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High-quality and high-throughput prediction of enzyme commission
(EC) numbers is essential for accurate understanding of enzyme
functions, which have many implications in pathologies and indus-
trial biotechnology. Several EC number prediction tools are currently
available, but their prediction performance needs to be further
improved to precisely and efficiently process an ever-increasing
volume of protein sequence data. Here, we report DeepEC, a deep
learning-based computational framework that predicts EC numbers
for protein sequences with high precision and in a high-throughput
manner. DeepEC takes a protein sequence as input and predicts EC
numbers as output. DeepEC uses 3 convolutional neural networks
(CNNs) as a major engine for the prediction of EC numbers, and also
implements homology analysis for EC numbers that cannot be
classified by the CNNs. Comparative analyses against 5 representa-
tive EC number prediction tools show that DeepEC allows the most
precise prediction of EC numbers, and is the fastest and the lightest
in terms of the disk space required. Furthermore, DeepEC is the
most sensitive in detecting the effects of mutated domains/binding
site residues of protein sequences. DeepEC can be used as an
independent tool, and also as a third-party software component
in combination with other computational platforms that examine
metabolic reactions.
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High-quality and high-throughput prediction of enzyme com-
mission (EC) numbers is essential for accurate under-

standing of enzyme functions and cellular metabolism overall.
Such prediction is particularly important when, for example,
annotating an increasing volume of (meta)genome sequence
data (1), identifying catalytic functions of enzymes (2), estab-
lishing gene–protein–reaction associations in metabolism (3),
designing a novel metabolic pathway (4), and building genome-
scale metabolic networks in a high-throughput manner (5–7). In
a genome annotation procedure, a protein sequence for a met-
abolic gene is assigned with EC numbers that correspond to a
numerical classification scheme of enzymes based on relevant
chemical reaction patterns (8, 9). Thus, EC number serves to
associate a protein sequence with relevant chemical reactions.
EC number consists of 4 level numbers, with each number sep-
arated by a period (i.e., a.b.c.d). The first to the fourth numbers
correspond to class, subclass, sub-subclass, and serial number,
respectively (Fig. 1). An EC number having all 4 level numbers
for a protein sequence is the most specific annotation, which allows
associating the protein sequence with specific chemical reactions;
however, the first-level or the second-level EC numbers are usually
considered to be insufficient annotation of a protein sequence.
As of September 2018, 6,238 fourth-level EC numbers have

been defined in the ExPASy database (10). Because of the im-
portance of EC number prediction in understanding enzyme
functions, a number of relevant computational methods have

been developed: PRIAM (11), EzyPred (12), CatFam (13),
EnzML (14), EFICAz2.5 (15), EnzDP (16), SVM-prot (17),
DEEPre (18), DETECT v2 (19), and ECPred (20). However,
prediction performances of these tools have room for further
improvement with respect to computation time, precision, and
coverage for the prediction of EC numbers. Also, the EC num-
ber prediction tools should be locally installable to allow high-
throughput prediction.
Here, we present DeepEC (https://bitbucket.org/kaistsystemsbiology/

deepec), a deep learning-based computational framework that
takes a protein sequence as an input and accurately predicts EC
numbers as an output. DeepEC uses 3 convolutional neural net-
works (CNNs) as a major engine for the prediction of EC num-
bers, and also implements homology analysis for EC numbers that
cannot be classified by the CNNs. DeepEC predicts EC numbers
with high precision and can be implemented in a high-throughput
manner through its local installation and faster computation.
DeepEC can be used as an independent tool, as well as a third-
party software component in combination with other computa-
tional platforms that examine metabolic reactions.

