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Abstract

The X-ray diffraction (XRD) technique based on crystallography is the main experimental method to analyze the three-dimensional
structure of proteins. The production process of protein crystals on which the XRD technique relies has undergone multiple experi-
mental steps, which requires a lot of manpower and material resources. In addition, studies have shown that not all proteins can form
crystals under experimental conditions, and the success rate of the final crystallization of proteins is only <10%. Although some protein
crystallization predictors have been developed, not many tools capable of predicting multi-stage protein crystallization propensity
are available and the accuracy of these tools is not satisfactory. In this paper, we propose a novel deep learning framework, named
SADeepcry, for predicting protein crystallization propensity. The framework can be used to estimate the three steps (protein material
production, purification and crystallization) in protein crystallization experiments and the success rate of the final protein crystal-
lization. SADeepcry uses the optimized self-attention and auto-encoder modules to extract sequence, structure and physicochemical
features from the proteins. Compared with other state-of-the-art protein crystallization propensity prediction models, SADeepcry
can obtain more complex global spatial long-distance dependence of protein sequence information. Our computational results show
that SADeepcry has increased Matthews correlation coefficient and area under the curve, by 100.3% and 13.4%, respectively, over the
DCFCrystal method on the benchmark dataset. The codes of SADeepcry are available at https://github.com/zhc940702/SADeepcry.
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Introduction
Analyzing the three-dimensional structure of a protein has exten-
sively promoted the development of many research fields, includ-
ing the biological function of the protein [1], human disease treat-
ment [2] and drug screening and design [3–5]. Using the protein’s
three-dimensional structure to infer its function is also one of the
important research fields of modern biology [6]. At present, there
are two main methods for determining the three-dimensional
structure of proteins: X-ray diffraction (XRD) and nuclear mag-
netic resonance (NMR) spectroscopy [7]. So far, 80–90% of the
three-dimensional structures deposited in the protein data bank
(PDB) database [8] are measured by XRD technology, and NMR
measures only about 9% of the known protein structures. In
particular, well-diffracting crystals are necessary materials for
XRD technology to determine the three-dimensional structure of
proteins [9]. Its production process is usually the main bottleneck
of modern structure determination technology. Protein crystal-
lization test experiments often fail in the multi-step experimental
process required to produce diffraction quality crystals, resulting
in an overall success rate of only 2–10% [10]. For example, in the
initial crystallization test of the non-membrane protein in the
archaeal methane thermophilic autotrophic bacteria, only a small
part of the soluble purified protein is successfully crystallized
[11]. To reduce experimental costs and speed up the process of

obtaining structural data, it is necessary to predict which proteins
can produce diffraction quality crystals.

Recently, the task of predicting the protein crystallization
propensities has attracted more and more researchers. The
proposed protein crystallization propensity prediction methods
mainly fall into the following two classes. The 1st class is to
predict whether a query protein can be crystallized or not. For
example, Hu et al. [12] proposed a two-layer support vector
machine (SVM) predictor model, called TargetCrys, to predict
the crystallization tendency of proteins. The 1st SVM layer
of TargetCrys is used to fuse protein features extracted from
different views and the 2nd SVM layer of TargetCrys is used to
integrate the prediction results of the previous layer. Wang et al.
[13] developed a novel method called Crysf to predict the protein
crystallization propensity. Unlike the sequence-based methods,
Crysf predicts the crystallization propensities of proteins based
on the functional annotations derived from the UniProt database
[14], which brings a limitation: it can only be used to evaluate
the crystallization propensities of proteins available. Recently,
Elbasir et al. [15] developed a novel predictor named BCrystal,
which uses an optimized gradient boosting machine (XGBoost) on
sequence, structural and physiochemical features extracted from
the proteins of interest. Xuan et al. [16] proposed a deep learning
model called CLPred, which uses a bidirectional recurrent neural
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network (RNN) with long short-term memory (BLSTM) to capture
the long-range interaction patterns between k-mers amino acids
to predict protein crystallization propensity.

