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Abstract

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression,
biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data
have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement
in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present
MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More
specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward
network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular,
the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We
further discuss the attention-aware features learned from different attention modules in accordance with the changes as
the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the
method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is
extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art
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methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by
combining the funnel attention modules with the residual network.

Key words: transcription factor binding site; multi-scale bottom-up and top-down attention; deep learning; residual
network; sequence analysis

Introduction
In molecular biology, a transcription factor refers to a protein
that regulates the rate of transcription of genetic information
from DNA to messenger RNA, by binding to a specific nucleotide
[1, 2]. Transcription factors bind to the DNA, control gene tran-
scription program, and play a major role in a multitude of
important cellular processes, such as basal transcription regu-
lation, differential enhancement of transcription and biological
development [3–5]. The transcription factor binding site (TFBS) is
a DNA fragment binding to a specific transcription factor, which
is usually within the range of 4–30 bp [6–8]. Therefore, accurate
prediction of TFBSs plays a critical role in characterizing specific
functional characteristics of the genome and explaining how
highly specific sequence expression program is orchestrated
in complex organisms [9–11]. With the development of high-
throughput sequencing technology, there is now a large amount
of experimental data about high-quality TFBSs, such as TRANS-
FAC [12], JASPAR [13], etc. However, it is very time consuming and
expensive to identify TFBSs through experimental methods. At
the same time, how to extract the critical information of TFBS
from the existing massive data remains a significant challenge.
Hence, researchers have developed numerous calculation-based
methods based on massive amounts of data to identify TFBS [6,
14–19].

In early previous years, the researchers proposed many
methods to identify TFBS based on traditional machine learning
methods. However, because traditional machine learning
algorithms rely heavily on manual extraction of features and
difficult-to-process large-scale datasets, the methods based on
traditional machine learning have the problem of low prediction
accuracy on large-scale datasets. For example, Wong et al. [20]
proposed kmerHMM method to identify TFBS. The method
trained a Hidden Markov Model (HMM) model as the underlying
motif representation and then used belief propagations to
extract multiple motifs from the HMM. Ghandi et al. [21]
proposed a new classifier, gkm-SVM, to predict DNA-binding
sites. This classifier used an efficient tree data structure to
calculate the kernel matrix, which is twice as accurate as the
original gkm-SVM. However, with the rapid accumulation of
sequence data, traditional machine learning algorithms cannot
meet the current requirements in terms of prediction accuracy
and computing speed.

More recently, with the rapid development of deep learn-
ing in the field of computer vision [22, 23] and natural lan-
guage processing [24], an increasing number of studies have
successfully applied the cutting-edge deep learning technology
to solve many bioinformatics and computational biology prob-
lems [25–27]. For the prediction of TFBS, a number of methods
based on deep learning have emerged in recent years [14, 15,
18], and accordingly, the prediction accuracy has been further
improved compared to traditional machine learning methods.
Alipanahi et al. [16] first proposed DeepBind based on a shal-
low convolutional network to predict the sequence specifici-
ties of DNA- and RNA-binding proteins. Zeng et al. [14] further

conducted a systematic exploration of CNN architectures for
predicting DNA-protein binding and discussed the key param-
eters in the network. Inspired by the EM algorithm, Luo et al.
[15] proposed a novel expectation pooling method, which com-
bined the CNN to predict DNA-protein binding. This method
not only improved the prediction performance of TFBS but also
explained the model method from statistical methods and deep
learning theory. These CNN-based models have achieved sig-
nificant performance improvements over traditional machine
learning methods. However, as the convolution operation is good
at extracting local information, it has obvious disadvantages
in processing long sequences. To solve this problem, KEGRU
[28] combined the word2vec algorithm with the Bidirectional
Gated Recurrent Unit (GRU) network to identify TFBS. Combin-
ing the different but complementary advantages of CNNs and
RNNs, the researchers also designed a hybrid model to predict
TFBS, such as DeepSite [29] and DeepTF [30]. Shen et al. [18]
have recently proposed a deep transfer learning-based method,
termed SAResNet, which combines the self-attention and the
residual structure to predict DNA-protein binding from DNA
sequences. Although the state-of-the-art method has achieved
an impressive prediction performance, it has the following two
shortcomings: First, due to the difference in the data volume
among different experimental ChIP-seq datasets, there is a room
for further improvement in the prediction performance of the
model on some smaller datasets. Second, when using the trans-
fer learning method, we can develop a better deep network archi-
tecture to extract the high-dimensional features of the binding
sites to improve the prediction accuracy of the model.