Significance

Identification of enzyme commission (EC) numbers is essential
for accurately understanding enzyme functions. Although
several EC number prediction tools are available, they have
room for further improvement with respect to computation
time, precision, coverage, and the total size of the files needed
for EC number prediction. Here, we present DeepEC, a deep
learning-based computational framework that predicts EC
numbers with high precision in a high-throughput manner.
DeepEC shows much improved prediction performance when
compared with the 5 representative EC number prediction
tools that are currently available. DeepEC will be useful in
studying enzyme functions by implementing them indepen-
dently or as part of a third-party software program.
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Results
Development of DeepEC. For the development of DeepEC, a CNN
was used among other deep learning methods because of its proven
outstanding performance in detecting functional regions (e.g., motifs
and/or domains) in a biological sequence (e.g., protein sequence)
(21), which is highly relevant to the prediction of EC numbers. To
develop DeepEC, a gold standard dataset covering 1,388,606 pro-
tein sequences and 4,669 EC numbers was prepared by processing
protein sequences from both Swiss-Prot (22) (released February
2018) and TrEMBL (23) (released February 2018) datasets (SI
Appendix, Materials and Methods and Figs. S1 A–C and S2).
DeepEC consists of 3 independent CNNs performing 3 different

classification tasks for a single protein sequence given as an input.
The first CNN, designated CNN-1, classifies whether a given pro-
tein sequence is an enzyme or a nonenzyme protein. The second
and third CNNs, designated CNN-2 and CNN-3, predict the third-
and fourth-level EC numbers, respectively. Here, CNN-2 and
CNN-3 were designed to be multilabel classification models (i.e.,
activation of multiple output neurons at the same time) because
one enzyme can have multiple EC numbers if it is a promiscuous
enzyme. The 3 CNNs share the same embedding, convolution and
1-max pooling layers, but have different fully connected layers (Fig.
1). It is this fully connected layer in each CNN of DeepEC that
performs one of the 3 different tasks mentioned here. EC numbers
are generated as output from DeepEC for a given protein sequence
only if the 3 CNNs generate consistent results: Binary classification
of a protein sequence as an enzyme by the CNN-1 and generation
of the third- and fourth-level EC numbers from the CNN-2 and
CNN-3, respectively, with both having consistent class (first num-
ber), subclass (second number), and sub-subclass (third number;
Fig. 1). Use of the multiple CNNs for DeepEC was considered to
generate highly consistent and precise EC numbers as output: For

387,805 protein sequences in the testing dataset of the gold stan-
dard dataset (SI Appendix, Materials and Methods), there were
25,439 protein sequences, for which CNN-2 predicted correct third-
level EC numbers, but CNN-3 failed to do so using the DeepEC
with each CNN optimized.
CNN-1 was modeled (i.e., trained, validated, and tested) using

153,884 enzyme and nonenzyme protein sequences (SI Appendix,
Materials and Methods and Fig. S3). CNN-2 and CNN-3 were
modeled using a gold standard dataset (SI Appendix, Materials
and Methods and Fig. S3). This modeling process was implemented
by examining different values for 4 main hyperparameters of
the 3 CNNs to maximize the classification performance of the
DeepEC while avoiding overfitting of each CNN (SI Appendix,
Materials and Methods and Dataset S1). The 4 hyperparameters
include the window size of each filter, number of filters for each
window size, number of hidden layers, and number of nodes in
each hidden layer of the fully connected layer. A detailed de-
scription of the DeepEC development is given in SI Appendix,
Materials and Methods.
For protein sequences that fail to be assigned with EC numbers

by CNN-2 and CNN-3, although they are still classified as an
enzyme by the CNN-1, they are given EC numbers from their
homologous protein sequences having EC numbers through ho-
mology analysis (Fig. 1). It should be noted that the CNNs of
DeepEC were modeled to predict EC numbers, for which 10 or
more protein sequences are available in the gold standard dataset.
In the gold standard dataset, 2,240 EC numbers are covered by
fewer than 10 protein sequences each. Taken together, DeepEC
can classify a total of 4,669 EC numbers for protein sequences,
which is by far the greatest number of EC numbers covered by a
single EC number prediction tool (Table 1).

