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ABSTRACT
The number of protein structures in the PDB database has been increasing more

than 15-fold since 1999. The creation of computational models predicting enzymatic

function is of major importance since such models provide the means to better

understand the behavior of newly discovered enzymes when catalyzing chemical

reactions. Until now, single-label classification has been widely performed for

predicting enzymatic function limiting the application to enzymes performing

unique reactions and introducing errors when multi-functional enzymes are

examined. Indeed, some enzymes may be performing different reactions and can

hence be directly associated with multiple enzymatic functions. In the present work,

we propose a multi-label enzymatic function classification scheme that combines

structural and amino acid sequence information. We investigate two fusion

approaches (in the feature level and decision level) and assess the methodology for

general enzymatic function prediction indicated by the first digit of the enzyme

commission (EC) code (six main classes) on 40,034 enzymes from the PDB database.

The proposed single-label and multi-label models predict correctly the actual

functional activities in 97.8% and 95.5% (based on Hamming-loss) of the cases,

respectively. Also the multi-label model predicts all possible enzymatic reactions in

85.4% of the multi-labeled enzymes when the number of reactions is unknown.

Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

Subjects Bioinformatics, Computational Biology, Genomics, Computational Science

Keywords Enzyme classification, Single-label, Multi-label, Structural information, Amino acid

sequence, Smith-Waterman algorithm

INTRODUCTION
The ever-growing PDB database contains more than 110,000 proteins that are

characterized by different properties including their structure, biological function,

chemical composition, or solubility in solvents. Protein classification is important since it

allows estimating the properties of novel proteins according to the group to which they are

predicted to belong. Enzymes are a type of proteins that are classified according to the
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chemical reactions they catalyze into six primary classes, oxidoreductases, transferases,

hydrolases, lyases, isomerases, and ligases. The classes are denoted by the enzyme

commission (EC) number (NC-IUBMB, 1992) and have been determined based on

experimental evidence. Systematic annotation, reliability, and reproducibility of protein

functions are discussed in Valencia (2005). Classification of enzymes is a central issue

because it helps understanding enzymatic behavior during chemical reactions. While

the vast majority of enzymes have been found to perform particular reactions, a

non-negligible number of enzymes can perform different reactions and can hence be

directly associated with multiple enzymatic functions (Guyon et al., 2006).

During the last decade, various machine learning techniques have been proposed for

both single-label and multi-label enzyme classification on different datasets. Among

single-label classification studies, some (Dobson & Doig, 2005) used only structural

information and achieved an accuracy of 35% for top-ranked prediction using support

vector machine (SVM) with a one-against-one voting scheme on 498 enzymes from

the PDB database. Applying SVM on sequence features has been done by Mohammed &

Guda (2015) and achieved an accuracy of 98.39% after training on 150,000+ enzymes with

10-fold cross-validation. Osman & Choong-Yeun Liong (2010) extracted only gene or

amino acid sequence information and applied neural networks obtaining an accuracy of

72.94% after training the networks on 1,200 enzymes from the PDB database and

testing on 2,000 others. Volpato, Adelfio & Pollastri (2013) achieved 96% accuracy with a

10-fold cross-validation scheme on 6,081 entries of the ENZYME database. Sequence

structure and amino acid information were also used by des Jardins et al. (1997), Kumar &

Choudhary (2012) and Lee et al. (2007), who obtained testing accuracies ranging from

74% to 88.2% using the Swiss-Prot database. Combination of sequence, structure, and

chemical properties of enzymes was also explored by Borgwardt et al. (2005) using kernel

methods and SVM on the BRENDA database and achieved an accuracy of 93% with

six-fold cross-validation on information extracted through protein graph models.

Multi-label classification using different methods such as RAkEL-RF and MLKNN

(Wang et al., 2014) or MULAN (Zou et al., 2013) was performed on single- and

multi-labeled enzymes. In particular, the latter was assessed on enzymes from the

Swiss-Prot database based on their amino acid composition and their physico-chemical

properties and involved the use of position-specific scoring matrices. In the best scenario,

a macro-averaged precision of 99.31% was obtained on a set of 2,840 multi-functional

enzymes after 10-fold cross-validation. A summary of other alignment-free methods used

to predict enzyme classes is presented in Table 1.

