triad.

Glycosidase superfamily (CATH 3.20.20.80). The glyco-

sidase superfamily, where most enzymes belong to glycosidases

(EC. 3.2.1), is a superfamily with low functional diversity. In our

dataset, this superfamily contained 16 different glycosidases (EC

3.2.1) and three different hexosyltransferases (EC 2.4.1) (Table S3).

The white bars in Figure 6 shows the distribution of the positions

of the active site residues at eight C-terminal ends of the b-strands

in this superfamily, highlighting three main catalytic residues at

the b-strands 4, 7 and 6. This observation is consistent with the

fact that 12 of the 16 glycosidases in this superfamily have been

characterized as members of a group known as ‘‘the 4/7 group’’

[47–49]. (In the literature, this group is normally referred to as

‘‘the 4/7 superfamily’’ but to avoid confusion, we use the term

group here.) The enzymes in the 4/7 group utilize two conserved

catalytic acidic residues located at the C-terminal ends of b-strands

4 (acid/base) and 7 (nucleophile), as well as residues at the end of

b-strand 6, which modulate the nucleophile. This biased

distribution is reflected in the proportion of ASRs to be selected

as rf-SDRs (32.7%), which was lower than the average for the

Figure 5. Distributions of fractions of the rf-SDRs in active site residues (ASRs, A) and ligand binding residues (LBRs, B), observed in
the superfamilies with low, medium and high degrees of functional diversity classified at the third-digit level of EC numbers. The
top and bottom of a box indicate 75th and 25th percentiles and the horizontal line in a box represents the median value. The top and bottom
whiskers represent 90th and 10th percentiles.
doi:10.1371/journal.pone.0084623.g005

Figure 6. The distribution of active site residues at the end of
eight b-strands of enzymes in the superfamilies adopting the
TIM barrel fold. White bars represent the glycosidase superfamily
(CATH 3.20.20.80), light gray bars represent the phosphoenolpyruvate-
binding domain superfamily (CATH 3.20.20.60), and gray bars represent
the aldolase class I superfamily (CATH 3.20.20.70). The percentages were
calculated by using 18, three and 29 enzymes for glycosidases,
phosphoenolpyruvate-binding domains and aldolase class I, respec-
tively, for which active site information was available.
doi:10.1371/journal.pone.0084623.g006
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group of superfamilies with low functional diversity (35.0%),

(Tables S9 and S11).

Figure 7 shows two example enzymes of the 4/7 group, endo-

1,4-b-xylanase (EC 3.2.1.8, Figure 7A) and cellulase (EC 3.2.1.4,

Figure 7B). In both enzymes, none of the two 4/7 catalytic

residues (Glu 159, Glu 265 in Figure 7A and Glu 170, Glu 307 in

Figure 7B, respectively) was selected as the rf-SDRs. The rf-SDRs

included some residues on b-strand 6, His 236 in endo-1,4-b-

xylanase and His 254 and Tyr 256 in cellulase, which contact the

nucleophiles and are invariant in each enzyme but different

between the two enzymes [50–52]. The proportion of ASRs to be

selected as rf-SDRs in endo-1,4-b-xylanase is lower (0.25) than

that in cellulase (0.5), possibly because the former enzyme share

the active site residues (other than the 4/7 catalytic residues) with a

larger number of other enzymes such as glucan 1,4-a-maltohy-

drolase (EC 3.2.1.133) and cyclomaltodextrin glucanotransferase

(EC 2.4.1.19) than the latter enzyme.

The rf-SDRs also included some LBRs, which are located in

similar spatial positions but not equivalent in the sequence

alignment, His 95 (endo-1,4-b-xylanase) and His 122 (cellulase)

[50] shown to be essential for ligand binding by mutagenesis

experiments [53–55], and the residues critical for determining the

substrate positions, Trp 241 at the +3 subsite [56], Asn 59 and Lys

62 at the -2 subsite [57], in endo-1,4-b-xylanase.

Aldolase class I superfamily (CATH 3.20.20.70). The

Aldolase class I superfamily is known to be an old family including

a variety of enzymes. In our dataset, predictors for 34 different

enzymes were constructed in this superfamily (Table S3). These 34

enzymes included EC numbers with six different first-digits,

showing the highest functional entropy in all the superfamilies.