In this study, we present MAResNet, a novel deep-learning
architecture by combining multi-scale bottom-up and top-down
attention and residual network, to improve the prediction of
TFBSs in DNA sequences. MAResNet is developed based on the
stacking of bottom-up and top-down attention modules and
residual modules. In the shallow layer, multi-scale attention
modules are used to extract more abundant sequence features,
while the attention-aware features of different modules change
adaptively as layers go deeper. The residual block represents
the current advanced deep network structure. Benchmarking
experiments show that compared with the current state-of-the-
art methods, MAResNet is able to achieve the best predictive
performance, with an average AUC of 0.927 on 690 ChIP-seq
datasets. An online webserver of MAResNet is implemented and
publicly available at http://csbio.njust.edu.cn/bioinf/maresnet/.
In addition, the source code of MAResNet is available at https://
github.com/csbio-njust-edu/maresnet.

Materials and methods
Benchmark datasets

To fairly evaluate the performance of our proposed model, we
used 690 ChIP-seq datasets, which were previously prepared to
evaluate many deep learning architectures such as DeepBind
[16], CNN-Zeng [14], Expectation-Luo [15] and SAResNet [18] as
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Table 1. The sample distribution of benchmark datasets

Dataset Subsets Number of positive
samples

Number of negative
samples

Total number of samples

global datasets global-TRa/global-VLb (90%/10%) 2307 290 2307 290 4614 580
global-TSc 400 000 400 000 800 000

A549 TRd/VLe (80%/20%) 459 740 459 472 919 212
TSf 114 777 115 045 229 822

H1-hESC TR/VL (80%/20%) 607 774 608 088 1215 862
TS 152 155 151 841 303 996

HUVEC TR/VL (80%/20%) 255 931 255 812 511 743
TS 63 912 64 031 127 943

MCF-7 TR/VL (80%/20%) 433 823 434 368 868 191
TS 108 801 108 256 217 057

a,bglobal-TR and global-VL represent the training set and validation set of the global datasets, respectively.
cglobal-TS represents the testing set of the global datasets.
d,eTR and VL represent the training set and validation set of the corresponding dataset, respectively.
fTS represents the testing set of the corresponding dataset.

the benchmark datasets in this study. The 690 ChIP-seq datasets
covered the DNA sequences of 91 human cell types bound to 161
unique regulatory factors (generic and sequence-specific fac-
tors), some of which were under various treatment conditions.
For each of the 690 ChIP-seq datasets, Zeng et al. [14] divided
it into a training subset and a corresponding test subset. Based
on these datasets, Shen et al. [18] constructed a set of global
datasets for the pre-training stage under the premise of ensuring
the independence of the test subsets. All the datasets can be
downloaded from http://csbio.njust.edu.cn/bioinf/saresnet/.

In addition, due to limited computing resources, we also
selected four groups of ChIP-seq datasets from different cell lines
as other benchmark datasets, namely A549, H1-hESC, HUVEC
and MCF-7, for the search of the best hyper-parameters. Specif-
ically, we combined the training sets and test sets of several
typical cell lines based on 690 ChIP-seq datasets, respectively.
The ‘cd-hit-est-2d’ tool [31] was then applied to keep the inde-
pendence of the test set. These datasets ranged from 600 000
to 1.5 million with balanced positive and negative samples. We
divided them into the training data (TR and VL) and testing data
(TS) in a ratio of 8:2. Then, we further divided the training data
into the training set (TR) and validation set (VL) in a ratio of 8:2.
In the experimental analysis part, we evaluated the performance
of the proposed model on the four datasets of different cell lines
and 690 independent ChIP-seq datasets. The statistical summary
of the datasets is provided in Table 1.