Fig. 1. Overall scheme of DeepEC. DeepEC consists of 3 independent CNNs to classify whether an input protein sequence is an enzyme or not, using CNN-1,
and to predict third- and fourth-level EC numbers using CNN-2 and CNN-3, respectively. Homology analysis is also implemented using DIAMOND (33) for EC
numbers that cannot be classified by the CNNs. The 3 CNNs share the same embedding, convolution, and 1-max pooling layers, but have different fully
connected layers to perform the 3 different tasks mentioned here. DeepEC generates final EC numbers as output only if the 3 CNNs generate consistent
results: Binary classification of a protein sequence as an enzyme by CNN-1 and 2 EC numbers with consistent class (first number), subclass (second number),
and sub-subclass (third number) generated from CNN-2 and CNN-3. Because the CNN-2 and CNN-3 are multilabel classification models, multiple EC numbers
can be predicted for a given protein sequence. If a given protein sequence is classified as an enzyme by CNN-1, but is not assigned with specific EC numbers by
CNN-2 and CNN-3, the homology analysis is subsequently conducted. See SI Appendix, Materials and Methods for details on the operation of CNNs, as well as
implementation of homology analysis within DeepEC. ReLU stands for rectified linear unit.
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Optimization of the Model Structure of DeepEC. Upon construction,
the EC number prediction performance of DeepEC was inves-
tigated as a function of the number of CNNs used, as well as a
featurization method. First, prediction performance of DeepEC
with the 3 CNNs was compared with that of DeepEC having a
single CNN. Use of the 3 CNNs allows each CNN to perform a
single classification task (i.e., binary classification of a protein
sequence as an enzyme and generation of the third-level and
fourth-level EC numbers), whereas use of a single CNN means it
has to perform the 3 different tasks by itself. Such task allocation
was expected to efficiently reduce the number of false-positive
predictions (e.g., predicting EC numbers for a nonenzyme protein
sequence). To validate this hypothesis, a negative testing was con-
ducted by implementing DeepEC for the 22,168 nonenzyme pro-
tein sequences as inputs, for which EC numbers should not be
predicted. Indeed, for the 22,168 nonenzyme protein sequences
tested, only 150 fourth-level EC numbers were predicted by the
DeepEC having 3 CNNs, whereas 4,852 fourth-level EC numbers
were predicted by the DeepEC with one CNN (SI Appendix, Fig.
S4). Also, a DeepEC having the fourth CNN that predicts second-
level EC numbers was tested, but it did not give better prediction
performance than the DeepEC having 3 CNNs. Finally, DeepEC
having 5 CNNs, additionally predicting the first-level and the
second-level EC numbers, also did not generate better prediction
performance than the DeepEC with 3 CNNs (SI Appendix, Fig.
S5). These results justify the use of 3 CNNs in DeepEC.
Next, the prediction performance when using one-hot encoding

method was compared with another representative featurization
method ProtVec (24). As DeepEC with the one-hot encoding method
showed greater macro precision (0.953) and macro recall (0.735)
values than those (0.891 and 0.656, respectively) obtained with
the ProtVec method, the one-hot encoding method was used in
all the implementations of DeepEC in this study (SI Appendix,
Fig. S6).
Finally, for protein sequences annotated with multiple EC num-

bers, which are potential promiscuous enzymes, DeepEC showed
reasonably high precision (0.940) and recall (0.905) values for those
having 2 EC numbers (SI Appendix, Table S1). However, pre-
diction performance of DeepEC decreased for the protein se-
quences having 3 (0.825 and 0.709 for precision and recall,
respectively), 4 (0.775 and 0.720), and 5 (0.629 and 0.385) EC
numbers. To further validate DeepEC, an in vitro enzyme assay
was conducted for an enzyme from Escherichia coli, which was
given different EC numbers from UniProt and DeepEC. For
this, YgbJ was selected as a target enzyme, which is known as a
putative L-threonate dehydrogenase (1.1.1.411) in UniProt, but
was predicted to be 2-hydroxy-3-oxopropionate reductase or
D-glycerate:NAD(P)+ oxidoreductase (1.1.1.60) by DeepEC. As
a result of the enzyme assay (SI Appendix,Materials and Methods),
YgbJ was shown to have activities for both D-glycerate and
L-threonate (SI Appendix, Fig. S7). This enzyme assay suggests
that YgbJ is likely a promiscuous enzyme, and therefore can be
assigned with both 1.1.1.411 and 1.1.1.60. Although more enzyme
assays need to be conducted to further rigorously validate DeepEC,

the enzyme assay results presented here indicate that DeepEC
seems reliable and can be used to complement other EC pre-
diction tools to suggest alternative EC numbers.