The 2nd class is to predict multiple steps of the entire crys-
tallization process of the proteins. Compared with the 1st class,
the methods belonging to this class can estimate the success
rate of each crystallization step in the crystallization process
and the probability of the final state in the entire crystallization
process. For example, Mizianty et al. [17] proposed a method based
on SVM, named PPCpred, to predict propensity for production
of diffraction-quality crystals, production of crystals, purification
and production of the protein material, which is the first method
to combine sequence-derived features with structural features.
Inspired by PPCpred, Wang et al. [18] developed a predictor based
on two-layer SVM and extracted a comprehensive set of sequence-
derived features as candidate features to train the SVM models
of PredPPCrys. Then, Wang et al. [10] developed an integrated
crystallization propensity predictor, named Crysalis, that builds
on support vector regression models to facilitate computational
protein crystallization prediction, analysis and design. Zhu et
al. developed [19] a new pipeline, named DCFCrystal, to pre-
dict protein crystallization propensity based on multiple types of
sequence-based features. DCFCrystal is a random forest model
based on deep cascade and the features used in the model include
Pseudo-Predicted Hybrid Solvent Accessibility and four existing
sequence-based features.

As mentioned above, several multi-stage classifiers have been
proposed to predict crystallization propensity for the proteins. The
proposed classifiers have demonstrated certain success, but the
accuracy of these tools is unsatisfactory and none of them extract
global interaction information about the original amino acid
sequence of a proteins. Recently, some powerful feature extractors
such as RNN [20] and self-attention network [21] that capture the
long-distance dependencies of sequences have been proposed
and applied in some fields, including natural language processing
(NLP), machine translation and bioinformatics. In this paper, we
develop a novel deep learning framework, named SADeepcry,
for predicting crystallization propensity. SADeepcry framework
can be used to estimate the success propensities of the three
steps (production of material, purification and production of
crystals) in the protein crystallization process. SADeepcry uses
the optimized self-attention and auto-encoder (AE) modules to
extract sequence, structure and physical and chemical features
from the proteins. More specifically, the framework consists of
three parts: two feature extractors, named self-attention module
and AE module, and a predictor, named multi-layer perceptron
(MLP) module. In order to learn the global interaction information
between the elements in the protein sequences and high-level
abstract features of proteins, we feed original protein sequences
into the self-attention module and 9139-dimensional artificial
features into the AE module, respectively. In the prediction stage,
we stitch the vectors obtained through the feature extraction
modules and then feed the spliced feature vectors into an
MLP to obtain the final prediction scores. Experimental results
on benchmark datasets show that SADeepcry has increased
Matthews correlation coefficient (MCC) and area under the curve
(AUC) by 100.3% and 13.4%, respectively, compared with the best
protein crystallization propensity prediction models available.
Moreover, some case studies on the samples with false-positive
predictions in the test datasets indicated that our framework
could be an efficient tool to identify and discover potential
crystallizable proteins.

Table 1. Statistics of the number of positive and negative
samples in the datasets

Dataset name

Training subset
(positive
/negative)

Testing subset
(positive
/negative)

MF_DS 5769 / 14022 1399 / 3548
PF_DS 1840 / 5559 458 / 1391
CF_DS 1581 / 603 403 / 143
CRYS_DS 1234 / 18557 321 / 4626
MCRYS_DS 511 / 3569 93 / 857

Materials and methods
Benchmark datasets
All our experiments are performed on publicly available datasets.
Five benchmark datasets, named MF_DS, PF_DS, CF_DS, CRYS_DS
and BD_MCRYS, are obtained from the reference [19]. The protein
names and their corresponding labels in the dataset are extracted
from the TargetTrack [22] database. Specifically, MF_DS, PF_DS and
CF_DS datasets are used to check the effectiveness of the methods
in the protein material production step, the purification step
and the crystal production step, respectively. CRYS_DS dataset is
used to check the effectiveness of the methods in the propensity
prediction of the entire protein crystallization process. BD_MCRYS
is used to check the effectiveness of the methods in the membrane
protein crystallization propensity prediction. Table 1 shows the
number of positive and negative samples in the five datasets,
respectively. For each benchmark dataset, we train SADeepcry
based on the training subset of the benchmark dataset and test
the prediction performance of the framework based on the testing
subset of the benchmark dataset.

SADeepcry
In this paper, we treat the protein crystallization propensity pre-
diction as multiple binary classification problems by aiming at
predicting each step and final crystallization propensity scores.
Figure 1 illustrates the construction of the proposed prediction
framework for protein crystallization propensity. SADeepcry can
be described as four steps (Figure 1) and the details are stated as
follows.