Feature representation

The input to MAResNet is a DNA sequence represented by a
binary one-hot feature matrix of size L × 4, where L is the length
of the DNA sequence (101 bp in this work) and 4 corresponds to
the number of base type (A, C, G, T). In one-hot encoding, a value
of 1 was assigned to the corresponding base pair position in the
input feature matrix and 0 elsewhere, i.e. [1, 0, 0, 0], [0, 1, 0, 0], [0,
0, 1, 0] and [0, 0, 0, 1]. A missing or invalid base pair in the DNA
sequence was assigned a value of −1 in the input feature matrix.

Model architecture and training procedures

In this work, the input DNA sequence was treated as a picture
feature with a size of L×1 and a channel number of 4 (A, C, G, T).
Therefore, predicting the binding site of transcription factors can
be regarded as a two-class image classification task in computer

vision. Some recent studies have shown that image classification
algorithms based on deep learning are also suitable for solving
this problem [15, 18, 32]. Recent advances in image classifi-
cation focus on training feed-forward convolutional networks
using ‘very deep’ structures [23, 33, 34]. Various encoder-decoder
modules and attention mechanisms are also widely used in
computer vision and natural language processing [24, 35, 36].

Bottom-up and top-down attention

It is inefficient to obtain a wider receptive field by stack convo-
lutional networks. Stacking a ‘very deep’ network will increase
the difficulty of model learning and easily cause gradients to
disappear or explode. In this study, we referred to the ideas of the
encoder-decoder module [33, 36, 37] and attention mechanism
[38] in computer vision, and accordingly proposed an attention
mechanism based on funnel structure, termed bottom-up and
top-down attention. Figure 1B illustrates the detailed structure
of the bottom-up and top-down attention module.

We combined the idea of residual learning and proposed the
following attention module:

xl+1 = (1 + Ml (xl)) ◦ Tl (xl) (1)

where xl represents the input matrix of the attention module
l, xl+1 is the output feature of the attention module l. Tl(xl)
means the output of the trunk branch, and Ml(xl) refers to the
output feature of the mask branch, which uses the bottom-up
and top-down structure in this model. The bottom-up and top-
down structure mimics the feed-forward and feedback attention
process [33]. Ml(xl)is regarded as the control gate for the output
of trunk branch, which lies in the range [0, 1]. ◦ indicates the
element-wise product of the two-feature matrix. Considering
that stacking attention modules may cause the gradient to dis-
appear, we construct the soft mask branch as identity mapping
by referring to residual learning. The trunk branch is used to
extract the features of the deep convolutional network, whereas
the mask branch works as feature selectors to enhance the
recognizable features and suppress the noise from the trunk
branch.

Next, we introduce the bottom-up and top-down attention
mechanisms with respect to the specific implementation of the
pipeline. Figure 2 vividly shows the difference between the soft
mask branch and trunk branch, where the thick lines indicate
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Figure 1. The architecture of MAResNet: (A) an overall architecture of the proposed network. (B) the structure of the bottom-up and top-down attention module.

Figure 2. The receptive field comparison between the soft mask branch and trunk branch.

DNA sequence features. The soft mask branch contains a fast
feed-forward sweep and top-down feedback step. The bottom-
up (down-sample) step quickly collects global information from
the sequence features, while the top-down (up-sample) step
combines global information with the original feature maps.
As shown in Figure 1B, the feature map is sequentially passed
through several serial max-pooling layers and residual blocks
until the feature map reaches the lowest resolution. Then, the
output features containing the global information are expanded
through a set of symmetric top-down architectures. In the up-
sampling process, bilinear interpolation is used to keep the
output feature size the same as that of the input feature map.
Further, a sigmoid function normalizes the feature map after two
consecutive 1 × 1 convolutions in a range of [0, 1]. A shortcut

connection is also added between the bottom-up and top-down
parts to capture the information from different receptive fields.

