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Improved enzyme functional annotation
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structural inference
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Recent years have witnessed the remarkable progress of deep learning within the realm of scientific
disciplines, yielding a wealth of promising outcomes. A prominent challenge within this domain has
been the task of predicting enzyme function, a complex problem that has seen the development of
numerous computational methods, particularly those rooted in deep learning techniques. However,
the majority of these methods have primarily focused on either amino acid sequence data or protein
structure data, neglecting the potential synergy of combining bothmodalities. To address this gap, we
propose a Contrastive Learning framework for Enzyme functional ANnotation prediction combined
with protein amino acid sequences and Contactmaps (CLEAN-Contact). We rigorously evaluate the
performance of our CLEAN-Contact framework against the state-of-the-art enzyme function
prediction models using multiple benchmark datasets. Using CLEAN-Contact, we predict previously
unknown enzyme functions within the proteome of Prochlorococcus marinus MED4. Our findings
convincingly demonstrate the substantial superiority of our CLEAN-Contact framework, marking a
significant step forward in enzyme function prediction accuracy.

The crucial role of enzyme function annotation in our understanding of the
intricate mechanisms driving biological processes governed by enzymes is
widely recognized. The Enzyme Commission (EC) number, a numerical
classification system commonly used for enzyme function, is a widely
recognized standard in these efforts. The depth of insights provided by the
ECnumber ranges frombroad categories of enzymemechanisms todetailed
biochemical reactions through its four hierarchical layers of digits. Tradi-
tionally, sequence similarity-based methods, such as the basic local align-
ment search tool for protein (BLASTp)1 and HH-suite2, were largely relied
upon for annotating EC numbers. However, in recent times, the deep
learning revolution has largely solved the protein structure prediction
problem, and it is natural to ask how these twin scientific advances can aid in
enzyme function prediction3.

Predicting enzyme function is not merely an academic classification
exercise; it holds immense practical value in systems biology andmetabolic
engineering, particularly in the construction of genome-scale metabolic
models. Such predictive capabilities streamline the process of automating
the curation of these models by improving the ability to predict which
proteins are responsible for observed growth phenotypes under diverse

nutrient conditions and distinct genetic backgrounds. Furthermore, precise
knowledge of a genome’s metabolic capabilities enables the design of
microbial cell factories to fit for purpose to the metabolic engineering goal,
be it medicine, biomanufacturing, or bioremediation.

Currently, the majority of deep learning-based models developed for
predicting EC numbers focus on either amino acid sequence or structural
data of the enzyme. Studies such as that of DeepEC4, for example, rely solely
on amino acid sequence data for EC number prediction. Conversely, the
work in ProteInfer5 employs a single convolutional neural network to
predict EC numbers, focusing more on the structural data. Additionally, a
different approach integrating enzyme structure data into the training
process is seen in DeepFRI6, which provides a more comprehensive view of
the enzyme’s functionality. The recent addition of a contrastive learning
method has also elevated the performance of EC number prediction7.

Building upon this groundwork, we propose CLEAN-Contact, a
contrastive learning framework that amalgamates both amino acid
sequence data and protein structure data for superior enzyme function
prediction. Our CLEAN-Contact framework has shown a notable
improvement over the current state-of-the-art, CLEAN7, under a variety of
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test conditions, further emphasizing the potential for combining protein
sequence and structure-based deep learning in enzyme function predictive
practices.

Results
Contrastive learning framework for enzyme functional annota-
tion prediction combined with protein contact maps
We develop a deep contrastive learning framework aimed at predicting EC
numbers. This framework integrates a protein language model (ESM-2)8

and a computer visionmodel (ResNet50)9 (SeeMethods). Protein language
models excel at processing and extracting pertinent information from
protein amino acid sequences, while computer vision models, especially
convolutional neural networks (CNNs), demonstrate superior efficacy in
handling image-like data, making CNNs well-suited for extracting relevant
information from the square matrix structure of protein contact maps.
Among protein languagemodels, ESM-2 stands outwith several advantages
over its peers like ProtBert10 and ESM-1b11. These include more advanced
model architectures, larger training dataset, and superior benchmark per-
formance on the 14th Critical Assessment of protein Structure Prediction
(CASP14)12 and Continuous Automated Model Evaluation (CAMEO)13.
For the computer vision component, ResNet-50 offers an optimal balance
between computational efficiency and performance in relevant tasks.