Comparison of Prediction Performance of DeepEC with 5 Representative
EC Number Prediction Tools. Next, DeepEC was compared with the
latest versions of 5 representative EC number prediction tools that
are locally installable, including CatFam (13), DETECT v2 (19),
ECPred (20), EFICAz2.5 (15), and PRIAM (11), with respect to
their prediction performances. For a systematic comparison of
prediction performances, 201 enzyme protein sequences were used
as inputs, which were not used for the development of these 6
different tools; these enzyme protein sequences were obtained from
the Swiss-Prot database released on August 2018. DeepEC showed
both the greatest precision and recall values (0.920 and 0.455, re-
spectively) compared with the other 5 EC number prediction tools:
CatFam (0.880 and 0.327), DETECT v2 (0.804 and 0.203), ECPred
(0.817 and 0.243), EFICAz2.5 (0.737 and 0.416), and PRIAM
(0.809 and 0.356; Table 2). For another set of 2,310 enzyme protein
sequences that were previously used for the development of these 6
different tools, obtained from the Swiss-Prot database released on
March 2007, DeepEC still showed the greatest precision value
(0.993; SI Appendix, Table S2). These results show that DeepEC
predicts highly reliable (i.e., high-precision) EC numbers for a
given protein sequence compared with the 5 available EC number
prediction tools.
Importantly, DeepEC was the fastest among these tools for

the prediction of EC numbers for the 3 different sets of protein
sequences mentioned here: 201 enzyme protein sequences never
used for the development of the 6 EC number prediction tools
(Table 2), 2,310 enzyme protein sequences previously used for
the development of the 6 tools (SI Appendix, Table S2), and
1,600 protein sequences randomly selected from the gold stan-
dard dataset (Fig. 2). Also, prediction of EC numbers for the
entire set of 33,942,253 protein sequences available in 9,513
complete genomes (i.e., organisms) from the NCBI Genome
database (https://www.ncbi.nlm.nih.gov/genome; as of May 2018)
took 230 h (9.6 d) using DeepEC (see Dataset S2 for the list of
organisms examined). A full list of EC numbers predicted for all
these protein sequences is available at http://doi.org/10.5281/
zenodo.2567339. In contrast, prediction of EC numbers for the
same set of 33,942,253 protein sequences was estimated to take
1,874 h (78.1 d) using CatFam, 258,338 h (10,764.1 d) using
DETECT v2, 1,359,575 h (56,649.0 d) using ECPred, 1,371,518 h
(57,146.6 d) using EFICAz2.5, and 1,649 h (68.7 d) using
PRIAM, based on their computation times measured (Fig. 2).
Finally, DeepEC requires the smallest disk space, at 45 mega-
bytes, which is substantially smaller than the other 5 tools, and
which therefore makes DeepEC more suitable for its use as a
light third-party software component. For a comparison, the
required disk spaces are: CatFam, 2.1 gigabytes; DETECT v2,

Table 1. Features of 6 different EC number prediction tools that
are locally installable

EC number
prediction tool

Disk space
required (GB)

Number of predictable
EC numbers

Last update
(year)

DeepEC 0.045 4,669 2019
CatFam 2.072 1,653 2009
DETECT v2 0.854 786 2018
ECPred 9.427 858 2018
EFICAz2.5 24.682 2,757 2012
PRIAM 3.547 4,560 2018

Table 2. Prediction performances of 6 different, locally
installable EC number prediction tools using 201 enzyme protein
sequences as inputs, which were never considered for the
development of all these tools (from the Swiss-Prot database
released August 2018)