In step 1, we collect and code the original sequence features
and artificial features of the proteins. For the original amino
acid sequences of the proteins, each amino acid in the protein
sequences is needed to transform to a numeric vector before
inputting the original amino acid sequence of the protein into
the model. First, we use different integers to represent the amino
acids that occur in the protein sequence. Then, according to the
type and number of amino acids in each protein sequence, we
encode the original amino acid sequence of the protein. Because
protein vectors of equal length can only be processed by the model
as input data. Therefore, we fix the dimension size of each protein
vector to Lmax by zero-filling, where Lmax is the maximum length
of the protein sequences in the training dataset. After obtaining
the sequence vectors of proteins, we use the Pytorch embedding
layer to represent each amino acid with Le-dimensional dense
vectors. The embedding layer in this paper has a trainable lookup
matrix that stores embeddings of a fixed amino acid dictionary
and size. Each row of the matrix corresponds to an amino acid and
each amino acid corresponds to a Le-dimensional dense vector.
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Figure 1. The framework of SADeepcry. (1) Collecting the original amino acid sequences and 9139-dimensional artificial features of the proteins; (2)
using the self-attention module to extract the interaction embeddings of the protein sequences; (3) using the AE module to extract the high-level
embeddings; (4) integrating interaction embeddings and high-level embeddings to learn the final protein representation vectors and predicting the
protein crystallization propensity score.

The values in the protein sequence vectors indicate the corre-
sponding index positions of different amino acids in the lookup
matrix. Through continuous training of the model, an appropriate
representation can eventually be learned for each amino acid.
The size of Le is determined by the grid search method and the
search grid for the Le is [8, 32, 64, 128, 256]. The Le setting with
the best AUC score based on 10-fold cross-validation over the
training subset is selected. According to the results, we set Le to
be 128. During training, the weights of the embedding layers can
be updated. Finally, we can learn a (Lmax, Le) dimensional dense
embedding matrix to represent the amino acid sequence of a
protein. The 9139-dimensional artificial features of proteins are
extracted from literature [15], which consisted of several well-
known physicochemical, sequence-derived features and some
disordered features extracted from the SCRATCH suite [23] and
DISOPRED [24].

In step 2, we use a multi-head self-attention mechanism to
extract the interaction embeddings of the protein sequences.
Inspired by its great success in NLP [25], here we treat the
sequence of each protein as a sentence in the text, and the
amino acids in the sequence correspond to the words in the
sentence. The self-attention module contains multiple identical
units, and each unit consists of two network layers,including a
multi-head self-attention mechanism layer and a fully connected
feed-forward network layer. Moreover, between the two sublayers,
residual connection and normalization operations are added. The
multi-head self-attention mechanism layer consists of several
scaled-dot attention layers to extract the information of protein
sequences. The calculation process can be described as follows:

Headi =
Softmax

(
(QWi

Q)(KTWi
K)

)
√

Le
(VWi

V), (1)

where Q, K and V are the query, key and value matrices and
Le is the dimension of the matrices. Wi

Q , Wi
K and Wi

v are the
corresponding head-specific parameters to linearly project the
matrices into local spaces. Here, we set Q = K = V = xh, where
xh is the input of the multi-head self-attention mechanism layer.
Then, the multi-head self-attention can be described as follows:

Multi − head = Head1 ⊕ Head2 ⊕ . . . Headi ⊕ . . . headR (2)

where ⊕ represents the concatenation operation and R is the
number of heads in the multi-head attention mechanism. Empir-
ically, we set R to be 4. The fully connected feed-forward network
layer can perform nonlinear transformations on data and the
calculation process can be described as follows:

FFN(x) = max
(
0, xf W1 + b1

)
W2 + b2, (3)

where xf is the input of the fully connected feed-forward network
layer, W1 and W2 are the weight matrices to be trained, b1 and b2

are the biases.
In step 3, considering that the 9139-dimensional artificial fea-

tures are high-dimensional and sparse, we reduce the dimension
of the features and use an AE module to extract the information
from the sparse artificial feature vectors. In this paper, the AE
module is divided into two parts: encoder and decoder. Empir-
ically, the encoder of the AE module has three fully connected
layers and each layer uses 1024, 512 and 256 neuron nodes,
respectively. In addition, the activation function [26] and dropout
strategy [27] are added to make the module has excellent ability
to prevent overfitting. The decoder and encoder of the AE module
adopt a symmetrical structure, and each layer uses 256, 512
and 1024 neuron nodes, respectively. We input 9139-dimensional
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artificial features into the AE module and then extract the inter-
mediate variable latent vectors as high-level embeddings of the
proteins.