Other work on enzyme classification includes the use of information stemming from

topological indices (Munteanu, Gonzalez-Diaz & Magalhaes, 2008), peptide graphs

(Concu et al., 2009b), and also includes the machine-learning based ECemble method

(Mohammed & Guda, 2015).

In this paper, a new feature extraction and classification scheme is presented that

combines both structural and amino acid sequence information aiming to improve

standard classifiers that use only one type of information. Building upon previous

work (Amidi et al., 2016), we investigate a more sophisticated combination approach
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and assess the performance of the scheme in single-label and multi-label classification

tasks. State-of-the-art accuracy is observed as compared to the methods reviewed in the

survey by Yadav & Tiwari (2015).

METHODS
Feature extraction
Proteins are chains of amino acids joined together by peptide bonds. As the three-

dimensional (3D) configuration of the amino acids chain is a very good predictor of

protein function, there has been many efforts in extracting an appropriate representation

of the 3D structure (Lie & Koehl, 2014). Since many conformations of this chain are

possible due to the possible rotation of the peptide bond planes relative to each other, the

use of rotation invariant features is preferred over features based on Cartesian coordinates

of the atoms. In this study, the two torsion angles of the polypeptide chain were used

as structural features. The two torsion angles describe the rotation of the polypeptide

backbone around the bonds between N - Ca (angle f) and Ca - C (angle c). The

probability density of the torsion angles f and c ∈ [-180�, 180�] was estimated by

calculating the 2D sample histogram of the angles of all residues in the protein. When

the protein consisted of more than one chain, the torsion angles of all chains were

included together into the feature vector. Smoothness in the density function was

achieved by moving average filtering, i.e., by convoluting the 2D histogramwith a uniform

kernel. The range of angles was discretized using 19 � 19 bins centered at 0� and the

obtained matrix of structural features was linearized to a 361-dimensional feature vector

for each enzyme representing structural information (XSI).

Although structure relates to amino acid sequence, additional information can be

extracted directly from the protein sequences. Assessment of similarities between amino

acid sequences of enzymes is usually performed by sequence alignment. The Smith–

Waterman sequence alignment algorithm (Smith & Waterman, 1981) has been preferred

over the Needleman–Wunsch algorithm (Needleman & Wunsch, 1970) due to the

assessment of sequence similarity based on local alignment (in contrast to the global

alignment previously performed), which enables possible deletions, insertions,

substitutions, matches and mismatches of arbitrary lengths. Optimizing local alignment

Table 1 Comparative table of several alignment-free approaches.

No. proteins Information Parameters Classification method Level Work

1,371 3D structure 3D-HINT potential LDA QSAR ANN 0–1 Concu et al. (2009c)

4,755 Moments, entropy, electrostatic,

HINT potential

MLP Concu et al. (2009b)

2,276 3D-QSAR Concu et al. (2009a)

26,632 Global binding descriptors SVM 1–3 Volkamer et al. (2013)

211,658 Structural GRAVY 1 Dave & Panchal (2013)

3,095 Sequence PseAAC, SAAC, GM ML-kNN Zou & Xiao (2016)

9,832 FunD, PSSM OET-kNN 1–2 Shen & Chou (2007)

300,747 Interpro signatures BR-kNN 1–4 Ferrari et al. (2012)
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allows to take into consideration mutations that might have happened in amino acid

sequences. The similarity of each pair of sequences i and j can be quantified using the

scoring matrix that is produced by the sequence alignment algorithm. For two sequences

i and j, the highest score in the previous matrix, which reflects the success of alignment,

is used as similarity criterion S(i, j). Amino acid sequence information is represented

in two distinct ways. First, for each one of the six classes, the similarity matrix S of

a sequence to all training samples of that class is calculated and summarized as a

histogram vector with 10 bins. The six-histogram vectors are then concatenated into

a 60-dimensional feature vector which is denoted as XAA. Second, the class probabilities