ESM-2 operates as a feedforward neural network, extracting function-
aware sequence representations from input protein amino acid sequences.
Meanwhile, ResNet50 functions as a feedforwardneural network, extracting
structure representations from input 2D contactmaps derived fromprotein
structures. The CLEAN-Contact framework plays a key role by combining
these sequence and structure representations and employing contrastive
learning to learn the prediction of EC numbers. The CLEAN-Contact fra-
mework consists of three key components: (1) The representations
extraction segment (Fig. 1a), which is designed to extract structure repre-
sentations from contact maps using ResNet509 and sequence representa-
tions fromamino acid sequences usingESM-28. (2) The contrastive learning
segment (Fig. 1b), where contrastive learning is performed to minimize the
embedding distances between enzymes sharing the same EC number while
maximizing the embedding distances between enzymes with different EC
numbers. Specifically, structure and sequence representations are trans-
formed to the same embedding space, leading to the same dimension for
both structure and sequence representations. Subsequently, the combined
representations are produced by adding the structure and sequence repre-
sentations in the same embedding space together. The combined repre-
sentations are used tomeasure embedding distances between enzymes. And
(3) the EC number prediction segment (Fig. 1c), which is responsible for
determining the EC number of a query enzyme based on the projector and
the combined representation of the query enzyme learned through con-
trastive learning.P-valueECnumber selection algorithmorMax-separation
EC number selection algorithm are employed to predict EC numbers of
query enzymes.

Benchmark results
We conducted comprehensive evaluations of our proposed CLEAN-
Contact framework, comparing it against five state-of-the-art EC number
prediction models, CLEAN7, DeepECtransformer14, DeepEC4, ECPred15,
and ProteInfer5. Thesemodels, along with the CLEAN-Contact, underwent
testing on two independent test datasets. The first test dataset, New-3927

contains 392 enzyme sequences distributed over 177 different EC numbers
(Supplementary Data 1). Predictive performance was assessed using four
different metrics, Precision, Recall, F1-score, and Area Under Receiver
Operating Characteristic Curve (AUROC). The EC numbers predicted by
CLEAN-Contact and CLEAN were chosen using the P-value EC number
selection algorithm with the same hyperparameters. The CLEAN-Contact
achieved better performance. Specifically, CLEAN-Contact exhibited a
16.22% enhancement in Precision (0.652 vs. 0.561), a 9.04% improvement
in Recall (0.555 vs. 0.509), a 12.30% increase in F1-score (0.566 vs. 0.504),
and a 3.19%elevation inAUROC(0.777 vs. 0.753) overCLEAN(Fig. 2a and

Supplementary Fig. 1a,b and Supplementary Fig. 2a). Conversely, ECPred
and DeepEC recorded the lowest performance. The second test dataset,
Price-1497 comprises 149 enzyme sequences distributed over 56 different
EC numbers (Supplementary Data 2). Once more, CLEAN-Contact
exhibited superior performance. Specifically, CLEAN-Contact showcased
enhancements across variousmetrics compared to CLEAN, the second best
performingmodel: a 16.95% improvement in Precision (0.621 vs. 0.531), an
18.20% increase inRecall (0.513 vs. 0.434), a 16.15%boost inF1-score (0.525
vs. 0.452), and a 5.44% elevation in AUROC (0.756 vs. 0.717; Fig. 2b and
Supplementary Fig. 1c, d and Supplementary Fig. 2b). ECPred recorded the
lowest performance measured by Recall and F1-score, while DeepEC
recorded the lowest performancemeasured by Precision. Notably, CLEAN-
Contact achieved a 2.0- to 2.5-fold improvement in Precision compared to
DeepEC (0.238), ECPred (0.333), and ProteInfer (0.243), a 25.6-fold
increase in Recall compared to ECPred (0.020), and a 13.8-fold improve-
ment in F1-score compared toECPred (0.038). Besides comparingCLEAN-
Contact and CLEAN using the P-value EC number selection algorithm, we
sought to ensure its comparative performance against CLEAN using the
Max-separation EC number selection algorithm. We evaluated Precision,
Recall, F1-score, andAUROC of both CLEAN-Contact and CLEAN on the
two test datasets. Notably, CLEAN-Contact outperformed CLEAN by
exhibiting an average improvement of 10.6% across the two test datasets
(Supplementary Fig. 3).

To investigate the performance of CLEAN-Contact concerning
understudied EC numbers, wemerged the two test datasets and divided the
merged test dataset basedon the frequency of anECnumber’s occurrence in
the training dataset. Subsequently, we measured the Precision and Recall of
both CLEAN-Contact and CLEAN on these divided test datasets. CLEAN-
Contact demonstrated a 30.4% improvement (0.661 vs. 0.507) in Precision
while achieving comparable performance against CLEAN when the EC
number was rare in the training dataset (occurring more than 5 times but
less than 11 times) and a 27.4% improvement (0.847 vs. 0.665) in Precision
and a 21.4% improvement (0.693 vs. 0.571) in Recall compared to CLEAN
whenmoderately infrequent (occurringmore than 10 times but less than 51
times; Fig. 2c, d). However, when the EC number was extremely rare in the
training dataset (occurring less than 6 times) or very common (occurring
more than 100 times), the improvement of CLEAN-Contact over CLEAN
was less significant (0.506 vs. 0.501 in Precision and 0.435 vs. 0.425 in Recall
for EC numbers occurring less than 6 times, 0.731 vs. 0.669 in Precision and
0.575 vs. 0.525 in Recall for EC numbers occurring more than 50 times but
less than 101 times, and 0.694 vs. 0.656 in Precision and 0.528 vs. 0.569 in
Recall for EC numbers occurring more than 100 times; Fig. 2c, d). These
findings underscore the significant enhancement in predictive performance
achieved by integrating structural information into CLEAN-Contact.