The pipeline and network architecture of MAResNet

The bottom-up and top-down attention modules can capture
more global information and assist the trunk branch to learn
more recognizable TFBS features. Based on this, we proposed
and implemented our MAResNet pipeline. The architecture of
MAResNet is shown in Figure 1. We first used the one-hot encod-
ing to characterize the input DNA sequences (1 × L × 4). Then,
the feature matrix was input to the convolutional layer with
1 × 3 kernel size, batch normalization layer and ReLU layer
successively. During the model implementation, we observed
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that the pre-activated residual unit [22] had a better conver-
gence effect than the traditional residual block [23], and thus
used the pre-activated unit as the residual block in this work
(Supplementary Table S1). Next, we added three attention mod-
ules among the four residual blocks, referred to as ‘stage 1’, ‘stage
2’ and ‘stage 3’, respectively. In stage 1 (shallow layer), we used
three different sizes of convolution kernels, namely 3, 5 and 9, to
implement the multi-scale attention to focus on the information
of different scales of receptive fields. We used 64 convolution
kernels with 1 × 3 kernel size in the attention modules of both
stage 2 and stage 3. In each stage, we continuously reduced the
size of the feature map, and then used the average pooling
layer to further reduce the size of the feature map to reduce
the amounts of parameters in fully connected layers (FC). To a
certain extent, the application of the average pooling layer can
prevent network overfitting and enhance the robustness of the
model. Finally, the classification probability was output through
a fully connected layer with dropout [39] and the softmax layer
was used at the end of the MAResNet architecture.

Model implementation and hyperparameter settings

The model was implemented using the PyTorch framework
(v1.8.1) [40] and trained on a single NVIDIA GEFORCE RTX
3090 Graphics Card. In the training process, we utilized the
softmax cross-entropy function with the SGD method [41]
to optimize the model. The implementation details of the
MAResNet model are shown in Table 2. In addition, we adjusted
the hyperparameters of the network by comparing the model
performance on the validation set of the cell line datasets. The
detailed hyperparameter settings are summarized in Table 3. In
this study, a grid search was performed on the hyperparameters
enumerated in Table 3 on four different cell line datasets
(i.e. A549, H1-hESC, HUVEC and MCF-7) to search a set of
hyperparameters that can achieve higher accuracy and ensure
the execution efficiency of the model. Finally, we applied the
searched optimal hyperparameters to model pre-training on the
global dataset, and then performed transfer learning on each
training subset of the 690 datasets and tested the performance
on the corresponding testing subsets.

Performance evaluation metrics

In this study, TFBS prediction is formulated and solved as a
binary classification problem. Taking into account the previous
studies [18, 29, 30] related to TFBS prediction, we used the accu-
racy, precision, recall and F1 score as the primary performance
measures to evaluate the performance of the developed method.
These are defined as follows:

Acc = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1 = 2 × Precision × Recall
Precision + Recall

(5)

where TP, FN, TN and FP denote the numbers of true positives,
false negatives, true negatives and false positives, respectively.

Table 2. MAResNet architecture implementation details

Layer Output Size Parameters

Conv1d 32 × 101 1 × 3, 32, stride 1

Residual block 32 × 51
(1 × 3, 32
1 × 3, 32

)

Attention module stage 1 96 × 51 Attention-3a,
Attention-5b,
Attention-9c

Residual block 64 × 26
(1 × 3, 64
1 × 3, 64

)

Attention module stage 2 64 × 26 Attention-3a

Residual block 64 × 13
(1 × 3, 64
1 × 3, 64

)

Attention module stage 3 64 × 13 Attention-3a

Residual block 64 × 7
(1 × 3, 64
1 × 3, 64

)

Average pooling 64 × 1 1 × 7, stride 1
FC, Softmax 2, dropout = 0.8

aAttention-3 indicates that the size of all convolution kernels in the attention
module is 1 × 3.
bAttention-5 indicates that the size of all convolution kernels in the attention
module is 1 × 5.
cAttention-9 indicates that the size of all convolution kernels in the attention
module is 1 × 9.

However, all these four performance evaluation metrics
depend on the prediction cutoff threshold. Therefore, it is
important to find rational measures to comprehensively
compare different predictors. In this study, the area under
the receiver-operating characteristic (ROC) curve (AUC), which
is classification-threshold-invariant and reflects the most
comprehensive prediction performance, serves as another
important evaluation metric [18].

Results and discussion
Funnel attention mechanism improves the prediction
performance

To examine the effect of our proposed funnel attention (bottom-
up and top-down attention) module, we compared the prediction
performance of the networks with and without the funnel atten-
tion module on different cell line datasets. To ensure the fairness
of the comparison, we made the following modifications based
on the baseline. First, to eliminate the influence of multi-scale
attention, we modified stage 1 to a single attention layer with
convolution kernel sizes of 3. Second, we constructed a ‘non-
attention network’ by removing the soft mask branch (M(xl) =
0 mentioned in Figure 2). Finally, we conducted a comparative
analysis under the two conditions that the numbers of convolu-
tion kernels on stages 1, 2 and 3 were 32 and 64, respectively. The
performance results of the side-by-side comparison are provided
in Table 4.