The ASR positions showed a broad distribution, indicating that

the numerous functions are achieved by the active sites located at

various ends of b-strands (Figure 6, dark gray bars). For instance,

in 5-aminolevulinic acid dehydratase (ALADH, EC 4.2.1.24) [58],

the catalytic Lys 195 and Lys 247 are positioned at the ends of b-7

and b-8, respectively and in phosphoribosylformimino-5-aminoi-

midazole carboxamide ribonucleotide (ProFAR) isomerase (HisA,

EC 5.3.1.16) [59], the catalytic Asp 8 is positioned at the C-

terminal end of b-1. Aldolase class I enzymes typically have

substrates or cofactors with a phosphate-group, such as flavin

mononucleotide (FMN), but enzymes in this superfamily also act

on a variety of other substrates. The proportion of ASRs to be

selected as rf-SDRs (51.9%) was higher than the average for the

group of superfamilies with high functional diversity (43.7%)

(Tables S9 and S11). This observation suggests that the ASRs

located differently among the enzymes can be used effectively for

discriminating different functions in this superfamily.

Figures 8A and 8B show the rf-SDRs of quinolinate phosphor-

ibosyltransferase (hQPRTase; EC 2.4.2.19) and a-galactosidase (a-

Gal; EC 3.2.1.22) as examples of enzymes having dissimilar

functions. The rf-SDRs of hQPRTase included one core residue of

the phosphate binding motif [60] Ala 268 at the end of b-10,

which corresponds to b-8 in a conventional (a/b)8 barrel (in

Figure 8A, the numbering of the b-strands based on the

conventional barrel), and one of the catalytic residues, Lys 140

on b-1. Leu 170 and Lys 172 on b-4, the conformational change of

which was suggested to be important for the specificity and

reaction mechanism [61], were also included (Figure 8A). On the

other hand, a-Gal recognizes the substrate having no phosphate

moiety, mainly around the C-terminal ends of b-3 to b-6 [62]. In

addition to the nucleophile Asp 130 at the end of b-4, many LBRs

on these b-strands were selected as rf -SDRs (Figure 8B).

Figures 8C and 8D show ProFAR isomerase (HisA) (EC

5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF)

(EC 5.3.1.24) as examples of enzymes having more similar

functions. These enzymes catalyze the Amadori rearrangements

of different substrates ProFAR and PRA by similar mechanisms

[63,64]. These substrates share a ribose-5-phosphate moiety, and

ProFAR has an additional ribose connected by imidazole and

PRA has an anthranilate moiety. Also known are PriA, which can

catalyze both reactions, and its close homologue subHisA, which

lacks the TrpF activity [65].

In the rf-SDRs of HisA, the only known catalytic residue (Asp 8)

was selected. In TrpF, the corresponding active site, Cys 7, was not

selected and the reason is unclear. In LBRs, some residues

interacting with different moieties of each substrate were selected

to be rf-SDRs: Ser 34 and Arg 36 of TrpF, which interact with the

anthranilate moiety of the substrate [66], Gly 20 and Leu 52 of

HisA, which would interact with the imidazole and attached

amide moieties (inferred from the homologous PriA structure).

Additionally, the rf-SDRs included His 48 and Trp 138 of HisA,

likely to be important for the catalytic activity for PRA (also

Figure 7. The rf-SDRs for (A) endo-1,4-xylanase (EC 3.2.1.8, CATH domain: 1r87A00) and (B) cellulase (EC 3.2.1.4, CATH domain:
1edgA00) in the glycosidase superfamily (CATH 3.20.20.80). The rf-SDRs are represented by balls and sticks, where nitrogen atoms are
colored blue, oxygen atoms are red, sulfur atoms are yellow and carbon atoms are white. The carbon atoms of the active sites selected as rf-SDRs are
colored magenta. Eight b-strands in a conventional barrel are colored blue, cyan, green, lemon, yellow, yelloworange, orange, and red, from the N-
terminal to the C-terminal. In both enzymes, none of the two catalytic acid residues common in many enzymes in the superfamily, colored magenta,
was selected.
doi:10.1371/journal.pone.0084623.g007
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inferred from the PriA structure) [67]. In addition to these

residues, different residues in different enzymes were selected,

from those interacting with common parts of the substrates such as

the phosphate moiety.

