
Vol. 29 no. 3 2013, pages 365–372
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts700

Data and text mining Advance Access publication December 5, 2012

ECOH: An Enzyme Commission number predictor using mutual

information and a support vector machine
Yoshihiko Matsuta, Masahiro Ito and Yukako Tohsato*
Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Kusatsu 525-8577, Japan

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: The enzyme nomenclature system, commonly known as

the enzyme commission (EC) number, plays a key role in classifying

and predicting enzymatic reactions. However, numerous reactions

have been described in various pathways that do not have an official

EC number, and the reactions are not expected to have an EC number

assigned because of a lack of articles published on enzyme assays.

To predict the EC number of a non-classified enzymatic reaction, we

focus on the structural similarity of its substrate and product to the

substrate and product of reactions that have been classified.

Results: We propose a new method to assign EC numbers using a

maximum common substructure algorithm, mutual information and a

support vector machine, termed the Enzyme COmmission numbers

Handler (ECOH). A jack-knife test shows that the sensitivity, precision

and accuracy of the method in predicting the first three digits of the

official EC number (i.e. the EC sub-subclass) are 86.1%, 87.4% and

99.8%, respectively. We furthermore demonstrate that, by examining

the ranking in the candidate lists of EC sub-subclasses generated by

the algorithm, the method can successfully predict the classification of

85 enzymatic reactions that fall into multiple EC sub-subclasses. The

better performance of the ECOH as compared with existing methods

and its flexibility in predicting EC numbers make it useful for predicting

enzyme function.

Availability: ECOH is freely available via the Internet at http://www.

bioinfo.sk.ritsumei.ac.jp/apps/ecoh/. This program only works on

32-bit Windows.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In the automatic prediction of protein functions and their evolu-

tionary relations on a large scale, the computational prediction of

the catalytic function of enzymes has traditionally been based on

sequence similarities (Yu et al., 2009). The usefulness of this ap-

proach may be questioned because small changes in key residues

may greatly alter enzyme function, which necessitates alternative

approaches to assess enzyme similarities. Several researchers have

focused on the similarity between functional motifs and protein

structures and on the correlation between levels of protein expres-

sion in cells. Systematic annotation systems have been provided

for generating and testing biological hypotheses, although one

should note any propagation of functional mis-annotation in

the systems (Furnham et al., 2009). For example, Gene

Ontology (GO) is a controlled vocabulary that can be used to

describe gene products (Ashburner et al., 2000). Structural

Classification Of Proteins (SCOP) (Andreeva et al., 2008) and

Class, Architecture, Topology, Homologous superfamily

(CATH) (Cuff et al., 2011) regard any pair of enzymes that

share protein domains as being similar. The Kyoto

Encyclopedia for Genes and Genomes (KEGG) provides anno-

tation of biochemical pathways for genes (Kanehisa et al., 2012).

Other enzyme classification systems, such as the enzyme commis-

sion (EC) classification scheme (IUPAC-IUBMB, 1999) and the

reaction classification (RC) system (Kotera et al., 2004b), are

based on the chemical reaction catalysed by the enzyme under

consideration. An EC number consists of the letters ‘EC’ fol-

lowed by four digits separated by periods (e.g. EC 1.1.1.1). The

first, second and third number are termed class, subclass and

sub-subclass, respectively. The EC system consists of six classes:

oxidoreductase (EC 1), transferase (EC 2), hydrolase (EC 3),

lyase (EC 4), isomerase (EC 5) and ligase (EC 6). The subclass

and sub-subclass specify the type of enzymatic reaction and its

substrate requirements, respectively. In this manner, a hierarch-

ically structured system is developed on the basis of the main EC

classes; for example, EC 1 is divided into 23 EC subclasses (ECs

1.1–1.22 and EC 1.97; version 2011). Although the system is

designed to classify enzymatic reactions based on their EC num-

bers, enzymes themselves can be hierarchically grouped by their

function (Tohsato et al., 2000). Owing to the fact that EC num-

bers are manually assigned by the nomenclature committee of

the International Union of Biochemistry and Molecular Biology

(IUBMB), many enzymatic reactions have either incomplete EC

numbers or no EC number at all (Holliday et al., 2012).
Several studies have proposed methods to predict EC numbers

(Nath and Mitchell, 2012). A group of researchers attempted to

use protein sequences and structures to predict EC numbers

(Bray et al., 2009; Dobson and Doig, 2005; Ferrari et al. 2012;

Lu et al., 2007). Bray et al. (2009) achieved an accuracy of 33%

by using statistical analysis to predict the top EC class.