Furthermore, we divided the merged test dataset based on the max-
imum sequence identity with the training dataset and evaluated the Preci-
sion and Recall of both CLEAN-Contact and CLEAN on these divided test
datasets.When the sequence identity with the training dataset was very low
(less than 30%), bothmodels achieved comparable performance (Fig. 2e, f).
However, as the maximum sequence identity ranged from 30% to 50%,
CLEAN-Contact exhibited a 12.3% improvement in Precision (0.501 vs
0.446) and a 12.0% improvement in Recall (0.430 vs. 0.384) over CLEAN
(Fig. 2e, f). As the maximum sequence identity increased to between 50%
and 70%, CLEAN-Contact still maintained a 1.34% advantage in Precision
(0.678 vs. 0.669) and a 2.32% advantage in Recall (0.617 vs. 0.603) over
CLEAN (Fig. 2e, f). Remarkably, when the maximum sequence identity
exceeded 70%, CLEAN-Contact showcased a 9.33% improvement over
CLEAN (0.633 vs. 0.579) in Precision and a comparable performance in
Recall (0.594 vs. 0.589; Fig. 2e, f).

Computational cost is another important factor in evaluating the
performance of the classification model. We evaluated the computational
cost of CLEAN-Contact and CLEAN, focusing on their inference steps. For
CLEAN-Contact, this includes generating sequence representations using
ESM-2, structure representations using ResNet-50, and predicting EC
numbers of query enzymes using the contrastively learnedmodel. CLEAN’s
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Fig. 1 | Schematic illustration of the CLEAN-Contact framework. a Obtaining
structure and sequence representations from contact map and amino acid sequence
using ResNet50 and ESM2, respectively. b The contrastive learning segment.
Sequence and structure representations are combined and projected into high-
dimensional vectors using the projector. Positive samples are thosewith the same EC
number as the anchor sample and negative samples are chosen from EC numbers

with cluster centers close to the anchor. We perform contrastive learning to mini-
mize distances between anchor and positive samples, and maximize distances
between anchor and negative samples. cThe ECnumber prediction segment. Cluster
centers are computed for each EC number by averaging learned vectors within that
EC number. Euclidean distances between the query enzyme’s vector and the cluster
centers are calculated to predict the EC number of a query enzyme.
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Fig. 2 | Assessment of predictive performance between CLEAN-Contact and
baseline models. a, b Predictive performance between CLEAN-Contact and base-
line models (CLEAN, DeepECtransformer, DeepEC, ECPred, and ProteInfer)
measured by Precision, Recall, F1-score, and AUROC metrics on the New-392 and
Price-149 test datasets. c, d Precision and recall of CLEAN-Contact and the second

best performing model, CLEAN, on the merged test dataset, correlating with the
frequency of occurrence of EC numbers in the training dataset. e, f Precision and
recall of CLEAN-Contact and CLEAN on the merged dataset, correlating with the
maximum sequence identity of proteins in the test dataset compared to the training
dataset.
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inference steps include obtaining representations through ESM-1b and
making predictions. We quantified computational complexity using Giga
Floating Operations (GFLOPs) and time consumption for each step. To
ensure a fair comparison, we used the average protein sequence length from
our test dataset (439 amino acids) as a benchmark, since the computational
cost of ESM-1b, ESM-2, and ResNet-50 are input-size dependent. We
excluded the cost of generatingPDBstructures forproteins lacking entries in
the AlphaFold Protein Structure Database16. Our analysis revealed that
CLEAN-Contact requires only an additional 0.1776 seconds per enzyme
compared to CLEAN (Supplementary Table 1) while achieving significant
performance improvement over CLEAN, scoring more than 20%
improvement in several benchmark metrics.