EC number prediction tool Precision Recall Run time (s)

DeepEC 0.920 0.455 13
CatFam 0.880 0.327 47
DETECT v2 0.804 0.203 5,480
ECPred 0.817 0.243 28,840
EFICAz2.5 0.737 0.416 29,093
PRIAM 0.809 0.356 51
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854 megabytes; ECPred, 9.4 gigabytes; EFICAz2.5, 24.7 giga-
bytes; and PRIAM, 3.5 gigabytes (Table 1).
As another negative test, DeepEC was examined to determine

whether it can still predict EC numbers for protein sequences
mutated to have inactive domains. Being able to detect changes
in enzymatic function as a result of mutations can be very useful
when analyzing a set of homologous enzymes. For this test,
DeepEC was again compared with CatFam, DETECT v2,
ECPred, EFICAz2.5, and PRIAM. For a systematic comparison,
2,435 protein sequences from the gold standard dataset were
used as inputs, which are associated with one of 487 EC numbers
that can be commonly predicted by the 6 tools (see SI Appendix,
Materials and Methods for details). Domains of the 2,435 protein
sequences were detected by using PfamScan (25), and were
subjected to the L-alanine scanning method (26) in which all the
residues in a detected domain were substituted with L-alanine
(Fig. 3A). Proteins having domains filled with L-alanine (here-
after known as mutated domains) are considered to have no
functions. Finally, EC numbers of protein sequences with intact
and mutated domains were predicted, using DeepEC. As a re-
sult, only 36 protein sequences with mutated domains (1.5% of
the 2,435 protein sequences) were assigned EC numbers, using
DeepEC. CatFam, DETECT v2, ECPred, EFICAz2.5, and PRIAM
predicted EC numbers for a greater number of protein sequences
with mutated domains: 294 (12.1%), 898 (36.9%), 39 (1.6%), 237
(9.7%), and 114 (4.7%) protein sequences with mutated domains,
respectively (Fig. 3A). These results show that DeepEC, CatFam,
DETECT v2, ECPred, EFICAz2.5, and PRIAM can all capture
the effects of having mutated domains responsible for enzyme
functions. However, DeepEC appeared to be the most sensitive in
detecting the effects of mutated domains in protein sequences
(i.e., the greatest difference between the blue and grey bars in Fig.
3A). Interestingly, DeepEC was also the most sensitive in cap-
turing the effects of having binding site residues mutated using the
L-alanine scanning method (SI Appendix, Materials and Methods
and Fig. 3B). Proteins with binding site residues all replaced with
L-alanine were also considered to have no functions. This classi-
fication task is considered to be more challenging than predicting
EC numbers for protein sequences with mutated domains because
a few binding site residues (11.0 amino acids on average for the

1,134 protein sequences examined; Fig. 3B) are physically sepa-
rated from one another throughout the protein sequence, in
contrast to domains having residues physically clustered in specific
regions of the protein sequence.

Use of DeepEC as a Third-Party Software Component for the Generation
of Human Metabolic Reactions. Finally, DeepEC was used as a part
of a computational framework; namely, the gene–transcript–
protein–reaction associations (GeTPRA) framework (27). The
GeTPRA framework identifies metabolic reactions to be newly
added to a human genome-scale metabolic model (GEM) if the
reactions carry fluxes on their addition to the human GEM and
have relevant experimental evidence. In this study, 80,678 human
protein isoforms generated by 21,169 human genes obtained from
Ensembl BioMart (28) were used as input for the GeTPRA
framework. EFICAz2.5 was initially used for the GeTPRA
framework to assign the protein sequences with EC numbers (27),
but DeepEC was used in this study. As a result, a total of 5,838
protein isoforms generated from 2,324 human genes were pre-
dicted by DeepEC to have at least one EC number (Fig. 4 and
Dataset S3). The newly predicted EC numbers for the protein
sequences were used to retrieve metabolic reactions from the
KEGG database (29), which were subsequently compartmental-
ized by predicting subcellular locations of the protein sequences,
using Wolf PSORT (30). When these metabolic reactions were
compared with those in Recon 2M.2 (27), a human GEM pre-
viously prepared using the GeTPRA framework with EFICAz2.5,
212 metabolic reactions mediated by 340 protein isoforms (encoded
by 183 genes) appeared to be absent in the Recon 2M.2, although
these reactions have experimental evidence available at UniProt
(23), BRENDA (31), and the Human Protein Atlas (32) (Dataset
S3). Thus, DeepEC can identify additional reactions through EC
numbers that could not be predicted by other tools, and conse-
quently allows more accurate reconstruction of GEMs. Also, this
study demonstrates that DeepEC can be easily integrated with a
third-party software program that requires the prediction of EC
numbers.