Furthermore, Dobson and Doig (2005) and Lu et al. (2007) im-

proved the accuracy to 35% and 86%, respectively, by using a

support vector machine (SVM). Recently, Ferrari et al. (2012)

achieved an accuracy of 98% by using a k-nearest neighbour

algorithm (k¼ 1) and binary fingerprints, which indicate the

presence or absence of specific sequence signatures, and focused

on multi-label predictions. Further, the similarity of catalysed

chemical transformations among protein families has been*To whom correspondence should be addressed.
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discussed (Almonacid and Babbitt, 2011; Babbitt and Gerlt,
1997). Some studies have proposed methods for automatically

predicting EC numbers, by focusing on chemical transformations

between substrates and products and ignoring protein sequences
and structures.
The RPAIR database was constructed to map information on

atom types in three regions of the molecular structures of sub-

strate–product pairs (Kotera et al., 2004a). Using the RPAIR
database, E-zyme predicts possible EC number of a target reac-

tion by comparing the correlation between vectors that represent

the occurrence of atom mapping patterns (Yamanishi et al.,
2009). These researchers achieved a prediction accuracy of

82.5%. E-zyme is a rule-based method. In two of their studies,

Gasteiger’s group converted reactions only within classes EC 1
and EC 3 to physicochemical descriptors relating to the reacting

bonds and classified them into EC sub-subclasses by using a

self-organizing neural network, a SVM, and hierarchical cluster-
ing (Hu and Garcia, 2010; Sacher et al., 2009). Their SVM gave

an accuracy of 97.7%. Leber et al. (2009) proposed a method for

the mapping of atom and bond types between substrates and
products in a reaction using matrices, and they obtained

unique matrices for each EC sub-subclass. The use of a reaction

graph kernel (RGK) along with a random walk kernel was pro-
posed for performing approximate matching between atom map-

ping patterns (Saigo et al., 2010). The matching accuracy was

82.5%. Although this method also uses the RPAIR database to
achieve high prediction performance, it is used to identify the

main substrate–product pairs in a reaction. Latino and

Aires-de-Sousa (2009) proposed physicochemical and topological
descriptors, named the MOLMAP descriptor, encoding bonding

changes during chemical reactions using matrices. Their random

forest predictors, a semi-supervised learning algorithm, gave an
accuracy of 82.4% for EC sub-subclasses for a genome-wide set

of reactions. Their work showed that the predictions were reli-

able if a full balanced description of the reaction is used.
Egelhofer et al (2010) used typical chemoinformatics approaches

to EC sub-subclasses, that is, a string-type descriptor and a

Tanimoto similarity metric. Nath and Mitchell (2012) evaluated
a combination of five descriptors and three machine learning

algorithms; they used a SVM, random forest and k-nearest

neighbour algorithm. They achieved accuracies of 74.4% and
83.7% in the case of the SVM and random forest, respectively.

However, their tanning set was limited to 260 reactions, and it

was derived from the MACiE database (Holliday et al., 2012).
In this study, we investigated the automatic selection of im-

portant chemical transformations from reactions for predicting
the EC numbers of the reactions; in the selection process, we

removed outliers and noise from chemical transformations with-

out any preconditions. We propose a new method to flexibly
predict EC numbers from the chemical structure of substrates

and products of unclassified enzymatic reactions by the use of a

maximal common substructure (MCS) algorithm, mutual infor-
mation (MI) and SVM through comparison of the structural

fingerprint to a list of classified reactions.

2 METHODS

To predict the EC number for an enzymatic reaction, the user enters the

chemical structures of substrates and products in the MDL Molfile

format, and Enzyme COmmission numbers Handler (ECOH) outputs

the predicted EC sub-subclasses. The ECOH algorithm consists of the

following three steps: (i) extraction of substructures from the substrates

and products by using a MCS algorithm; (ii) calculation of MI for the

extracted substructures by comparison with a standard set of

EC-classified reactions, and subsequent generation of a candidate list of

EC numbers for the target reaction; and (iii) prediction of the EC number

using an SVM for the target reaction.