Phosphoenolpyruvate-binding domain superfamily (CATH

3.20.20.60). The phosphoenolpyruvate-binding domain super-

family mainly consists of transferases (EC 2) and lyases (EC 4).

Most of these enzymes have substrates or cofactors with a

phosphate-moiety, while the phosphate binding sites are distrib-

uted over the C-terminal ends of b-strands 2 to 6. The predictors

for six different enzymes consisting of two phosphotransferases

with paired acceptors (EC 2.7.9), two oxo-acid-lyases (EC 4.1.3)

and other transferases (EC 2) were constructed (Table S3). This

superfamily was classified into the group of medium functional

diversity.

Despite generally dissimilar active sites among these enzymes

(Figure 6, light gray bars), the proportion of ASRs to be selected as

rf-SDRs (23.5%) was lower than the average for the group of

superfamilies with medium functional diversity (43.4%) (Tables S9

and S11). This result may be explained by the conservation of

some of the active site residues. For example, pyruvate phosphate

dikinase (EC 2.7.9.1) has the only known active site, Cys 831 [68]

and this position in the alignment was also occupied by cysteine in

pyruvate water dikinase (EC 2.7.9.2) (although no active site

information is available for the latter enzyme). This position was

not selected to be an rf-SDR, decreasing the average proportion of

ASRs to be selected.

a/b-hydrolase superfamily (CATH 3.40.50.1820). a/b-

hydrolase superfamily is one of the large superfamilies, containing

a wide variety of enzymes such as carboxylic acid ester hydrolases,

peptidases, lipid hydrolases and haloalkane dehalogenases. In our

dataset, predictors for 13 enzymes were constructed (Table S3). All

these enzymes shared the first digit of the EC number (EC3;

hydrolases) and this superfamily belonged to the group of

superfamilies with medium functional diversity. A variety of

functions are achieved by the conserved catalytic triad: a

nucleophile (Ser, Cys or Asp) positioned after b-5, an acidic

residue after b-7 and histidine after the last b-8 strand, and the

versatile substrate binding sties by insertions and deletions at the

C-terminal ends ofb-3, 4, 6, 7 or 8 [69,70]. Such a conserved

catalytic triad and a similar chemical reaction mechanism are

reflected in the proportion of ASRs to be selected as rf-SDRs

Figure 8. The rf-SDRs for (A) quinolinate phosphoribosyltransferase (hQPRTase; EC 2.4.2.19, CATH domain: 1qprF02), (B) a-
galactosidase (a-Gal; EC 3.2.1.22, CATH domain: 1uasA01), (C) phosphoribosylformimino-5-aminoimidazole carboxamide
ribonucleotide isomerase (HisA) (EC 5.3.1.16, CATH domain: 1qo2A00) and (D) phosphoribosylanthranilate isomerase (TrpF) (EC
5.3.1.24, CATH domain: 1nsjA00) in aldolase class I superfamily (CATH 3.20.20.70). The rf-SDRs are represented by balls and sticks, where
nitrogen atoms are colored blue, oxygen atoms are red, sulfur atoms are yellow and carbon atoms are white. The carbon atoms of the active sites
selected as rf-SDRs are colored magenta. Eight b-strands in a conventional barrel are colored blue, cyan, green, lemon, yellow, yelloworange, orange,
and red, from the N-terminal to the C-terminal. The rf-SDRs in the figures A and B clearly show that the rf-SDRs for hQPRTase include the phosphate
binding motif located in b-7 and b-8 in the conventional barrel structure but those for a-Gal are mainly located after b-1 to -5. The figure D shows the
residues interacting with different moieties in substrates between HisA and TrpF, Ser 34 and Arg 36.
doi:10.1371/journal.pone.0084623.g008
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(26.2%), which was lower than the average value (43.4%) for the

group of medium functional diversity (Tables S9 and S11).

For instance, acetylcholine esterase (AChE, EC 3.1.1.7) shown

in Figure 9 has the conventional catalytic triad, Ser, Glu, and His,

and a deep and narrow cavity around the catalytic site called

‘‘active site gorge’’ formed by large insertions, which is considered

to determine the specificity for acetylcholine [71]. In 15 rf-SDRs,

no residue of the catalytic triad was selected and about 40% of the

rf-SDRs were located in the active site gorge. Trp 84 and Phe 330

are known as the anionic site to bind the choline moiety and Tyr

121, Trp 279 and Phe 290 are important for determining the

gorge conformation [72–75]. Phe 290 causes steric hindrance with

a large acyl group in the acyl pocket and plays a critical role in

stabilizing the methyl moiety of acetylcholine [76].