Quantifying prediction confidence of CLEAN-Contact
We harnessed the Gaussian Mixture Model (GMM)17 to quantify the pre-
diction confidence of CLEAN-Contact. Specifically, we randomly sampled
500 different EC numbers, followed by computing the distances between
these EC numbers and the enzymes associated with these 500 EC numbers.
The enzyme counts versus distances form a “same-EC” Gaussian dis-
tribution, representing the enzymes with correct EC numbers (Left peak in
Supplementary Fig. 4a). Subsequently, we sampled negative enzymes that
are not associated with these 500 EC numbers, and computed the distances
between theseECnumbers and the samplednegative enzymes.Thenegative
enzyme counts versus distances forms a “different-EC” Gaussian distribu-
tion, representing the enzymes with incorrect EC numbers (Right peak in
Supplementary Fig. 4a). We then employed a 2-component GMM to fit
these two Gaussian distributions, with one component representing the
“same-EC” Gaussian distribution while the other representing the “differ-
ent-EC”Gaussian distribution. To determine the confidence, we started by
computing the distance between the query enzyme and the predicted EC
number. The density of the fitted GMM component corresponding to the
“same-EC” distribution for this distance is used as prediction confidence.
Following this, we assessed the performance of CLEAN-Contact across
increasing cumulative confidence levels on the merged test dataset. The
Precision and Recall of CLEAN-Contact showed improvement with higher
cumulative confidence, consistently outperforming CLEAN across all
cumulative confidence levels (Supplementary Fig. 4b, c).

Additionally, we employed the fitted GMM to address concerns about
overprediction. Specifically, we restricted predictions to the 4th-level EC
number only when the prediction confidence exceeds 0.5; otherwise, we
predict the 3rd-level EC number. This adaptive prediction strategy miti-
gated overprediction issues by favoring the prediction of 3rd-level EC
numbers at lower confidence levels (Supplementary Fig. 4d). Remarkably,
when employing this adaptive prediction strategy, CLEAN-Contact yielded
more true positives compared to exclusively predicting 4th-level EC num-
bers across all scenarios. Additionally, CLEAN-Contact consistently out-
performed CLEAN in terms of predictive accuracy.

Discovery of unknown functions of enzymes in Prochlorococcus
marinusMED4
Wenext aimed touncover unknownenzyme functionswithin the proteome
of Prochlorococcus marinus (P. marinus) MED4 (UniProt Proteome ID:
UP000001026). P. marinus is a dominant photosynthetic organism in tro-
pical and temperate open ocean ecosystems and is notable for being the
smallest known photosynthetic organism18. The proteome of P. marinus
MED4 comprises 1942 proteins, of which 583 had been annotated with at
least one EC number in the UniProt database19, which encompasses a total
of 488 distinct EC numbers (Supplementary Data 3).

We first employed both CLEAN-Contact and CLEAN to predict EC
numbers for all 1942proteins in theP.marinusMED4proteome.Of the 488
annotated EC numbers, CLEAN-Contact correctly predicted 385, while
CLEAN correctly predicted 379 (Fig. 3a and Supplementary Data 3). Both
methods predicted 373 new EC numbers, with CLEAN-Contact indepen-
dently predicting an additional 442 new EC numbers (Fig. 3a). CLEAN-
Contact had higher overall prediction confidence compared to CLEAN,

further confirming the better performance of CLEAN-Contact through
integrating both protein structure and sequence information (Fig. 3b).
Analysis of the first-level EC numbers predicted by CLEAN-Contact
revealed that EC:2 comprised the most of predictions (30.2%), followed by
EC:1 (21.5%) and EC:3 (21.3%), with the remaining first-level EC numbers
accounting for 27% (Fig. 3c).

We next focused our attention on the predicted EC numbers for
proteins lacking annotated EC numbers and in the “unreviewed” status,
indicating they had not yet been manually annotated by experts. A total of
1212proteinsmeet these criteria.To ensureprediction reliability,we applied
strict confidence threshold. By considering only predictions with a con-
fidence score exceeding 0.9, we identified 38 enzymes with a total of 36
predicted EC numbers (Fig. 3d and Supplementary Data 3). Notable
examples include protein with UniProt ID of Q7V3C0, predicted as citrate
synthase (EC:2.3.3.16)with 0.991 confidence, aligningwith its protein name
in the UniProt database, protein with UniProt ID of A8WIJ5, unchar-
acterized protein in the UniProt database, predicted as tetra-
hydromethanopterin S-methyltransferase (EC:2.1.1.86) with 0.996
confidence, and protein with UniProt ID of Q7V190, conserved hypothe-
tical protein in the UniProt database, predicted to be 6-
carboxyhexanoate–CoA ligase (EC:6.2.1.14) with 0.972 confidence (Fig. 3d
and Supplementary Data 3). Together, these results demonstrated CLEAN-
Contact’s potential for identifying unknown enzyme functions, particularly
uncharacterized or hypothetical proteins.