2.1 Extraction of substructures

We have focused on the difference in chemical structure between the

substrate and product of an enzymatic reaction, and extracted their

shared/unshared substructures by using the MCS algorithm (Tonnelier

et al., 1991). The chemical structures of the compounds were represented

as graphs in which the nodes represented atoms and the edges represented

bonds. The MCS algorithm was based on that implemented in the chem-

istry development kit (CDK) ver. 1.2.5 (Steinbeck et al., 2003), an open

source Java toolkit for manipulating small molecules using Java 6. A

main issue with using MCS is that it is non-deterministic polynomial

time (NP)-complete. The MCS algorithm based on CDK was therefore

limited by both the number of searches and the computational time. If no

MCS was found within these limits, then the program terminated the

search and generated the MCS from the solution at that point.

In this study, we improved the original MCS algorithm implemented in

CDK by cache management of the results and accelerating bit-string

operations. Furthermore, the criteria confirming whether two chemical

bonds were matched were modified by subjecting them to the following

matching standards: (i) the electrical charge on the atom, (ii) the number

of hydrogens, (iii) the bond order of both atoms, (iv) its cis- or

trans-isomerism, and, for the whole molecule, (v) the number of atoms

involved in bonds that are part of ring structures. This modified MCS

algorithm improved the sensitivity of our method as it improved the

likelihood of finding equivalent atoms or bonds between two chemical

structures.

By applying the modified MCS algorithm, we extracted four types of

substructure pairs from the target enzymatic reaction (Fig. 1a): a ‘con-

served substructure pair’, which is a combination set of matching bonds

extracted from the substrates and products of an enzymatic reaction by

using the MCS algorithm (Fig. 1b); a ‘changed substructure pair’, which

is a combination of the remaining bond sets and their adjacent atoms that

were not in the conserved substructure pair (Fig. 1c); a ‘neighbouring

substructure pair’, which is a combination of adjacent atom sets belong-

ing to the conserved substructures and located adjacent to the changed

substructures (Fig. 1d); and a ‘small substructure pair’, which is a com-

bination of substructures having three or less atoms (except hydrogen)

(Fig. 1e). As a result, water, oxygen, ammonia and metal ions were

categorized as small substructures in the ECOH algorithm.

2.2 Calculation of mutual information and generation of

the candidate EC numbers

Feature selection is the process of selecting a subset of the informative

terms to solve a given inference problem. MI, which represents the meas-

ure of the statistical dependence between two variables, has previously

been used as the feature selection strategy with promising results (Guyon

and Elisseeff, 2003; Wang and Liu, 2011). We measured MI with a func-

tion I(s, e), which was formally defined by Manning et al. (2008) accord-

ing to the equation

Iðs, eÞ ¼
X

rs2f1, 0g

X
re2f1, 0g

pðs ¼ rs, e ¼ reÞ log2
pðs ¼ rs, e ¼ reÞ

pðs ¼ rsÞpðe ¼ reÞ
ð1Þ

where s is a random variable that assumes the value rs¼ 1 when the

reaction contains substructure pair s and assumes rs¼ 0 when the reaction

does not contain the substructure pair s. Furthermore, e is another
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random variable that takes the values re¼ 1 when the reaction is labelled

with EC sub-subclass e, and re¼ 0 when the reaction is not labelled with

the EC sub-subclass e. When a substructure pair s and an EC

sub-subclass e are independent, I(s, e) is zero, whereas MI becomes

large when s is biased to one particular EC sub-subclass. For example,

pðs ¼ 1, e ¼ 0Þ log2
pðs ¼ 1, e ¼ 0Þ

pðs ¼ 1Þpðe ¼ 0Þ
¼

N10

N
log2

N�N10

N1: �N:0
ð2Þ

where Ns are the number of reactions, N10 is the number of reactions that

contain substructure pair s and that are not labelled with the EC

sub-subclass e, N1. (¼ N10þN11) is the number of reactions that contain

substructure pairs s (rs¼ 1), N.0 (¼ N01þN00) is the number of reactions

that are not categorized into the EC sub-subclass e and N

(¼ N00þN01þN10þN11) is the total number of reactions. p(s¼ 1,

e¼ 0) is balanced by N10, N1., and N.0. Consequently, on the basis of

Eq. (1), it can be expected that the substructure pair with high MI in a

particular EC sub-subclass e shares important structural information with

that class.