It can be seen that in most cases, the models with
attention modules have consistently improved the prediction
performance in terms of various indicators, highlighting the
effectiveness and stability of the funnel attention mecha-
nism for the TFBS prediction. In particular, the performance
improvement of the models with the ‘64–64–64’ structures were
more pronounced than that of the models with the ‘32–32–
32’ structures. The effectiveness of funnel attention is more
obvious in small-scale networks. In addition, we also found that
the performance of the models with the ‘32–32–32’ attention
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Table 3. Hyperparameters of MAResNet and the corresponding search space

Calibration parameters Search space Sampling Final settings

learning rate (pre-training) [0.001, 0.005]a fixed-step 0.002
learning rate (transfer learning) [0.0002, 0.001]b fixed-step 0.0004
batch size (pre-training) {64, 128, 256} all evaluation 128
batch size (transfer learning) {32, 64, 128} all evaluation 64
attention module kernel numbers {32, 64, 128} all evaluation 64
optimizer SGD fixed SGD
weight initialization truncated normal fixed truncated normal
dropout ratio {0.6, 0.7, 0.8} all evaluation 0.8

astep = 1e-3.
bstep = 2e-4.

Table 4. Performance comparison of the models with different structures on different cell line datasets

Dataset Structure 32–32–32a 64–64–64b

Accuracy Precision Recall F1 score AUC Accuracy Precision Recall F1 score AUC

A549 non-attc 0.817 0.861 0.755 0.805 0.901 0.829 0.875 0.763 0.816 0.912
with-attd 0.828 0.890 0.747 0.812 0.912 0.838 0.879 0.788 0.829 0.918

H1-hESC non-att 0.807 0.850 0.745 0.795 0.890 0.830 0.811 0.859 0.835 0.916
with-att 0.820 0.892 0.728 0.802 0.907 0.840 0.846 0.833 0.839 0.919

HUVEC non-att 0.811 0.798 0.833 0.815 0.898 0.842 0.847 0.833 0.840 0.920
with-att 0.835 0.904 0.749 0.819 0.920 0.846 0.869 0.813 0.840 0.923

MCF-7 non-att 0.834 0.914 0.739 0.817 0.924 0.843 0.908 0.764 0.830 0.927
with-att 0.845 0.832 0.865 0.848 0.928 0.853 0.849 0.861 0.855 0.933

a,b32–32–32 and 64–64–64 denote that the convolution kernel numbers of stages 1, 2 and 3 are 32 and 64, respectively.
cnon-att means the model’s structure does not contain the attention module.
dwith-att means the model’s structure contains the attention module.

structures was close to or even better than that with the ‘64–
64–64’ non-attention structures, on A549, HUVEC and MCF-
7 datasets. Among the various performance indicators, we
paid more attention to the two comprehensive indicators F1
score and AUC. All the performance indicators except AUC are
dependent on the prediction cutoff threshold. Thus, we used
AUC to reflect the comprehensive performance of the models.
In terms of the AUC indicator, we can see that the performance
of the ‘32–32–32’ attention mechanism was improved by 2.4%
on the HUVEC dataset compared with ‘32–32–32’ non-attention
structure.

The deep network without the attention module is a deep
residual network with excellent performance. The residual
structure ensures the trainability of the deep convolutional
network. The convolutional layer can capture local information,
while the global information of DNA sequence can be obtained
through deep stacking. However, certain feature information
might be lost by stacking the convolutional layer by layer. The
attention module we proposed included both down-sampling
and up-sampling. The former ensures the acquisition of the
global feature information in the feature map, while the latter
serves to merge the high-level features with low-level features.
This would enable the model to better combine the high-level
and low-level features of the context, and add them to the trunk
branch through softmax functions and shortcuts (similar to
the residual structure). This also enabled the attention layer to
play an important role in enhancing important features and
suppressing noise. Overall, the experimental results obtained
herein suggest that the funnel attention module could indeed
improve the prediction performance by adjusting the feature
weights of the trunk branch.