(FAA)x
j of a given enzyme j are expressed as the maximum similarities S within each

class normalized over all classes:

For each class x; ðfAAÞjx ¼

max
k 2 training

T
EC x

k 6¼j

Sðk; jÞ

P6
l¼1

max
k 2 training

T
EC l

k 6¼j

Sðk; jÞ

Classification and fusion
Two classification techniques have been investigated, the nearest neighbor (NN) and

SVM. NN is preferred for its simplicity and its small computation time whereas SVM

is useful to find non-linear separation boundaries. The classifiers are trained using a

number of annotated examples and then tested on novel enzymes. Two types of

classification models have been produced: single-label models for the enzymes performing

unique reactions and multi-label models for the multi-functional enzymes. Both

structural (SI) and amino acid sequence (AA) information is related to the enzymatic

activity. In order to take into consideration these two properties, fusion of information is

performed in two different ways, in the feature level and in the decision level.

The concept of the feature-level fusion is to concatenate the two sets of 361 structural

and 60 amino acid sequence features before performing classification. The feature-level

fusion approach is illustrated in Fig. 1.

The decision-level fusion approach associates class probabilities for SI obtained by

SVM (Platt, 1999) f SI
SVM or NN (Atiya, 2005) f SI

NN with class probabilities for AA (fAA)

through a heuristic fusion rule. The applied fusion rule performs weighted averaging

of class probabilities using unequal weights. Thus, the corresponding fused class

probability is given by (1 - a)(fSI) + a(fAA). An optimized a is empirically obtained for

Figure 1 Overview of feature-level fusion.
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each classification method by maximizing the accuracy over the training data (Amidi

et al., 2016). A single class is assigned in the single-label classification (Fig. 2) based on

the maximum probability.

This hard decision rule cannot be applied to the multi-label scenario. In order to

obtain a soft decision, a multi-label classifier is applied on the fused class probabilities

to produce the final decision outputs. In particular, the six-dimensional class

probabilities (fused from AA and SI) are introduced into a multi-label SVM or multi-label

NN, which computes a six-dimensional binary vector where the cth feature is equal to 1

if the predicted enzyme belongs to class c and 0 otherwise.

Performance assessment
The data have been randomly split into 80% for training and validation and 20% for

independent testing. The training/validation set has been divided into five random

folds that have been used to determine the optimal parameters. More particularly, the

parameters were optimized by a standard five-fold cross-validation based on classification

accuracy in the single-label classification problem and on the subset accuracy in the

multi-label classification problem. Upon optimization, the parameters were fixed and

remained the same throughout all experiments. Then for both classification problems,

performance has been assessed by applying the methods on the independent testing set

using the fixed parameters.

Figure 2 Decision-level fusion for single- and multi-label classification.
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Single-label classification
The performance of single-label classification has been assessed based on the confusion

matrix whose elements C(x, y) with x, y ∈ v1, 6b, indicate the number of enzymes

that belong to class x and are predicted as belonging to class y. Two metrics are based on

this definition: the overall accuracy that evaluates the proportion of correctly classified

enzymes among the total number of enzymes and the balanced accuracy that avoids

inflated performance estimates on imbalanced datasets. They are defined by:

Overall Accuracy ¼
P6
x¼1

Cðx; xÞ
P6

x;y¼1

Cðx; yÞ
and Balanced Accuracy ¼ 1

6
�
X6
x¼1

Cðx; xÞ
P6
y¼1

Cðx; yÞ

Multi-label classification
In the case of multi-label classification, the labels of an enzyme i are represented by a

six-dimensional binary vector Li where the value 1 at a position j ∈ v1, 6b indicates the
positivity of class j and 0 otherwise. Also, we denote with N the total number of enzymes,

as well as Li
true and Li

pred
the sets of true and predicted labels of enzyme i, respectively.