Interpreting CLEAN-Contact
We investigated the impact of various representation components, speci-
fically comparing sequence representations derived from ESM-2 against
those derived fromESM-1b, alongwith including structure representations.
We observed that replacing ESM-1b with ESM-2, without incorporating
structure representations, led to a marginal 1.39% average performance
improvement across the two test datasets (Fig. 4). However, integrating
structure representations while retaining ESM-1b yielded a substantial
5.76% average performance increase across the two test datasets (Fig. 4).
Moreover, replacing ESM-1b with ESM-2 and including structure repre-
sentations resulted in a 6.13% average performance improvement (Fig. 4).
Notably, utilizing solely structure representations as themodel input yielded
the poorest performance.We attributed this outcome to the fact that contact
maps only offer information about residue contacts within the protein
structure, lacking crucial details about the amino acids.

To find out how different computer vision models can affect the per-
formance of CLEAN-Contact, we trained and evaluated four CLEAN-
Contact variants employing different CNNs: three ResNet-based models9

(ResNet-18, ResNet-50, andResNet-101) and one vision transformer-based
model (SwinV2-B20).While ResNet-18 has the lowest computational cost, it
also demonstrates the lowest performance in ImageNet classification tasks21

(Supplementary Table 2). ResNet-50, ResNet-101, and SwinV2-B exhibit
comparable performance in these tasks, while the number of parameters
ranges from 25.6M (ResNet-50) to 87.9M (SwinV2-B) (Supplementary
Table 2). Our experiments on themerged test dataset revealed that ResNet-
based models in CLEAN-Contact showed similar performance, with
ResNet-50 slightly outperforming others (Supplementary Table 3). Inter-
estingly, SwinV2-B variant of CLEAN-Contact underperformed compared
to the ResNet-based models (Supplementary Table 3). These findings
suggested that ResNet-50 offers the optimal balance, maximizing the
extraction of useful information from protein contact maps while main-
taining computational efficiency.

To study the impact of sample quantities for contrastive learningon the
performanceofCLEAN-Contact,we conducted a series of experimentswith
different numbers of anchor, positive, and negative samples. We trained
models with 1, 2, and 4 samples for each sample type and adhered to the
constraints imposed by the triplet margin loss function. The triplet margin
loss function requires an equal number of positive and negative samples.
Additionally, it requires that the number of positive samples must be either
one, equal to the number of anchor samples, or greater than the number of
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Fig. 3 | Enzyme function prediction within the proteome of Prochlorococcus
marinus MED4. a Comparison of EC numbers annotations for P. marinus MED4
proteome through three methods: manual annotation from UniProt (bottom) and
computational prediction using CLEAN-Contact (left) and CLEAN (right). The
overlapping regions indicate EC numbers shared between different methods.
b Assessment of prediction confidence between CLEAN-Contact and CLEAN for
the n=583 annotated enzymes. Box plot elements: The center lines represent the

median prediction confidences. The upper and lower box limits represent upper and
lower quartiles, respectively. Whiskers extend to the maximum and minimum
prediction confidences. Individual points represent all prediction confidence values.
c Distribution of first-level EC numbers predicted by CLEAN-Contact for 1212
unannotated and unreviewed enzymes. d Visualization of 38 enzymes with high-
confidence predictions and their corresponding predicted first-level EC number.
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anchor samples. We observed an inverse relationship between sample
quantity and model performance. Notably, increasing the number of
positive and negative samples led to a more significant decrease in perfor-
mance compared to increasing the number of anchor samples alone
(Supplementary Table 4).

Discussion
In this work, we introduce a enzyme function prediction framework based
on contrastive learning, which integrates both enzyme amino acid sequence
and structural data to predict EC numbers. Our proposed CLEAN-Contact
framework harnesses the power of ESM-2, a pretrained protein language
model responsible for encoding amino acid sequences, and ResNet, a
convolutional neural network utilized for encoding contact maps. Through
comprehensive evaluations on diverse test datasets, we have meticulously
assessed the CLEAN-Contact framework’s performance. In addition to
benchmark analysis, we leveraged CLEAN-Contact to discover previously
unknown enzyme functions in Prochlorococcus marinus MED4. Specifi-
cally,CLEAN-Contact predicted enzyme functionswithhigh confidence for
38 proteins that had not beenmanually annotated and reviewed by experts.
Our extensive comparisons and detailed analysesfirmly established that the
fusion of structural and sequence information substantially enhances the
predictive performance of models used for enzyme functional annotation
prediction. As a result, CLEAN-Contact represents a significant step for-
ward in the field of enzyme annotation, providing a robust framework for
enzyme function prediction.