For a set of substructure pairs generated from a target reaction r, the

candidate score W(Sr, e) for an EC sub-subclass e was heuristically

defined as follows:

WðSr, eÞ ¼
X
s2Sr

exp Iðs, eÞ �
1

jEj

X
ei2E

Iðs, eiÞ

 !
ð3Þ

where the sigmoid function is used as a weight function and W¼ 0 if

I(s, e)¼ 0. All EC sub-subclasses e were sorted by their candidate score

W(Sr, e) to arrive at the candidate list for the target reaction.

When a substructure pair extracted from a target reaction did not

correlate with any of the substructure pairs of the reactions included in

the training set, the most similar substructure pair was selected. Although

several researchers have performed similarity measurements between

chemical structures based on the MCS approach, the algorithm used

was considered too time-consuming for the purpose of this study (Cao

et al., 2008). The molecular fingerprinting method was therefore adapted

to perform similarity measurements between substructure pairs.

Molecular fingerprints are bit string representations of molecular struc-

tures in which each bit represents the presence or absence of a specific

structural feature, and are commonly used for structure similarity search-

ing (Tohsato et al., 2000). In this study, we used the MACCS key, which

is the most widely known molecular fingerprint (McGregor and Pallai,

1997).

Using the MACCS key fingerprint, an extracted substructure was con-

verted into a 166-bit string. All extracted substructure pairs, correspond-

ing to substrates and products from an irreversible enzymatic reaction,

were further converted into a single 332-bit string by joining the two

166-bit strings in the order of substrate and product. Here, the 332-bit

string for a conserved substructure is redundant when substrates and

products contain the same substructure. By considering all reactions as

reversible, 332-bit strings were generated in both directions. These joined

332-bit strings were pre-generated from the query reaction and all

extracted substructure pairs of reactions in the database. For each

332-bit string from a query reaction, it was confirmed whether the

same bit-string pattern existed in the training set. When the correspond-

ing 332-bit string was absent in the training set, the most similar 332-bit

string was selected based on the Tanimoto coefficient given by the fol-

lowing equation:

Tðx, yÞ ¼ Nz=ðNx þNy �NzÞ ð4Þ

whereNx andNy are the number of binary values 1 of the 332-bit string x

and y, respectively, and Nz is the number of binary value 1 shared by

both. The number T(x, y) is a measure for the degree of similarity be-

tween two 332-bit strings, where a value of 1 indicates full similarity.

2.3 Predictions of EC numbers with a support vector

machine

SVM is a supervised machine learning technique that is widely used in

pattern recognition and classification problems because of its

high-performance prediction ability (Vapnik, 1998). SVM performs a

classification by constructing a multidimensional hyperplane that opti-

mally discriminates between two classes by maximizing the margin be-

tween two data clusters. Query sample orientation relative to this

hyperplane gives the predicted class (Vapnik, 1998). As MI does not

consider the dependency between EC sub-subclasses, we introduced an

SVM to predict an EC sub-subclass for a target enzymatic reaction from

the two EC sub-subclasses that ranked first and second in the candidate

list. The SVM with the Gaussian kernel as a function of the SVM was

implemented by using LibSVM version 3.0 (Chang and Lin, 2011). A grid

search (Hsu et al., 2003) found the best combination of the two tuning

parameters, C (error penalty) and � (kernel function), on Gaussian ker-

nels of the SVM in the range of Log C¼ [�5,. . ., 15] and Log

�¼ [�15,. . ., �1] by calculating the sensitivity, precision and accuracy

(details of performance measurements are provided in the next section).

The resulting optimized parameters C¼ 128 and � ¼ 0.0004 were

achieved at a sensitivity, precision and accuracy of 95.3%, 93.8% and

99.9% (see Supplementary File S1), respectively, by the jack-knife

cross-validation procedure, where the reactions alternate with each

other in being the query reaction and the EC sub-subclass is predicted

on the basis of the remaining reactions in the dataset.