The performance of the multi-label classifiers cannot be assessed using the exact same

definitions as for the single-label classifiers. Various multi-label metrics defined in

previous works (Zhang & Zhou, 2006; Tsoumakas & Katakis, 2007; Madjarov et al., 2012)

have been considered in our study. Here, we introduce the Kronecker delta d, the

symmetric difference �, the binary union ∪ and intersection ∩ operations, as well as the

l1-norm j j. The following metrics have been chosen to assess the performance of our

new method:

� Hamming-loss assesses the frequency of misclassification of a classifier on a given set

of enzymes. This index is averaged over all classes and all enzymes. Also, we will note

1-Hamming-loss the complementary of this indicator so that the worst-case value is

0 and the best is 1. Conversely, to the Hamming-loss index, the latter assesses the

average over all enzymes of the proportion of binary class memberships that are

correctly predicted.

Hamming-loss ¼ 1

N

XN
i¼1

1

6
jLpredi �Ltruei j

� Accuracy averages over all enzymes the Jaccard similarity coefficient of the predicted

and true sets of labels. This index reflects the averaged proportion of similar class

membership between those two sets.

Accuracy ¼ 1

N

XN
i¼1

jLpredi \ Ltruei j
jLpredi [ Ltruei j

� Precision, recall, and F1 score, which have been adapted for multi-label classification.

The two first metrics respectively reflect the proportion of detected positives that are
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effectively positive, and the proportion of positives samples that are correctly detected.

Finally, the F1 score balances the information provided by these two indexes through

the computation of an harmonic mean.

Precision ¼ 1

N

XN
i¼1

jLpredi \ Ltruei j
jLpredi j

Recall ¼ 1

N

XN
i¼1

jLpredi \ Ltruei j
jLtruei j

F1 ¼ 2

N

XN
i¼1

jLpredi \ Ltruei j
jLpredi j þ jLtruei j

� Subset accuracy considers that a given enzyme is correctly classified if and only if all class

memberships are correctly predicted. This metric is the strictest of this study, since

it requires the sets of true and predicted labels to be identical in order for an enzyme to

be considered as correctly classified.

Subset accuracy ¼ 1

N

XN
i¼1

� L
pred
i ; Ltruei

� �

� Macro-precision, recall and F1 compute, respectively precision, recall, and F1-score

separately for each class, and then average the values over the six classes. These indexes

are crucial for us, as they highlight the performance of our method on small-populated

labels. In the following definitions, TPj and FPj, respectively represent the number of

true positives and false positives, and Precisionj and Recallj are those associated to

label j ∈ v1, 6b, considered as binary class.

M-precision ¼ 1

6

X6
j¼1

TPj

TPj þ FPj
M-recall ¼ 1

6

X6
j¼1

TPj

TPj þ FNj

M-F1 ¼ 2

6

X6
j¼1

Precisionj � Recallj

Precisionj þ Recallj

� Micro-precision, recall, and F1 are similar to the single-label definition of those three

quantities, whereas here they rely on the values of the sum over all classes of true

positives, false positives, and false negatives. The micro indexes indicate whether the

majority of the enzymes are correctly classified, regardless if they belong to low- or

high-populated classes.

m-precision ¼

P6
j¼1

TPj

P6
j¼1

TPj þ
P6
j¼1

FPj

m-recall ¼

P6
j¼1

TPj

P6
j¼1

TPj þ
P6
j¼1

FNj

m-F1 ¼ 2 �m-precision�m-recall

m-precisionþm-recall
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Data
The method has been applied on data from the PDB database that include one set of

single-labeled enzymes (Table 2) and one set of multi-labeled enzymes (Table 3).

RESULTS
Single-label classification
Classification via decision-level fusion has been performed using a = 0.95 for the SVM

method and a = 0.99 for the NN method. Overall and balanced accuracies obtained with

each method on the testing set are detailed in Table 4.

The decision-level fusion classification increased the overall accuracy by 0.2%

compared to the best results obtained by either AA only or SI only. The balanced accuracy

achieved is 96.8%, which is the same as the one achieved by NN classification using AA

only. Also, SVM classification via feature-level fusion achieves 11.2% higher overall

accuracy than classification via SI only but 3.4% less overall accuracy than NN

classification on AA only. In general, classification using SVM tends to achieve better

overall accuracy than with NN (0.2% and 6.4%, respectively for SI only and feature-level

fusion), whereas except for the feature-level fusion, NN tends to achieve better balanced

accuracy than SVM (0.2% and 3.3%, respectively for decision-level fusion and SI only).