Visualization of the attention weights

In this section, we designed a set of comparative experiments to
further examine the effectiveness of the multi-scale attention
mechanism in feature extraction. Similar to previous experi-
ments, we conducted the experiments on four cell line datasets.
Due to the short length of the feature map in the deep attention
layer, the effect of multi-scale attention was not significant. We
only used the multi-scale attention in stage 1 of the attention
module. The experiments indicate that the multi-scale attention
with convolution kernel sizes of 1×3, 1×5 and 1×9 (the number
of convolution kernels is all 32) achieved a good balance between
the model performance and computing power consumption.
Figure 3 shows the performance comparison of the multi-scale
attention with single-scale attention with convolution kernels
of 64 and 96 on these datasets in terms of Accuracy, Precision,
Recall, F1 score and AUC. The results demonstrate that multi-
scale attention achieved the best performance in models with
similar number of parameters across the four different datasets.

Next, to better interpret the multi-scale attention, we par-
tially visualized the attention weights M(xl) of the first and
second stages based on a positive sample and a negative sample.
As shown in Figure 4, the weight of visualization shows that
different scales of attention modules focus on different regions.
Figure 4A shows the visualization of the attention weights of a
positive sample. The weights of the positive sample’s attention
are approximate on the feature map learned on the small-size
attention module, while the model focuses on the middle region
on the feature map of the middle- and large-scale attention
modules. In the second stage, the model pays more attention
to the middle position of the feature map, i.e. the location
of the TFBS. As can be seen from Figure 4B, the small- and
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Figure 3. Performance evaluation of models based on multi-scale attention mechanism on A549, H1-hESC, HUVEC and MCF-7 datasets. 64-att refers to the model with

64 1 × 3 convolution kernels, 96-att refers to the model with 96 1 × 3 convolution kernels and 96-multi-att refers to a multi-scale attention model with three different

sizes of covolution kernels (the number of channels for each attention module is 32, and the total is 96). The number of learning parameters of 64-att, 96-att and

96-multi-att is approximately 0.93, 1.40 and 0.88 million, respectively.

medium-scale attention modules focus on the information in
the middle and back ends, while the large-scale attention mod-
ule focuses on the middle region. There is no obvious focus in
the second stage. From the above comparative experiments and
visualization, we conclude that the multi-scale attention module
can be effectively used to extract more diverse information
from the feature matrix and contribute to the classification of
whether the sequence contains transcription factors binding
sites.

Comparing MAResNet with existing predictors

Most existing studies on the prediction of TFBS are usually based
on human ChIP-seq datasets from the ENCODE project. Prior
to that, HOCNN [42], KEGRU [28] and DeepRAM [32] used 214,
125 and 83 ChIP-seq datasets, respectively, from the ENCODE
project to assess the performance of their respective methods.
To ensure the integrity of the experiments and fairly evaluate
the performance of these models, we utilized all 690 ChIP-seq
datasets to evaluate our method and compare with gkm-SVM
[43], DeepBind [16], CNN-Zeng [14], DeepTF [30], Expectation-
Luo [15] and SAResNet [18], all of which also used all the 690
ChIP-seq datasets. Using the gkm-SVM R package (https://cran.
r-project.org/web/packages/gkmSVM), we trained and tested on

each of the 690 ChIP-seq datasets with the default parameters
to obtain the performance of the gkm-SVM method. The exper-
imental data of DeepBind and CNN-Zeng were obtained from
http://cnn.csail.mit.edu/. The experimental result (in terms of
AUC) of DeepTF was provided by its authors. We obtained the
source code of Expectation-Luo from https://github.com/gao-la
b/ePooling, and then reproduced their experiment locally with
the default parameters. In addition, the experimental result of
SAResNet method was published by its authors. Figure 5 illus-
trates the performance of MAResNet on 690 datasets in compar-
ison with gkm-SVM, DeepBind, CNN-Zeng, DeepTF, Expectation-
Luo and SAResNet. Overall, we can see that MAResNet performed
better than all other methods. Specifically, the median AUC of
MAResNet reached 0.931, which was better than the suboptimal
method (0.923). In terms of the maximum values of AUC, all
the other six methods achieved the maximum values of greater
than 0.990, with the only exception of gkm-SVM. In addition,
compared with other methods, MAResNet also slightly improved
the minimum AUC (Figure 5). Furthermore, both the upper and
lower quartiles have been improved, which indicates that our
method is superior to the existing methods and has a strong
generalization ability.