However, our work does come with certain limitations. First, our uti-
lization of structure information relies on contact maps, 2D matrix repre-
sentations, rather than utilizing the full 3D protein structures of enzymes.
One potential solution to overcome this limitation involves the incorpora-
tion of 3D interaction sequences (3Di)22 into the framework. These
sequences contain valuable information regardinggeometric conformations
between residues. Another possible way to enhance CLEAN-Contact
involves considering EC numbers as hierarchical labels. This approach
entails employing hierarchical losses, such as hierarchical contrastive loss23

or exploring other hierarchical classification loss methodologies24,25.
Even though our focus in this work is solely on predicting enzyme

functional annotations, we firmly believe that our proposed CLEAN-
Contact framework has broader applications beyond this domain. A pro-
mising future direction could involve extending our model to predict

general protein functional annotations, such as Gene Ontology (GO)
numbers26 and FunCat categories27. This expansion would significantly
broaden the application and utility of our model.

Methods
Description of Dataset
The enzyme’s amino acid sequences in the training dataset were retrieved
from Swiss-Prot28 (accessed April 2022). Sequences lacking structures
available in the AlphaFold Protein Structure Database16 (https://alphafold.
ebi.ac.uk/) were filtered out from the training dataset. The processed
training dataset comprises 224,742 amino acid sequences, covering 5197EC
numbers. We obtained PDB structures for the proteins in the processed
training dataset from the AlphaFold Protein Structure Database. Test
datasets, New-392 and Price-149, consist of 392 and 149 amino acid
sequences, respectively, distributed across 177 and 56 EC numbers, as
provided by7 (Supplementary Data 1 and 2). Within the New-392 test
dataset, 8 enzymes, andwithin the Price-149 test dataset, 28 enzymes lacked
readily available structures from the AlphaFold Protein Structure Database
(Supplementary Data 1 and 2). To address this, we employed all 5 models
within AlphaFold23 to generate protein structures for these 36 enzymes.
From the 5 generated protein structures for each enzyme, we selected the
one with the highest confidence to derive contact maps. Notably, enzymes
where an ‘X’ appearedwithin the aminoacid sequence renderedAlphaFold2
unable to assess structure confidence. In such cases, we utilized the protein
structures generated from “model_1”. The case study dataset, comprising
1,942 proteins, was obtained from theUniProt database (UniProt proteome
ID: UP000001026, accessed September 2024). Of 1942 proteins, 583 were
annotated with at least one EC number, while 1212 were neither annotated
nor reviewedby experts. There is nooverlapping between the proteins in the
case study dataset and those in the training dataset. The contact map was
defined as the distance betweenCβ−Cβwith a threshold of 8Å. The contact
map was then expanded into three channels with identical values for each
channel. Contact maps were calculated using biotite 0.38.0 (https://www.
biotite-python.org/), Scipy 1.11.4 (https://scipy.org/), and Biopython 1.81
(https://biopython.org/).

The maximum sequence identity between the test dataset and the
training dataset was calculated using BLASTp 2.15.029. A BLAST database
was built (makeblastdb -in split100_reduced.fasta
-dbtypeprot) on the trainingdataset beforeperformingBLASTp search

Fig. 4 | Ablation results. We conducted a comparative analysis of several model
variations, including our proposed CLEAN-Contact (ESM2+Contact), CLEAN-
Contact without structure representation (ESM2), CLEAN-Contact with ESM-1b
instead of ESM-2 (ESM1b+Contact), the original CLEAN (ESM1b), and a model
with solely structure representation devoid of ESM-2 or ESM-1b generated sequence

representation (Contact). a, Evaluation of predictive performance metrics (Preci-
sion, Recall, F-1 score, and AUROC) across different models on the New-392 test
dataset. b, Evaluation of predictive performancemetrics (Precision, Recall, F-1 score,
and AUROC) across different models on the Price-149 test dataset.
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(blastp -query test.fasta -db split100_reduced.fasta
-num_threads 32 -outfmt 5 -out test.xml) using the test
dataset as the query database and the training dataset as the target database.
The sequence identity was defined as HSP_identity / HSP_a-
lign_length, and themaximum sequence identity was selected from all
hits for each protein in the query database.

Description of Framework
As shown in Fig. 1, our framework consists of two components: the con-
trastive learning segment and the EC number prediction segment.

We initiate our approachby obtaining contactmapsC 2 Rnr × nr from
protein structures, where nr denotes the number of residues in a protein. To
expand C into a three-channel matrix C3 2 Rnr × nr × 3, each channel holds
identical values. Utilizing the ResNet509 model pretrained on ImageNet21,
we extract high-dimensional structure representations from contact maps:

c ¼ RðC3Þ; ð1Þ

where R is the pretrained ResNet50 without its classification layer, and
c 2 Rdc is the structure representation, with dc as its dimension. The
dimension of the obtained structure representation dc was 2, 048.