Multi-label classification
As described in the methods’ section, the optimal fusion parameter a was empirically

determined for each dataset (single- or multi-functional) and fusion scheme. The optimal

values are shown in Fig. 3 from which it can be seen that the values of a for the

decision-level fusion in multi-label classification (a = 0.69, 0.73, 0.76, 0.80, respectively

for the SVM–NN, SVM–SVM, NN–NN, and NN–SVMmethods) are approximately 20%

smaller compared to the values obtained in single-label classification (a = 0.95, 0.99,

respectively for the SVM and NN methods). This shows that structural information plays

Table 2 Dataset I: 39,251 single-labeled enzymes.

Class EC 1 EC 2 EC 3 EC 4 EC 5 EC 6

Name Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Number 7,256 10,665 15,451 2,694 1,642 1,543

Table 3 Dataset II: 783 multi-labeled enzymes.

Number of classes 2 3 4

EC numbers 1 1 1 1 2 2 2 2 3 3 3 4 1 1 1 1

2 3 4 5 3 4 5 6 4 5 6 5 2 2 4 2

3 4 5 4

5

Number of

enzymes

62 44 14 2 217 160 45 15 82 23 73 28 1 7 6 4

Note:
The total number of enzymes with 2, 3 and 4 labels each are 765, 14, 4, respectively.
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a more significant role in differentiating enzymatic activity in the case of multi-labeled

enzymes than in single-label classification (which is mostly based on amino-acid sequence

information).

Figure 3 shows the subset accuracy for the testing set obtained for each approach in

multi-label classification. Both SVM and NN classifiers achieved approximately 10% less

subset accuracy when using only SI than when using only AA. Combining SI and AA

according to the feature-level fusion scheme leads to intermediate values (between the

ones achieved by only SI and AA) of subset accuracy. However, the combination of

information based on the decision-level fusion scheme increased the subset accuracy by

up to 1.3% compared to the best approach using AA only. The best results were obtained

with the SVM–NN classification scheme. The overlap and discrepancy in correct

predictions using SI (SVM), AA (NN) and the decision-level fusion scheme with

SVM–NN are illustrated in Fig. 4.

We observed that 65.6% of the enzymes in the testing test were correctly predicted by all

compared approaches (SI only, AA only, and decision-level fusion). Also, out of 29

enzymes correctly predicted by AA but not by SI, 28 are also correctly predicted by the

SVM–NN decision-level fusion scheme. This shows that the decision-level fusion

incorporates the relevant information provided by AA, which was missed by SI.

Conversely, out of five enzymes correctly predicted by SI and not by AA, two of them are

Table 4 Testing performance of dataset I.

Type SI AA Decision fusion Feature fusion

Classifier SVM NN NN SVM NN SVM NN

Overall accuracy 0.830 0.828 0.976 0.977 0.978 0.942 0.878

Balanced accuracy 0.755 0.788 0.968 0.966 0.968 0.910 0.856

Figure 3 Testing subset accuracy for dataset II.
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correctly predicted by the decision-level fusion scheme. This could be related to the

chosen values of a that assigns a larger weight to the class probabilities calculated by

AA than the ones extracted from SI.

Computation of 1-Hamming-loss for each approach is shown in Fig. 5. All decision-

level fusion schemes achieved higher values than the approaches using only AA or only SI.

The decision-level scheme that performed best in terms of Hamming-loss is SVM–SVM

with an increase of 1.8% compared to AA (NN). The comparison of 1-Hamming-loss

per class for each best method (SI only, AA only and decision-level fusion) is shown

in Table 5.

The SVM–SVM method achieves for each class except for the transferases up to

5.8% higher 1-Hamming-loss than the maximum accuracy achieved by the best classifier

of a single type of information (SI or AA). There is an increase in the performance

regardless of the size of the class. In particular, classification of a large class such as

the hydrolases had a 5.1% increase in 1-Hamming-loss, whereas small classes like the

Figure 5 Testing 1-Hamming-loss for dataset II.