These examples show whether each residue can be selected as

an rf-SDR or not depends on whether it is conserved within a

superfamily regardless of what roles the equivalent residues play in

other enzymes. A residue may be conserved and used as a catalytic

residue for the same chemical reaction in other enzymes and thus,

it tends not to be selected as an rf-SDR, as observed in the

glycosidase superfamily. A conserved residue may be used for

catalyzing different chemical reaction but because of its conser-

vation, it cannot be selected to be an rf-SDR, as observed in the a/

b-hydrolase superfamily. In some superfamilies, different amino

acid residues are used for catalyzing different chemical reactions or

binding different ligands, in which case, these functional residues

can be selected for rf-SDRs, as observed in the aldolase class I

superfamily.

Conclusion

We have developed EFPrf, a novel method based on random

forests for predicting enzyme functions at the fourth-digit level of

the EC number in each CATH homologous superfamily. As input

attributes, we used amino acid residue similarities at ASRs, LBRs

and CSRs, in addition to similarity in the full-length sequence.

The prediction performance of EFPrf improved significantly over

the decision trees constructed using BLAST scores alone (the

simple model), especially in the low MTTSI regions, where it is

known to be difficult to distinguish detailed functions by sequence

similarity alone. This observation suggested that the information

about functionally important sites would be useful for predicting

detailed functions. During the construction of EFPrf, we also

obtained the rf-SDRs from the most highly contributing attributes.

The analysis of the selected superfamilies showed that the rf-SDRs

included many experimentally verified SDRs. Moreover, we

showed that the rf-SDRs reflected the mechanisms of functional

diversification within each superfamily; the rf-SDRs both indicate

a general degree of functional diversity (as measured by the

proportion of ASRs to be selected as rf-SDRs) and the specific

characteristics of each superfamily represented by the conserva-

tions of each residue in a superfamily. Thus, EFPrf is a useful tool

for predicting detailed enzyme functions and the rf-SDRs are a

good resource for determining SDRs by experimental and

computational methods and understanding functional diversity

in a superfamily.

In this paper, we examined individual domain sequences pre-

assigned to a CATH superfamily for validating EFPrf. In practice,

enzyme sequences often consist of multiple domains and in the

future, we will develop a method for combining prediction results

for the individual domains of a query sequence and producing an

overall function prediction. In recent years, many methods have

been proposed for predicting protein functions described by GO

terms [13]. Our method can be extended to GO term prediction

and may be efficient in the low sequence similarity region, where

GO terms are also difficult to predict [24,77].

Materials and Methods

Dataset preparation
Figure 2 shows an outline of the dataset construction. From the

UniProtKB/Swiss-Prot database [39] (release 2010_06), we

selected the enzyme sequences that: i) had been annotated with

complete four-digit EC numbers, ii) were not fragment sequences

and iii) had domains assigned to CATH [38] superfamilies in the

Gene3D database [40]. A total of 332,021 enzyme domain

sequences were obtained. In the following, an enzyme sequence

refers to a protein domain sequence thus created, which was

associated with a single CATH superfamily. The domain

sequences were treated as independent sequences, although some

of these were obtained from single multi-domain proteins. In order

to obtain structural information, the 72,993 enzymes in the CATH

database (ver. 3.3) were added to the 332,021 enzyme sequences.

In each enzyme (as distinguished by the four-digit EC number) in

each superfamily, all these sequences were clustered at a 95%

sequence identity cutoff by using blastclust [78]. Also for each

enzyme, a single representative structure was selected as the

CATH S-level representative structure with the longest sequence

length and the highest resolution. In the 95%-identity cluster that

included the representative structure, the corresponding sequence

was considered the representative of the cluster and in the other

95%-identity clusters, the longest sequence was selected as the

representative. After the removal of redundancy, 201,708

sequences remained.