Discussion
In this study, we report the development of DeepEC that accu-
rately predicts EC numbers for given protein sequences as input.
DeepEC uses 3 different CNNs as a major engine, and also a
homology analysis tool for the accurate prediction of EC
numbers. DeepEC showed better prediction performance (i.e.,
precision value) than the 5 representative tools that are
currently available, including CatFam, DETECT v2, ECPred,
EFICAz2.5, and PRIAM. Also, DeepEC is faster and lighter
than these 5 tools. DeepEC was found to be the most sensitive in
capturing the effects of mutated domains and binding site residues
among the tools compared as well. Taken together, DeepEC can
serve as a powerful tool for the high-quality and high-throughput
prediction of EC numbers, which should be useful for studying
enzyme functions. DeepEC can be used as an independent tool,
and also as a third-party software component in combination with
other computational platforms that examine metabolic reactions.
Despite the improved prediction performance of DeepEC in

comparison with the other 5 tools discussed in this study, there
certainly exists room to improve. First, coverage of the gold
standard dataset for each EC number needs to be much in-
creased. As already seen in this study, the gold standard dataset
covers each EC number with very different numbers of protein
sequences; each of the 2,240 EC numbers in the gold standard
dataset used in this study is covered by fewer than 10 protein
sequences (SI Appendix,Materials and Methods). This was a reason
that DeepEC could not predict the EC number 1.1.1.411 for
YgbJ, which showed activities for both D-glycerate (1.1.1.60) and
L-threonate (1.1.1.411) according to the in vitro enzyme assay;
there were only 5 protein sequences for the EC number 1.1.1.411 in

Fig. 2. Computation time of DeepEC, CatFam, DETECT v2, ECPred, EFI-
CAz2.5, and PRIAM. Six EC number prediction tools were used to predict EC
numbers for 100, 200, 400, 800, and 1,600 protein sequences randomly se-
lected from the gold standard dataset.
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the gold standard dataset. Resolving such data imbalance could
further improve the prediction performance of DeepEC in
terms of the precision and coverage for the prediction of EC
numbers. Also, availability of a negative control dataset (e.g.,

mutated enzyme protein sequences with their functions lost)
would be extremely useful in improving the detection capacity
of DeepEC for mutations in domains and binding site residues
of protein sequences. Additional training of DeepEC with the

Fig. 4. Use of DeepEC as a third-party software component of the GeTPRA framework. In the GeTPRA framework (27), information on the predicted EC
numbers and subcellular locations for 80,678 protein isoforms from 21,169 human genes was used to identify new flux-carrying metabolic reactions that can
be considered for further studies on human metabolism and an update of existing human GEMs. Subcellular locations were predicted using Wolf PSORT (30).
As another input of the GeTPRA framework, a human GEM Recon 2M.2 was used (27). The pie chart shows the subcellular location of 212 metabolic reactions
that appeared to be absent in Recon 2M.2.