SI
(SVM)

AA
(NN)

Decision fusion
(SVM-NN)

1.9% 0.6%

0.6%

17.8%
65.6%

0.0%

1.3%

12.1%

Figure 4 Repartition of correctly predicted enzymes with respect to subset accuracy.
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lyases and isomerases were classified respectively with 5.8% and 0.6% better performance

after fusion than with SI or AA only.

Table 6 shows the results of the 10 methods, according to all of the metrics that have

been assessed for multi-label classification. With respect to all the indexes, we observe

that the decision-level fusion schemes outperform those carrying only one type of

information. More particularly, each of the SVM–SVM, SVM–NN, and NN–SVM

techniques provide a distinct advantage in the process of multi-label classification. First of

all, the SVM–SVM scheme is best in terms of 1-Hamming-loss with a testing value of

95.5%, which surpasses other methods by at least 1% margin. Also, this scheme proves

to be the best in terms of the three definitions of recall, meaning that if an enzyme

belongs to a certain class, SVM–SVM will be the more likely to detect it. In terms of

predicting exact matches of the true labels, the SVM–NN method will be the best one

to consider with a testing value of 85.4%, which is at least 1.3% ahead of the performance

achieved considering only one type of information. One of the most impressive rises

in performance stems from the NN–SVM method, which proves to outperform SI and

Table 6 Testing performance of dataset II.

Type SI AA Decision fusion Feature fusion

Classifier SVM NN SVM NN SVM NN SVM NN

SVM NN SVM NN

Alpha 0.73 0.69 0.80 0.76

Hamming-loss 0.103 0.119 0.064 0.063 0.045 0.054 0.054 0.063 0.083 0.098

Accuracy 0.790 0.800 0.883 0.885 0.906 0.898 0.879 0.889 0.823 0.831

Precision 0.857 0.829 0.901 0.906 0.942 0.918 0.947 0.907 0.889 0.856

Recall 0.825 0.831 0.908 0.908 0.924 0.920 0.885 0.911 0.847 0.856

F1 score 0.835 0.829 0.904 0.906 0.928 0.919 0.893 0.908 0.859 0.855

Subset accuracy 0.688 0.739 0.834 0.841 0.847 0.854 0.841 0.847 0.726 0.783

Macro Precision 0.921 0.744 0.940 0.941 0.962 0.945 0.967 0.903 0.927 0.806

Recall 0.741 0.777 0.881 0.871 0.887 0.879 0.854 0.881 0.791 0.787

F1 0.801 0.758 0.902 0.897 0.921 0.905 0.905 0.889 0.844 0.794

Micro Precision 0.864 0.822 0.904 0.907 0.943 0.919 0.953 0.904 0.901 0.857

Recall 0.829 0.832 0.910 0.910 0.925 0.922 0.885 0.913 0.850 0.857

F1 0.846 0.827 0.907 0.908 0.934 0.921 0.918 0.909 0.875 0.857

Note:
The best classification performance (based on different criteria) is indicated in bold for each technique.

Table 5 Comparison of 1-Hamming-loss per class with SVM–SVM.

Classifier 1-Hamming-loss per class

EC 1 EC 2 EC 3 EC 4 EC 5 EC 6

SI SVM only 0.962 0.834 0.860 0.822 0.943 0.962

AA NN only 0.962 0.930 0.898 0.885 0.962 0.987

Decision fusion SVM–SVM 0.968 0.917 0.949 0.943 0.968 0.987

Note:
The best classification performance is indicated in bold for each class.
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AA methods by +4.1%, +2.6%, and +4.6% in terms of precision, M-precision and

m-precision, respectively. Not only does it show that the relevance of class predictions is

improved overall, but also and more importantly that small-populated classes benefit

from this progression as well.