In the remaining sequences, a predictor was constructed for an

enzyme if: 1) the enzyme belonged to a superfamily that contained

at least one other enzyme in it, 2) the enzyme had a representative

Figure 9. The rf-SDRs for acetylcholine esterase (AChE, EC
3.1.1.7, CATH domain: 1w76B00) in a/b-hydrolase superfamily
(CATH 3.40.50.1820). The rf-SDRs are represented by balls and sticks,
where carbon atoms are colored white, nitrogen atoms are blue,
oxygen atoms are red and sulfur atoms are yellow. The active site gorge
is partially represented by green surface. At the bottom of the active
site gorge, the catalytic triads, which are not selected to be the rf-SDRs,
are represented by balls and sticks and colored magenta. Many rf-SDRs
are positioned around the catalytic gorge region.
doi:10.1371/journal.pone.0084623.g009
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structure and ten or more sequences and 3) a total of ten or more

sequences were available for the other enzymes as negative data in

the superfamily. We randomly selected 80% of the sequences from

a given enzyme and 80% of the sequences from the other enzymes

in the superfamily for training. The remaining 20% of the

sequences were used as a test dataset. A total of 1121 enzymes over

306 CATH homologous superfamilies were selected for bench-

marking.

Calculations of attributes for classifiers
In addition to the BLAST [14,15] bit score, we used two types

of scores as attributes: the scores calculated by using a full-length

sequence and the scores at the functionally important positions in

the alignment of a query sequence to a representative structure.

The functionally important positions were defined to be the active

sites, ligand binding sites and conserved site residues. In the

following sections, we describe the selection of these positions and

the score calculations.

Determination of the alignment positions used for

attribute calculations. i) Active site and ligand binding residue

positions from the literature and structural information: We

obtained the literature information about active site residues from

the Enzyme Catalytic-Mechanism Database (EzCatDB, ver.

20100722) [79] and the Catalytic Site Atlas (CSA, ver. 2.2.12)

[45] database. All annotations in the EzCatDB and the original,

hand-annotated entries derived from the primary literature in the

CSA were used.

Ligand (substrate, cofactor, intermediate, products and their

analogues) information in the Protein Data Bank (PDB) [80] was

obtained from the EzCatDB and PROCOGNATE (ver. 1.6) [81]

databases. All annotations in the EzCatDB and the cognate ligand

entries with similarity scores higher than 0.5 in PROCOGNATE

were used. Ligand binding residues were defined from complex

structures by using LIGPLOT [82]. The residues that interacted

with the ligands through both hydrogen bonds and hydrophobic

interactions were considered as ligand binding residues. Ligand

assignments to obsolete PDB entries were ignored.

We defined active site and ligand binding positions of each

enzyme as the alignment positions, which were used by at least one

PDB entry corresponding to that enzyme as an active site or a

ligand-binding site, respectively. The position used as both active

and ligand binding sites was defined to be an active site residue

(ASR) position. The ASRs and ligand binding residues (LBRs)

were mapped on to the representative structure for the calculation

of attributes based on a multiple structural alignment, generated

by MUSTANG [83], between the available complex structures

and the representative.

ii) Conserved amino acid residue positions: For each enzyme in

the training dataset, a multiple sequence alignment was generated

by clustalw [84] and this alignment was aligned to the

representative structure by FUGUE [41]. FUGUE performs

sequence-structure comparison by utilizing environment-specific

substitution tables (ESSTs). An ESST-based structural profile was

calculated for the representative structure of each enzyme. To

examine amino acid conservation, the entropy Sk for each

alignment position k was calculated as

Sk~
X21

i~1

{Pi log Pi,

where i represents 20 types of amino acids plus a gap and Pi is the

fraction of amino acid type i at this position. The top 10%

conserved residue positions (CBRs) in one enzyme were selected

for the calculation of attributes. The positions where the fraction of

the gap was above 20% were excluded from the entropy

calculation. If the positions selected as CBRs were already defined

as ASRs or LBRs, those positions were defined to be ASRs or

LBRs.

Position-specific scoring matrices (PSSMs) [43] were also

calculated from the multiple sequence alignments. The PSSM

scores at the ith alignment positions were given by

Pij~
X20

k~1

Wkisim(k,j),

where i is the alignment position, j and k are the amino acid types

and sim(k, j) is the score in the BLOSUM 62 matrix between amino

acid types j and k [42]. The logarithmic weight Wki was defined,

depending on occurrences of amino acid type k at position i, as

Wki~

ln 1{

PN
n~1

dki

Nz1

0
BB@

1
CCA

2
664

3
775

ln 1
Nz1

� � , dki~
1, amio acid type is k

0, if amino acid type is not k

�
,

where N is the number of sequences in the alignment.