Fig. 3. Prediction of EC numbers for protein sequences having mutations using DeepEC, CatFam, DETECT v2, ECPred, EFICAz2.5, and PRIAM. (A) Prediction of
EC numbers for 2,435 intact protein sequences (I on the x-axis) and 2,435 protein sequences having mutated domains where all of the domain residues were
substituted with L-alanine residues through the L-alanine scanning method (26) (M on the x-axis). (B) Prediction of EC numbers for 1,134 intact protein se-
quences (I) and 1,134 protein sequences with their binding site residues all substituted with L-alanine (M). For A and B, see SI Appendix, Materials and
Methods for preparation of the input protein sequences.
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negative control dataset would allow better detection of changes
in the enzymatic function as a result of mutation. This feature
can be especially useful when analyzing homologous enzymes,
for example, from new (meta)genome data, which have muta-
tions with previously unknown effects on enzyme functions.
Above all, it will be important to use DeepEC in various settings,
either independently or as part of a third-party software pro-
gram, and to receive feedbacks from biochemists, enzymologists,
and biotechnologists for more rigorous validation of DeepEC
and future direction for its upgrades.

Materials and Methods
All the materials and methods conducted in this study are detailed in SI
Appendix, Materials and Methods: Preparation of the gold standard dataset
for DeepEC; optimizing the architecture of DeepEC; training CNNs of
DeepEC; validating and testing CNNs of DeepEC; prediction of EC numbers
for all the enzymes from 9,513 complete genomes, using DeepEC; prepara-
tion of enzyme and nonenzyme protein sequences for the modeling of CNN-1;

preparation of protein sequences for the L-alanine scanning method that
mutates domains and binding site residues; expression and purification of a
putative L-threonate dehydrogenase; in vitro YgbJ assay; and development
environment.

Data Availability. Source code for DeepEC is available at https://bitbucket.
org/kaistsystemsbiology/deepec. The list of EC numbers predicted for
33,942,253 protein sequences is available at http://doi.org/10.5281/
zenodo.2567339.

ACKNOWLEDGMENTS. We are grateful to Tong Un Chae, Jae Sung Cho, and
Jiyong Kim for their contribution to enzyme assays. This work was supported
by the Technology Development Program to Solve Climate Changes on
Systems Metabolic Engineering for Biorefineries (NRF-2012M1A2A2026556
and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through
the National Research Foundation of Korea. This work was also supported by
the Bio & Medical Technology Development Program of the National Re-
search Foundation of Korea funded by the Korean government, the Ministry
of Science and ICT (NRF-2018M3A9H3020459).

1. Y. Kodama, M. Shumway, R. Leinonen; International Nucleotide Sequence Database
Collaboration, The Sequence Read Archive: Explosive growth of sequencing data.
Nucleic Acids Res. 40, D54–D56 (2012).

2. I. Friedberg, Automated protein function prediction–The genomic challenge. Brief.
Bioinform. 7, 225–242 (2006).

3. D. Machado, M. J. Herrgård, I. Rocha, Stoichiometric representation of gene-protein-
reaction associations leverages constraint-based analysis from reaction to gene-level
phenotype prediction. PLoS Comput. Biol. 12, e1005140 (2016).

4. S. D. Finley, L. J. Broadbelt, V. Hatzimanikatis, Computational framework for pre-
dictive biodegradation. Biotechnol. Bioeng. 104, 1086–1097 (2009).

5. W. J. Kim, H. U. Kim, S. Y. Lee, Current state and applications of microbial genome-
scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 (2017).

6. C. S. Henry et al., High-throughput generation, optimization and analysis of genome-
scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

7. L. Wang, S. Dash, C. Y. Ng, C. D. Maranas, A review of computational tools for design
and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252 (2017).

8. E. C. Webb, Enzyme nomenclature 1992. Recommendations of the Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology on the
Nomenclature and Classification of Enzymes (Academic Press, San Diego, CA, 1992).

9. V. Hatzimanikatis, C. Li, J. A. Ionita, L. J. Broadbelt, Metabolic networks: Enzyme
function and metabolite structure. Curr. Opin. Struct. Biol. 14, 300–306 (2004).

10. E. Gasteiger et al., ExPASy: The proteomics server for in-depth protein knowledge and
analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

11. C. Claudel-Renard, C. Chevalet, T. Faraut, D. Kahn, Enzyme-specific profiles for ge-
nome annotation: PRIAM. Nucleic Acids Res. 31, 6633–6639 (2003).