Fig. 1. Substructure pairs extracted by the MCS algorithm from the

compounds involved in the reaction catalysed by N-acetylaspartate ami-

dohydrolase. (a) The reaction catalysed by N-acetylaspartate amidohy-

drolase, (b) the extracted two conserved substructure pairs, (c) the

extracted changed substructure pair, (d) the extracted neighbour substruc-

ture pair and (e) the extracted small substructure pair
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Although LibSVM supports multi-class classification using the ‘one-a-

gainst-one’ technique by combining all binary classifiers (Vapnik, 1998),

we finally used an SVMas a binary classifier after considering the results of

experiments. Thus, the top two predicted EC sub-subclasses in the candi-

date list of EC sub-subclasses covered 92.0% of the correct predictions

(Supplementary File S2). In practice, the prediction performance for our

data when the multi-classifier SVM from top n predicted EC

sub-subclasses (25n� 10) is lower than that in the case of a binary

SVM from top two predicted EC sub-subclasses (Supplementary File

S3). As we will see later in the dataset section, the EC classification repre-

sents an imbalanced distribution, i.e. the number of reactions in one class is

much smaller than that in another. For example, in the data, EC 1.1.1

contains 528 reactions, whereas EC 6.6.2 covers two reactions. This im-

balance problem is of concern to many researchers who analyse datasets

(Hsu et al., 2003). Indeed, a highly imbalanced data distribution generally

results in a poor classification performance for unseen samples belonging

to the minority class in a conventional SVM classifier; this is because the

classifier may be strongly biased towards the majority class (He and

Garcia, 2009). Cost-sensitive sampling and kernel-based methods are all

designed to address this problem of imbalanced classification (Japkowicz

and Stephen, 2002). For multi-class SVMs, the distribution is even more

imbalanced (You et al., 2011). Therefore, we formally used a binary SVM

to predict EC sub-subclasses for enzymatic reactions in the ECOH.

In the study, we consider all reactions as reversible, and used 1328-bit

string representations of irreversible enzymatic reactions as the input and

training data for the SVM. To generate the 1328-bit string, if more than

one substructure pair are extracted from an irreversible reaction (e.g.

‘conserved’ in Fig. 1b), all the pairs are encoded in the same 332-bit

string. The 332-bit strings representing the substructure pairs extracted

from an irreversible reaction were further converted into a single 1328-bit

string by joining the bit strings of each type of substructure pair in the

order of ‘conserved’, ‘changed’, ‘neighbouring’ and ‘small’. Using this

1328-bit string representation, the EC sub-subclass of the target reaction

can be predicted from the similarity of its bit string to the substructure

pairs extracted from the reactions in the training set, and each type of

substructure pair can be simultaneously assessed. Because two types of

1328-bit strings are generated from a reaction by the previous procedures,

two types of outputs are provided by the SVM for a reaction. When the

outputs conflict with each other, the EC sub-subclass that is ranked first

in the candidate list generated by the MI is used as the prediction result

by the SVM for the targeted reaction.

3 RESULTS AND DISCUSSION

3.1 Dataset and performance measurement

The REACTION database of the KEGG database (version 58.1)

(Kanehisa et al., 2012) contains 7 976 individual reactions. From

the original dataset, reactions with no EC sub-subclass assigned
(1255 entries) or reactions with an incomplete EC sub-subclass

classification (487 entries) were removed. Of the remaining 6234

reactions, 5643 reactions covering the chemical structures of sub-

strates and products in the MDL Molfile format were targeted.
All reactions in the data were considered to be reversible reac-

tions. We extracted 2744 conserved substructure pairs, 5860

changed substructure pairs, 3391 neighbouring substructure

pairs and 388 small substructure pairs from the targeted reac-
tions. Following the aforementioned procedure, 1328-bit string

representations were obtained for the target reactions, which

covered 162 EC sub-subclasses. The minimum number of reac-

tions in 26 EC sub-subclasses is 1.
As EC sub-subclasses are more difficult to predict than EC

subclasses and the last digit in the identifier is merely a serial

number, an attempt was made to predict the EC sub-subclass for
the query reaction (Latino and Aires-de-Sousa, 2009; Saigo et al.,

2010; Yamanishi et al., 2009). All evaluations were conducted by

a simple jack-knife (leave-one-out) cross-validation procedure.