Moreover, we further analyzed the performance of the mod-
els on different scale datasets according to the data volume
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Figure 4. Visualization of the attention weights. Panels A and B represent the attention weights of a positive sample and a negative sample, respectively. The upper

two heat maps represent the weight of the first stage of the attention module, and the lower two heat maps represent the weight of the second stage of the attention

module. The panels show the weights on part of the attention channels. The darker the square, the more attention a specific weight has received in the output step of

that specific layer.

Figure 5. The distribution of AUCs across 690 ChIP-seq datasets for transcription factor binding site prediction. For each box, the intermediate line indicates the median,

and the top and bottom edges of the box indicate the upper and lower quartiles, respectively. The upper and lower sides indicate the maximum and minimum values;

the diamond marks indicate the outliers.

Table 5. Performance of MAResNet and other existing methods for transcriptional factor binding site prediction on the datasets with different
scales

Method All datasets Small datasets Medium datasets Large datasets P-valuea

MAResNet 0.927 0.883 0.914 0.972 -b

SAResNet 0.920 0.876 0.907 0.966 1.6 × 10−5

Expectation-Luo 0.881 0.835 0.859 0.947 3.1 × 10−17

CNN-Zeng 0.875 0.818 0.850 0.953 1.2 × 10−17

DeepTF 0.845 0.809 0.818 0.919 2.9 × 10−19

DeepBind 0.830 0.785 0.809 0.896 7.4 × 10−20

gkm-SVM 0.818 0.798 0.805 0.856 2.9 × 10−20

aThe P-values of the student’s t-test for assessing the statistical difference in AUC values between MAResNet and the existing transcription factor binding site predictors.
b‘-’ indicates that the corresponding value does not exist.

division rules proposed by Shen et al. [18]. The specific rule is
to divide 690 datasets into three categories: small, medium and
large according to the thresholds of 3000 and 30 000. Table 5
shows the average AUC scores of MAResNet and other compari-
son methods on different scales datasets. It is clear that MARes-
Net achieved a statistically significant performance improve-
ment in terms of AUC (student’s t-test, P< 1.6 × 10−5) com-
pared with other methods. The performance of our proposed
MAResNet method has been improved across different-scaled
datasets, which suggests the robustness of MAResNet. Moreover,
to comprehensively understand the performance of the method,
we further compared its performance with that of the other
six methods on different-scaled datasets in terms of all five
evaluation indices based on bar charts. It is worth noting that
the precision of the gkm-SVM method is very high but its recall
is very low in Figure 6A. We paid more attention to one of the

comprehensive performance metrics, i.e. F1 score, which can
better reflect the overall performance of the model than Preci-
sion and Recall. As shown in Figure 6, we can more intuitively
see that the model is better than other existing models in various
evaluation indices.

Visualization of network learning features

In this section, we used TMAP [44] to visually evaluate the
classification performance of MAResNet on the identification
of TFBSs. TMAP is a visualization method for large and high-
dimensional data sets and can represent large-scale and high-
dimensional data points as a two-dimensional tree.

To explore and explain the classification performance of
MAResNet, we visually analyzed the input feature maps of the
fully connected layer in the model using TMAP. In Figure 7, we
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Figure 6. Performance evaluation of the proposed MAResNet method and other existing methods for transcription factor binding site prediction on small, medium,

large and all datasets.

randomly selected four different datasets from 690 ChIP-seq
datasets for an illustration of data visualization. These four
different datasets correspond to specific cell lines and specific
TFBSs. For example, ‘Dnd41-CTCF’ is a ChIP-seq dataset related
to T cell leukemia with Notch mutation and CTCF binding fac-
tors. From Figure 7, we can observe that the clustering is evident
on these four datasets. It is also worth noting that the indi-
vidual classes are almost completely clustered. This suggests
that MAResNet can effectively extract the unique characteris-
tics of TFBSs for sequence-based classification on 690 ChIP-seq
datasets.