The code was written in Matlab and Python languages and is freely and publicly

available at https://figshare.com/s/a63e0bafa9b71fc7cbd7. Running on a single Intel

Xeon X5650 processor, the average prediction time of the enzymatic function(s) of a new

enzyme was less than 3 s. Computations were achieved using high performance

computing (HPC) resources from the “mesocentre” computing center of Ecole Centrale

de Paris (http://www.mesocentre.ecp.fr) supported by CNRS.

DISCUSSION AND CONCLUSION
The results of both single-label and multi-label classifications showed that the

combination of information leads to more accurate enzyme class prediction than the

individual structural or amino acid descriptors. Among fusion approaches, the

decision-level fusion performed better than the feature-level fusion. In the multi-label

case, the SVM–NN fusion scheme achieved the best subset accuracy by predicting

correctly the labels of 85.4% of the enzymes. The NN–NN fusion scheme also performed

well (84.7%) and required the least computational time during the training phase.

Structural information seems to be more important in the case of multi-label

classification than in single-label, since the optimal relative weight of amino acid sequence

features during fusion was found to be smaller in multi-labeled enzymes (a ∈ [0.69, 0.80])

compared to single-labeled enzymes (a ∈ [0.95, 0.99]).

In all examined cases, AA was more informative than SI in respect to the prediction of

enzymatic activity. The same trend has been observed in a study of Zou et al. (2013)

which showed an increase of 0.81% with sequence related features, compared to structural

features. However, it should be noted that we examined only general functional

characteristics indicated by the first digit of EC code. A study assessing the relationship

between function and structure (Todd, Orengo & Thornton, 2001) revealed 95%

conservation of the fourth EC digit for proteins with up to 30% sequence identity.

Similarity, Devos & Valencia (2000) concluded that enzymatic function is mostly

conserved for the first digit of EC code whereas more detailed functional characteristics

are poorly conserved.

The single- and multi-label classification models have been trained and tested on

enzymes assumed to perform single or multiple reactions, correspondingly. However, the

single-label enzymes might be associated with other reactions not detected yet and in

fact be multi-label. In order to assess the method in a more general scenario, we mixed

both single- and multi-label information during training phase and observed a slight

improvement in prediction accuracy. Specifically, we chose to examine the NN–NN fusion

scheme because of its small computation time, and merged SI and AA probabilities

obtained by both datasets I and II. This model achieved 89.2% subset accuracy and

95.8% accuracy for the multi-label dataset (by cross-validation) indicating an increase

of 4.5% and 2.1% in respect to the results obtained with the NN–NN scheme trained only

Amidi et al. (2017), PeerJ, DOI 10.7717/peerj.3095 12/16

https://figshare.com/s/a63e0bafa9b71fc7cbd7
http://www.mesocentre.ecp.fr
http://dx.doi.org/10.7717/peerj.3095
https://peerj.com/


on multi-labeled data (shown in Figs. 3 and 5). This also corresponds to an increase of

3.8% and 0.3%, respectively, from the best fusion schemes.

Moreover, since it is unknown for new (testing) enzymes if they perform unique

reactions, they have to be treated as multi-label. In order to estimate the performance of

the single-label model in the case of unknown enzymes, we tested the best single-label

classifier (i.e., the NN on the decision level) on the multi-label dataset. For 93.0% of

the enzymes the model predicted correctly one of their actual labels, whereas the

prediction of all actual labels (by selecting the classes with the highest probability scores)

was correct in 44.8% of the enzymes.

Furthermore, we investigated techniques dealing with imbalanced classes but did not

observe any conclusive outcome. In particular, ADASYN improved overall accuracy on the

single-label dataset by 0.1% but reduced balanced accuracy by 1.1%.

In conclusion, computational models calculated from experimentally acquired

annotations of large datasets provide the means for fast, automated, and reproducible

prediction of functional activity of newly discovered enzymes and thus can guide scientists

in deciphering metabolic pathways and in developing potent molecular agents. Future

work includes the representation of the whole 3D geometry using additional structural

attributes and the incorporation of deep learning architectures that have proven to be

powerful tools in supervised learning. The main advantage of deep learning techniques is

the automatic exploitation of features and tuning of performance in a seamless fashion,

that optimizes conventional analysis frameworks.
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