12. H. B. Shen, K. C. Chou, EzyPred: A top-down approach for predicting enzyme func-
tional classes and subclasses. Biochem. Biophys. Res. Commun. 364, 53–59 (2007).

13. C. Yu, N. Zavaljevski, V. Desai, J. Reifman, Genome-wide enzyme annotation with
precision control: Catalytic families (CatFam) databases. Proteins 74, 449–460 (2009).

14. L. De Ferrari, S. Aitken, J. van Hemert, I. Goryanin, EnzML: Multi-label prediction of
enzyme classes using InterPro signatures. BMC Bioinformatics 13, 61 (2012).

15. N. Kumar, J. Skolnick, EFICAz2.5: Application of a high-precision enzyme function
predictor to 396 proteomes. Bioinformatics 28, 2687–2688 (2012).

16. N. N. Nguyen, S. Srihari, H. W. Leong, K. F. Chong, EnzDP: Improved enzyme anno-
tation for metabolic network reconstruction based on domain composition profiles. J.
Bioinform. Comput. Biol. 13, 1543003 (2015).

17. Y. H. Li et al., SVM-prot 2016: A web-server for machine learning prediction of protein
functional families from sequence irrespective of similarity. PLoS One 11, e0155290
(2016).

18. Y. Li et al., DEEPre: Sequence-based enzyme EC number prediction by deep learning.
Bioinformatics 34, 760–769 (2018).

19. N. Nursimulu, L. L. Xu, J. D. Wasmuth, I. Krukov, J. Parkinson, Improved enzyme an-
notation with EC-specific cutoffs using DETECT v2. Bioinformatics 34, 3393–3395
(2018).

20. A. Dalkiran et al., ECPred: A tool for the prediction of the enzymatic functions of
protein sequences based on the EC nomenclature. BMC Bioinformatics 19, 334 (2018).

21. B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Predicting the sequence specific-
ities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–
838 (2015).

22. A. Bairoch, R. Apweiler, The SWISS-PROT protein sequence database and its supple-
ment TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).

23. UniProt Consortium, UniProt: A hub for protein information. Nucleic Acids Res. 43,
D204–D212 (2015).

24. E. Asgari, M. R. Mofrad, Continuous distributed representation of biological se-
quences for deep proteomics and genomics. PLoS One 10, e0141287 (2015).

25. R. D. Finn et al., Pfam: The protein families database. Nucleic Acids Res. 42, D222–
D230 (2014).

26. K. L. Morrison, G. A. Weiss, Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5,
302–307 (2001).

27. J. Y. Ryu, H. U. Kim, S. Y. Lee, Framework and resource for more than 11,000 gene-
transcript-protein-reaction associations in human metabolism. Proc. Natl. Acad. Sci.
U.S.A. 114, E9740–E9749 (2017).

28. D. R. Zerbino et al., Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
29. R. J. Kinsella et al., Ensembl BioMarts: A hub for data retrieval across taxonomic space.

Database (Oxford) 2011, bar030 (2011).
30. P. Horton et al., WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35,

W585–W587 (2007).
31. I. Schomburg et al., BRENDA, the enzyme database: Updates and major new devel-

opments. Nucleic Acids Res. 32, D431–D433 (2004).
32. P. J. Thul, C. Lindskog, The human protein atlas: A spatial map of the human pro-

teome. Protein Sci. 27, 233–244 (2018).
33. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using

DIAMOND. Nat. Methods 12, 59–60 (2015).

Ryu et al. PNAS | July 9, 2019 | vol. 116 | no. 28 | 14001

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 5
4.

25
1.

12
2.

16
1 

on
 A

pr
il 

23
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

54
.2

51
.1

22
.1

61
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821905116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821905116/-/DCSupplemental
https://bitbucket.org/kaistsystemsbiology/deepec
https://bitbucket.org/kaistsystemsbiology/deepec
http://doi.org/10.5281/zenodo.2567339
http://doi.org/10.5281/zenodo.2567339