Namely, the reactions alternate with each other in being the

query reaction, and the EC sub-subclass is predicted on the
basis of the remaining reactions in the dataset. The positive

(the query reaction is labelled with the predicted EC

sub-subclass, and for reactions that have more than one EC

sub-subclass, at least one of the sub-subclasses is predicted) or

negative (the query reaction is not labelled) result of the predic-
tion is recorded. This is repeated for all reactions. The perform-

ance of the ECOH method was measured by assessing its

precision {[TP/(TPþFP)]� 100%}, sensitivity {[TP/

(TPþFN)]� 100%} and accuracy {[(TPþTN)/

(TPþFPþTNþFN)]� 100%}; TP, FP, TN and FN represent
the number of enzymatic reactions labelled as true positive, false

positive, true negative and false negative, respectively.

3.2 Jack-knife prediction

The effectiveness of SVM in the ECOH approach was demon-
strated by a comparison between the predicted EC sub-subclass

based on MI (taking the highest candidate score in the generated

candidate list), and the EC sub-subclass predicted by SVM from

the top two EC sub-subclasses (MIþ SVM). As shown in

Table 1, the experimental results show that overall, the SVM
based on the selection of target EC sub-subclass by MI has a

superior performance (sensitivity¼ 86.1%, precision¼ 87.4%

and accuracy¼ 99.8% by the jack-knife test; see the dataset sec-

tion). Of the correct predictions, 180 predictive efforts matched

well with the candidate list ordered by MI, rather than the SVM,
which resulted in a run-off between the #1 and #2 candidates. In

contrast, 298 predictions matched better with the list ordered by

the SVM compared with the extent of its agreement with the list

ordered by MI. The results also reveal that accuracy is not an

appropriate measure to evaluate the detailed performance of the
ECOH method because it spans only a narrow range from

99.7% to 99.9% (Table 1). This narrowness derives from the

fact that all reactions in EC sub-subclasses, excluding the

target reaction, tend to be categorized into TN. Therefore, in

the following analyses, we mainly measured performance by sen-
sitivity and precision, except when comparing the ECOHmethod

Table 1. Prediction performance (%) for the EC sub-subclasses

Method Number of

reactions (n)

Total

(5643)

EC 1

(2015)

EC 2

(1816)

EC 3

(917)

EC 4

(535)

EC 5

(213)

EC 6

(202)

MI Sensitivity 84.0 81.5 92.4 81.7 77.3 60.8 85.9

Precision 85.3 81.4 90.0 84.1 87.7 87.2 80.1

Accuracy 99.8 99.8 99.8 99.8 99.7 99.8 99.9

MIþ SVM Sensitivity 86.1 87.1 88.9 86.0 80.3 67.0 85.9

Precision 87.4 87.2 92.0 84.7 79.7 89.3 81.6

Accuracy 99.8 99.9 99.8 99.9 99.7 99.9 99.9

Total number of reactions categorized into each EC sub-subclass is greater than the

number of reactions in total because a single reaction corresponds to multiple EC

sub-subclasses.
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with methods used by others (Latino and Aires-de-Sousa, 2009;

Saigo et al., 2010; Yamanishi et al., 2009).
Considering the first digit of the target EC sub-subclasses in

Table 1, transferases (EC 2) are predicted with the highest per-

formance (sensitivity¼ 88.9% and precision¼ 92.0%). Here, the

performance is high because of the sample size, i.e. the number of

reactions categorized into EC 2. However, making predictions is

not so straightforward for EC 1. These results indicate that the

performance also depends on how easily the classification criteria

for the EC sub-subclass to be targeted are detected by the ECOH

algorithm. Figure 2 shows the 10 most frequently encountered

combinations of misclassified EC sub-subclasses along with their

correct classification. The 56 reactions with EC 1.2.1 (i.e. a reac-

tion catalysed 3,4-dihydroxyphenylacetaldehyde) are wrongly

predicted as EC 1.1.1 because the reaction with EC 1.1.1 includes

enzymes ‘acting on the CH-OH group of donors, with nicotina-

mide adenine dinucleotide (NADþ) or nicotinamide adenine di-

nucleotide phosphate (NADPþ) as an acceptor’. However, it can

also be assigned EC 1.2.1, which covers enzymes ‘acting on the

aldehyde or oxo-group of donors, with NADþ or NADPþ as an

acceptor’ (Egelhofer et al., 2010).
For reactions catalysed by isomerases (EC 5), it is difficult to