To further examine the effectiveness of MAResNet, we ana-
lyzed the model performance on different cell lines datasets
related to the same transcription factor. For example, we trained
the model on the ‘A549-CTCF’ dataset, and then tested the model
on other cell line datasets related to the ‘CTCF’ transcription
factor. Although the model was not trained on the corresponding
cell line training set, Supplementary Table S2 shows that the
model could achieve a very close predictive performance to the
model trained on the corresponding cell line training set. These
results also demonstrate that MAResNet can effectively learn the
characteristic information of the corresponding transcription
factors and then accurately identify the binding sites from DNA
sequences. Supplementary Tables S3 and S4 also show similar
conclusions.

Conclusions

In this work, we have developed MAResNet, a novel deep-
learning method for predicting TFBSs in DNA sequences.
MAResNet is featured by the fusion of multi-scale bottom-
up and top-down attention mechanisms and a state-of-the-
art feed-forward network (ResNet). In particular, the network
is constructed by stacking funnel attention modules, which
generate attention-aware features. In addition, the multi-scale
funnel attention is utilized in the first stage. Within each
attention module, we also added a shortcut connection between
bottom-up and top-down parts to capture the important
information from different scales. Benchmarking experiments
show that the performance of MAResNet is superior to that
of several other existing methods when assessed on the 690
ChIP-seq datasets. The attractive advantages of our network can
be reflected in the following three aspects. First, the proposed
funnel attention mechanism has been shown to effectively
improve the prediction performance by adjusting the feature
weights of the trunk branch. Second, comparative experiments
and visual analysis indicate that the multi-scale attention
module has a capacity to extract more diverse information
from the feature matrix, and third, visualization of the features
learned by MAResNet through TMAP illustrates that the method
can extract the unique characteristics of TFBSs.
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Figure 7. Visualization of the learning features learned by the networks on four different datasets. The darker dots indicate the samples that do not contain the

corresponding type of transcription factor binding site, while the lighter dots indicate the samples that contain the corresponding TFBS. The sub-trees in the figure

connect the samples that belong to the same category.

Although MAResNet has achieved an excellent performance
for predicting TFBSs, there is further room to improvement of
MAResNet: Firstly, the soft mask branch may either enhance
or weaken the output feature maps of the corresponding trunk
branch. To address this, it is possible to design a new acti-
vation function to combine the soft mask branch and trunk
branch. Secondly, to improve the computing speed of the model,
we will develop useful strategies to compress the model while
ensuring that the prediction accuracy does not decrease, and
finally, it is possible to integrate the funnel attention mech-
anism with other cutting-edge deep learning architectures to
further improve prediction performance. In addition, MAResNet
can be generally applied to address other relevant prediction
problems in bioinformatics and computational biology [45], such
as predicting TFBSs from protein sequences [46–48] and other
types of binding and functional sites [49–51]. We believe that
MAResNet will greatly help to facilitate our better understanding
of deep learning models and the elucidation of gene regulation
mechanisms at the genomic sequence level.

Key Points
• This study develops a novel deep-learning method,

termed MAResNet, for predicting transcription factor
binding sites in DNA sequences.

• MAResNet is featured by the fusion of multi-scale
bottom-up and top-down attention mechanisms and
a state-of-the-art feed-forward network (ResNet).

• The bottom-up and top-down attention module can
improve the prediction performance by enhancing
important features and suppressing noise of the trunk
branch.

• Benchmarking experiments illustrate that the multi-
scale attention module is able to effectively extract
more diverse information from the feature matrix
and contributes to classifying whether the sequence
contains transcription factors binding sites.

• MAResNet achieves a statistically significant perfor-
mance improvement in terms of AUC compared to
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other existing state-of-the-art methods on the 690
ChIP-seq datasets.

• An online webserver of MAResNet (http://csbio.nju
st.edu.cn/bioinf/maresnet/) is implemented and pub-
licly available for the prediction of transcription factor
binding sites, providing a faster tool than existing deep
learning-based methods for TFBS prediction.

Availability and Implementation

All the data and source codes used in this study are freely
available at http://csbio.njust.edu.cn/bioinf/maresnet or
https://github.com/csbio-njust-edu/maresnet.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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