Recognizing that contactmaps alone lack vital aminoacid information,
we leverage the ESM-2 model8 with 36 layers and 3B parameters to derive
sequence representations from proteins’ amino acid sequence:

a ¼ EðsaaÞ; ð2Þ

where E is the pretrained ESM-2 model, saa is the protein’s amino acid
sequence, and a 2 Rda is the sequence representation, with da as its
dimension. The dimension of the derived sequence representation da
was 2, 560.

To fuse the sequence and structure representations into a vector
z 2 Rdz , we employ aprojectorFΨð�Þ. Theprojector contains three levels of
linear layers, each followed by layer normalization30:

z ¼ FΨða; cÞ;
¼ W3ðLN2 W2 LN1 W1;aaþW1;cc

� �� �� �
;

ð3Þ

where LNi is the i
th layer normalization, W1;a 2 Rd1 × da , W1;c 2 Rd1 × dc ,

W2 2 Rd2 × d1 andW3 2 Rdz × d2 are the weights of the linear layers, while
Ψ is the projector’s trainable parameters.

Subsequently, we compute representations for EC numbers by con-
catenating the sequence and structure representations of proteins under a
specific EC number and averaging these concatenated representations:

rEC;i ¼
1

jECij
X

j2ECi

Concat ðaj; cjÞ
� �

; ð4Þ

where rEC,i is the representation of the ith EC number, ECi is the set of
enzymes associatedwith the ithECnumber, ∣ECi∣ is the set’s cardiality, andaj
and cj are the sequence and structure representations, respectively, of the j

th

enzyme under the ith EC number.
Further, we compute the distance map between the representations of

EC numbers utilizing Euclidean distance:

dðECi;ECjÞ ¼ jjzEC;i � zEC;jjj2;
¼ jjF ðaEC;i; cEC;iÞ � F ðaEC;j; cEC;jÞjj2;

ð5Þ

where d(ECi, ECj) is the Euclidean distance between the projected vectors of
the ith and jth EC numbers.

During the training phase, we select anchor samples o for each EC
number and positive samples p sharing the same EC number as o. For

negative samples, we initially choose negative EC numbers with repre-
sentations that are close to the anchor’s EC number representation in
Euclidean distance, then select negative samples from these negative EC
numbers. We employ the triplet margin loss31 for contrastive learning:

L ¼ maxðjjzo � zpjj2 � jjzo � znjj2 þ ϵ; 0Þ; ð6Þ

where ϵ is the margin for triplet loss (sets as 1 for all experiments), zo is the
projected vector for the anchor sample, zp is the projected vector for the
positive sample, and zn is the projected vector for the negative sample.

For the EC number prediction phase, we utilize the contrastively
trained projector F to obtain vectors for enzymes from both the training
dataset and test dataset. Subsequently. we compute cluster centers of EC
numbers present in the training dataset by averaging the vectors of enzymes
associated with each EC number. We then compute the Euclidean distance
between the vectors of query enzymes in the test set and vectors of
EC numbers. Finally, we predict potential EC numbers utilizing both the
P-value and Max-separation EC number prediction algorithm as
mentioned in Yu et al.7. (See Section 4.3 and Section 4.4). PyTorch 2.1.1
(https://pytorch.org/), torchvision 0.16.1 (https://pytorch.org/vision/), fair-
esm 2.0.0 (https://github.com/facebookresearch/esm), and PyTorch-
CUDA 12.1 (https://pytorch.org/) were used to implement the whole
framework.

EC number selection using P-value
The P-value EC number selection algorithm, as proposed by Yu et al.7,
involves several key steps. Initially, a P value was selected, followed by the
random sampling of n enzymes from the training dataset, setting a selection
threshold δ= P× n. However, instead of uniformly sampling n enzymes, we
assign ahigherweight to an enzymewhose associatedECnumbers contain a
smaller number of enzymes:

pe ¼
1=maxðjECejÞP
i2S1=maxðjECiÞ

; ð7Þ

where pe is the assigned probability of enzyme e, ECe are all EC number sets
including enzyme e, maxðjECejÞ is the maximum cardinality among all EC
number sets involving enzyme e, and S is the entire set of enzymes.

Moving forward, we compute the distancemap between the randomly
sampled n enzymes and EC numbers in the training dataset using vectors
encoded by the trained projector F :

dðECi; ejÞ ¼ jjzEC;i � ze;jjj2;
¼ jjF ðaEC;i; cEC;iÞ � F ðae;j; ce;jÞjj2;

ð8Þ

where ej is the j
th enzyme in the randomly chosen n enzymes, a is the

sequence representation, and c is the structure representation. Sub-
sequently, with respect to each EC number, we obtain a set of dis-
tances DðECÞ ¼ dðEC; e1Þ; dðEC; e2Þ; :::; dðEC ; en�1Þ