Calculation of scores. Given a query sequence, a BLAST

search was performed against the sequences in the training dataset

for each enzyme in each superfamily. The bit score for the top hit

was used as an attribute for the predictors (see below). In the

training mode, the bit score for the top hit, except for its own

sequence, was used.

The other attributes were calculated based on an alignment

between the query sequence and the representative structure by

using three different scoring matrices: BLOSUM62, ESSTs and

PSSMs. The latter two matrices were specific to each enzyme, as

described in the previous section. The full-length sequence scores

and the scores at ASRs, LBRs and CBRs were calculated.

Construction of predictors and evaluation of
performance

Decision trees were constructed by C4.5 [85] algorithms

implemented in WEKA, a data mining software tool in Java

(ver. 3.6.5) [86], with default parameters. Forests of decision trees

were constructed by the random forests [31] algorithm imple-

mented in R (ver. 2.15.1), a language and environment for

statistical computing [87]. The default value was used for the

number of attributes to split on at each node (floor(! n), where n is

the number of input attributes), since the number of attributes was

different for each enzyme. The number of trees constructed for

each classifier was set to be 500, by comparing averaged out-of-

bag (OOB) error rates obtained from the models with 250, 500

and 750 trees (data not shown). In construction of random forest

for each enzyme, the importance score for each attribute was

calculated. We selected the top 3*floor(!n) ranked attributes as

highly contributing attributes, analyzed their properties and

defined the associated residues as random forest-derived specificity

determining residues (rf-SDRs).

In order to evaluate prediction performance in regions where

sequence identities between test and training sequences are low,

we calculated the maximal test to training sequence identity

(MTTSI) following Arakaki et al. [4] (see the reference for the

detailed definition of MTTSI). Table S12 shows the number of

positive and negative sequences in each MTTSI bin of the test set.
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Given a predictor for enzyme EC a.a.a.a, a set of prediction results

were obtained (by using the test sequences) and these results were

divided into eight bins according to their MTTSI values. Then for

each bin, precision = TP/(TP+FP) and recall = TP/(TP+FN) were

calculated, where TP is the number of true positives, FP is the

number of false positives and FN is the number of false negatives.

Finally, these precision and recall values were averaged over all the

enzymes, for which it was possible to define the performance

measure (i.e., (TP+FP) .0 for precision and (TP+FN) .0 for recall

within a bin).

Functional entropy of a superfamily
For classifying superfamilies at the EC third-digit level, we

defined the functional entropy Sfunc for each superfamily as follows:

Pa:b:c~
na:b:c

N
,

Sfunc~
X
a:b:c

{Pa:b:c ln Pa:b:c

where na.b.c. is the number of predictors that share the first three

digits of their EC numbers (a.b.c) and N is the total number of

predictors in the superfamily. Using the functional entropy,

superfamilies were classified into three groups: highly diverged

(1.5#Sfunc), moderately diverged (0.5#Sfunc,1.5) and least diverged

(0!Sfunc,0.5). The cutoff values were determined such that the

occurrences of distinct EC numbers at the third-digit level within

each superfamily approximately corresponded to one, two to four,

and more than four, respectively (data not shown).

Supporting Information
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expanded and represented in the figure. Fifteen superfamilies

contained more than ten enzyme predictors and the largest

superfamily was NAD(P)-binding Rossmann-like domain super-

family (CATH 3.40.50.720) with 65 predictors.

(EPS)

Figure S2 Distribution of the active site residues (ASRs) and

ligand binding residues (LBRs) in all superfamilies. The white bars

represent the ASRs and the light gray bars represent the LBRs.

(EPS)

Figure S3 Distributions of fractions of the rf-SDRs in active site

residues (ASRs, A) and ligand binding residues (LBRs, B),

observed in the superfamilies with low, medium and high degrees

of functional diversity classified at the fourth-digit level of EC

numbers. The top and bottom of a box indicate 75th and 25th

percentiles and the horizontal line in a box represents the median

value. The top and bottom whiskers represent 90th and 10th

percentiles.

(EPS)
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