predict the EC sub-subclasses (sensitivity¼ 67.0% and preci-

sion¼ 89.3%) because EC 5 contains indistinguishable classifi-

cations such as intramolecular oxidoreductases, transferases and

lyases that usually involve only minor structural changes. We

further divided the EC 5 classified reactions into their EC sub-

classes and calculated the average prediction performance for

each EC subclass by using the modified MCS algorithm and

the original MCS algorithm, in which our five matching

conditions between two bonds are not added (Fig. 3). The pre-

diction performances for reactions with EC 5.4 (intramolecular

transferases) and EC 5.5 (intramolecular lyases) were relatively

low with sensitivities of 18.8% and 12.5%, respectively. The

enzymatic reaction corresponding to EC 5.4.3 (isomerases), for

instance, was predicted to belong to EC 2.6.1 (transaminases)

(Fig. 4), indicating that for further improvement of the perform-

ance, differences in the position where atoms are transferred

within the target molecule need to be considered. In contrast

to EC 5.4 and EC 5.5, the sensitivity performances for EC 5.1

(racemases and epimerases) and EC 5.2 (cis-trans isomerases)

were 68.2% and 37.5%, respectively. We can see significant im-

provement in the performances compared with that achieved by

the original MCS algorithm. These relatively good performances

appeared to result from the identification of the connectivity

between the molecular graphs of substrates and products, with

only stereochemical changes, and the modification of the match-

ing conditions between bonds in the MCS algorithm.

3.3 Performance of the SVM approach

On the basis of the performance measures of accuracy, the

ECOH method shows the best performance compared with the

methods proposed by previous related studies focusing on chem-

ical transformations in reactions, in which the highest accuracy

was 82.5% when all EC sub-subclasses were targeted (for each

method, see Section 1). In the ECOH algorithm, when a

Fig. 2. The top 10 combinations of misclassified and correct EC sub-subclasses. The value besides each arrow indicates the total number of misclassified

reactions. The number of reactions categorized into each EC sub-subclass is given in brackets

Fig. 4. Difference in the position within the molecule where atoms are

transferred between (a) isomerases that transfer amino groups, as shown

for the reaction catalysed by glutamate-1-semialdehyde aminotransferase,

and (b) transaminases, as shown for the reaction catalysed by

4-aminobutyrate aminotransferase. The changed substructures are indi-

cated with circles

Fig. 3. Prediction performance of the algorithms for the EC 5 subclass of

reactions
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substructure pair extracted from a test reaction did not correlate

with any of the substructure pairs of reactions in the training set,

the most similar substructure pair was selected. We evaluated the

prediction performance for reactions with such unregistered sub-

structure pairs and found a slight decrease in sensitivity and

precision performance of �5% (sensitivity¼ 80.3% and preci-

sion¼ 80.6%) (Table 2). In addition, we explored whether the

ECOH algorithm could predict EC sub-subclasses solely on the

main substrates and products in the target reaction (as described

in the KEGG/RPAIR database). As shown in Table 3, the sen-

sitivity and precision of the predictions decreased by �10% (sen-

sitivity¼ 76.4% and precision¼ 77.6%), indicating the greater

effectiveness of the ECOH method compared with MOLMAP

(Latino and Aires-de-Sousa, 2009) and RGK (Saigo et al., 2010),

both of which exhibit decreases of �20%. Furthermore, in the

RGK and E-zyme, the number of reactions registered in the

RPAIR database is used. It is known that E-zyme is a rule-based

method and can only predict similar reactions (Saigo et al.,

2010).