� �
, sorted in

ascending order.
The next step involves identifying the 10 closest cluster centers of EC

numbers to the query enzyme and the corresponding distances between the
query enzyme’s projected vector to the cluster centers.These 10ECnumbers
were denoted as ECk, with corresponding distances labeled as dk, where
k∈ [1, 10]. EC1 represents the ECnumberwith the closest distance d1 to the
query enzyme. We retain the first EC number, which has the smallest
distance to the query enzyme, as a prediction result. Subsequently, we iterate
over the remaining 9 EC numbers. For each EC number ECk, we find the
index u inDðECkÞ where dk should be inserted such that:

dðECk; eu�1Þ < dk ≤ dðECk; euþ1Þ: ð9Þ
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We retain ECk as a prediction result if the insertion index is smaller than the
threshold δ:

u≤ δ: ð10Þ

EC number selection using Max-separation
The Max-separation EC number selection algorithm, as introduced by Yu
et al.7, differs from the P-value algorithm in that it does not need necessitate
the selection of hyperparameters P and n.

The procedure begins by sorting the distance map between the pro-
jected vector of query enzyme and the cluster centers of ECnumbers within
the training dataset in ascending order. Next, the algorithm selects ten EC
numbers ECkwith the smallest distancesdk, k∈ [1, 10] to the query enzyme,
computing their average distances:

γ ¼ 1
10

X10

k¼1

dk: ð11Þ

Following this, the algorithm computes the differences between each dis-
tance and the average:

qk ¼ jdk � γj; k 2 ½1; 10�: ð12Þ

Subsequently, the algorithm computes the differences between adjacent
items and computes their average:

gk ¼ jqk � qk�1j; k 2 ½2; 10�;

�g ¼ 1
9

X10

i¼2

gi:
ð13Þ

The algorithm proceeds to select the index i for which gi > �g and uses ECi as
the prediction result. In case where no index i satisfies the condition gi > �g,
EC1 is used as the prediction result.

Quantification of prediction confidence
We randomly sampled 500 different EC numbers from the training dataset,
followed by computing the distances between these 500 EC numbers and the
enzymes associated with these 500 EC numbers using Eq. (8). The dis-
tribution of enzyme counts versus distances forms the “same-EC” Gaussian
distribution (Left peak in Supplementary Fig. 4a). Subsequently, we sampled
negative enzymes using the negative enzyme selection strategymentioned in
Section 4.2 and computed distances between the 500 EC numbers and the
sampled negative enzymes usingEq. (8). The distribution of negative enzyme
counts versus distances forms the “different-EC” Gaussian distribution
(Right peak in Supplementary Fig. 4a). The randomsamplingwas performed
for 10 times. One 2-component Gaussian Mixture Model (GMM) provided
by Scikit-learn32 was fitted each time, with one component corresponding to
the “same-EC” distribution while the other corresponding to the “different-
EC” distribution. Supplementary Fig. 4a shows distances between all ran-
domly sampled ECnumbers and their associated enzymes and their sampled
negative enzymes during the 10 sampling processes. The random package
provided by Python 3.10.13 (https://docs.python.org/release/3.10.13/library/
random.html) was used to sample EC numbers and negative enzymes.

To quantify prediction confidence, we started by computing the dis-
tancebetween thequery enzymeand thepredictedECnumberusingEq. (8).
Subsequently, we computed density of the fitted GMM component corre-
sponding to the “same-EC” distribution for this distance as the prediction
confidence. Prediction confidence for each enzyme provided in Fig. 3 and
SupplementaryFig. 4was themeanof 10densities of thefittedGMM “same-
EC” component.

Statistics and reproducibility
Statistical analyses were performed in Python 3.10.13 (https://www.python.
org/). Numpy 1.26.2 (https://numpy.org/), Pandas 2.1.1 (https://pandas.
pydata.org/), and Scikit-learn32 were used for statistical analyses. Matplotlib
3.8.0 (https://matplotlib.org/), Seaborn 0.13.2 (https://seaborn.pydata.org/),
and matplotlib_venn (https://github.com/konstantint/matplotlib-venn)
were used for visualizing results. Details of the sample size, number of
replicates, and statistical analyses for each experiment and case study are
listed in the respective parts of the Results and Methods sections.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All test and case study datasets are provided in the SupplementaryDatafiles.
Source data of Fig. 2 and Supplementary Fig. 2 and Supplementary Fig. 4 are
provided in Supplementary Data 4. All data supporting the results reported
in the study are available at Zenodo33.

Code availability
All software used in the study is publicly available as described in the
Methods and Reporting Summary. The custom code used in the study can
be accessed at Zenodo33 and GitHub (https://github.com/pnnl-predictive-
phenomics/clean-contact). CLEAN-Contact is also freely accessible
through an easy-to-use webserver without deployment: https://ersa.guans.
cs.kent.edu/.
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