3.4 Prediction for multi-functional enzymatic reactions

As an additional application of candidate lists of EC

sub-subclasses, we collected 85 reactions that were assigned to

multiple EC sub-subclasses. Using these reactions as a query, we

evaluated whether the correct EC sub-subclasses for a target

reaction would both rank high in the EC sub-subclasses candi-

date list (Fig. 5). We observed that for 53 reactions (62.3%) both

correct EC sub-subclasses were present at the top of the candi-

date lists. For instance, the reaction catalysed by 3-hydroxyiso-

butyryl-CoA hydrolase is classified into the EC 3.1.2 and EC

6.2.1, which ranked first and second, respectively, in the pre-

dicted candidate list of EC sub-subclasses (Fig. 6a). At least

one correct EC sub-subclass was correctly predicted for 25 reac-

tions (29.4%) classified in multiple EC sub-subclasses. The reac-

tion displayed in Figure 6b was classified into this ‘at least one’

group because the correct EC classification EC 3.1.3 and EC

4.6.1 appeared as the first and ninth entry in the candidate EC

sub-subclasses list, respectively. However, this is a similar reac-

tion, as the reaction classified as EC 3.1.4 (KEGG reaction ID:

R03435), which serves as an example that the inconsistent assign-

ment of EC sub-subclasses worsens the prediction performance

of the ECOH algorithm. In total, at least one correct EC

sub-subclass ranked high in the candidate EC sub-subclasses

list in 91.7% of the multi-functional enzymatic reactions.

3.5 Computational time for the MCS extraction

As previously mentioned, we improved the original MCS algo-

rithm implemented in CDK. We compared the processing time

of both the original MCS algorithm and the improved one by

measuring the average processing time (in seconds) for an MCS

with an increasing size in 20-bond intervals (Fig. 7). All time

Fig. 6. Examples of enzymatic reactions that are classified into multiple

EC sub-subclasses: (a) the reaction catalysed by 3-hydroxyisobutyryl-

CoA hydrolase, and (b) the reaction catalysed by 1-phosphatidyl-

D-myo-inositol inositolphosphohydrolase

Fig. 5. Prediction result for target reactions that are classified in multiple

EC sub-subclasses

Table 2. Performance (%) for EC number prediction of target reactions

with unregistered substructure pairs

Method Number of

reactions (n)

Total

(2406)

EC 1

(550)

EC 2

(990)

EC 3

(440)

EC 4

(266)

EC 5

(72)

EC 6

(88)

MIþSVM Sensitivity 80.3 75.6 88.2 81.5 67.3 42.3 85.4

Precision 80.6 74.4 89.0 77.8 69.4 71.4 79.2

Table 3. Prediction performance (%) for compounds categorized as main

reactant pairs for reactions taken from the RPAIR database

Method Number of

reactions (n)

Total

(5520)

EC 1

(1965)

EC 2

(1776)

EC 3

(899)

EC 4

(525)

EC 5

(213)

EC 6

(197)

MIþSVM Sensitivity 76.4 70.0 88.4 77.1 66.4 64.2 68.2

Precision 77.6 69.3 89.1 77.8 73.7 78.6 66.5
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measurements were obtained on a Windows 7 system with 4.0
GB RAM and an Intel Core 2 Duo i7-860 processor running at

2.80GHz. The modified algorithm was faster than the original,
and it extracted relatively small MCSs of �20 atoms within

0.02 s. On setting an upper limit for the number of searches

(5 million) and computational time (10min), only 4.2% did
not fall within the set search limit (320 out of 7678); this

number was 0.05% (4 out of 7678) for the set time limit. The
correct MCS was still predominantly generated in instances

where a large MCS was extracted (Fig. 8).

4 CONCLUSIONS

We proposed a method to predict EC sub-subclasses of enzym-
atic reactions using a MCS algorithm based on the comparison

of substructure pairs, the output of which was a measure of the
change in the chemical structure between the substrate and the

product. The correlation between EC sub-subclasses and

substructure pairs was defined by MI values. We adopted

SVM to estimate the MI of an individual substructure pair

more rigorously within the same period.
The proposed method achieved high performance and was

flexible in the sense that by using the MACCS fingerprint and

the Tanimoto coefficient for unclassified substructure pairs in a

target reaction, the most similar substructure pair was obtained

and substituted. In addition, because of the high percentage of

high-ranking corrected EC sub-subclasses in the candidate list,

this study also revealed the possibility of using the generated

candidate list of EC sub-subclasses for the further study of

multi-functional enzymatic reactions. It should be noted that

the sensitivity and precision for the EC 5 class of isomerases

were lower than those for the other classes. Improving the rep-

resentation of substructure patterns and the introduction of

methods proposed to address the imbalance problem for the

input dataset are both considered effective future approaches

for the improvement of the prediction performance of EC

numbers.
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