In step 4, we adopt the MLP network for the prediction task. We
concatenate the vector output by the self-attention module and
latent vector from AE, and then feed it into an MLP module. The
forward propagation process of the MLP module in this paper can
be defined as follows:

xt = ReLU
(
wt

MLPxt−1 + bt
MLP

)
, (4)

where t is the index of a hidden layer, wMLP represents the weight
matrix to be trained, xt−1 represents the input of the data, bl is the
bias. The score of each protein between 0 and 1 is obtained using
sigmoid as the activation function.

Model training
During training, the AE module parameters are learned on the
training set by minimizing the mean square loss function as
follows:

Loss1 = 1
M

M∑
i=1

(Prei − YFeature)
2 , (5)

where M represents the number of samples in the training set, the
Prei and YFeature represent the true and predicted artificial feature
values of sample i in the training set, respectively. Our goal is to
minimize the difference between the predicted score and the true
label of the proteins. Therefore, we use the cross-entropy binary
cross-entropy with logits loss function to train the whole model.
The overall loss function can be described as follows:

Loss function = 1
M

M∑
m=1

ytrue × log
(
S

(
ypred

))

+ (
1 − ytrue

) × log
(
1 − S

(
ypred

)) + Loss1, (6)

where S(.) is the sigmoid function, ytrue and ypred represent the
true and predicted label. We train the model for a maximum
of 100 epochs, checkpointing and evaluating each epoch on the
training dataset. The learning rate is adapted by Adam optimizer
[28], which has been empirically proven to have excellent perfor-
mances in deep learning tasks, and it has a great advantage over
other types of stochastic optimization algorithms. SADeepcry is
implemented with Pytorch 1.4. The raw learning rate is set to
0.0001, and the batch size is set to 32.

Results
Performance evaluation metrics
We use five commonly used evaluation indices [29–31], including
AUC, MCC, ACCuracy (ACC), SENsitive (SEN) and SPEcificity (SPE),
to evaluate the prediction performance of the protein crystal-
lization propensity prediction tools. The protein samples with
predicted scores higher than the given thresholds are considered
as the positive samples and vice versa. We can obtain the cor-
responding true positive rate and false positive rate by setting
different thresholds and further plotting the receiver operating
characteristic (ROC) curve. AUC is the area under the line of the
ROC curve. An AUC value of 1 represented a perfect prediction,
whereas an AUC value of 0.5 indicated a purely random perfor-
mance. The MCC is mainly used to measure the performance

of unbalanced data sets. The value ranges from -1 to 1, where
-1 means the prediction is completely opposite to the actual
situation and 1 means perfect prediction, and 0 means that the
prediction result is equivalent to random guessing. ACC repre-
sents the proportion of all samples that are correctly predicted.
The higher the proportion, the better the prediction performance
of the model. SEN measures the classifier’s ability to recognize
positive samples and SPE specifically measures the model’s ability
to recognize negative samples. The formulas of the used evalua-
tion metrics are summarized as follows:

TPR = TP
TP + FN

(7)

FPR = FP
TN + FP

(8)

ACC = (TP + TN)

(TP + TN + FP + FN)
(9)

SEN = TP
(TP + FN)

(10)

SPE = TN
(TN + FP)

(11)

MCC = (TP × TN − FP × FN)√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

, (12)

where TP represents the number of positive samples predicted as
true, TN is the number of negative samples predicted as false, FN
is the number of the negative samples predicted as true and FP is
the positive sample predicted as false.

Performance comparison with the multistage
predictors
As far as we know, only four multi-stage predictors are currently
available: PPCpred, PredPPCrys, Crysalis and DCFCrystal. Since
PPCpred does not provide the source code and cannot access its
web server, we only compare our models with the other three
predictors. The values of SEN, SPE, ACC and MCC are determined
by the threshold t. In this paper, the value of t is determined
by the grid search method and the search gird for the t is [0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. We choose the value of t
with the best MCC score based on the training set. In addition,
if the web server or source codes of the competing method is
available, we run our method and the competing method with
10 times and calculate the corresponding values of MCC and
AUC in each time, then we calculate the P-values for MCC and
AUC between our method and the competing method using two-
tail test. If the web server or source of the competing method is
unavailable, we only run our method with 10 times and calculate
the corresponding values of MCC and AUC in each time, then, we
calculate the P-values for MCC and AUC between our method and
the competing method using one-tail test. The comparison results
between SADeepcry and other methods in the testing subsets
of MF_DS, PF_DS, CF_DS are shown in Tables 2–5. The results of
the four multi-stage classification models are obtained by [19]. In
general, SADeepcry framework are superior to that of the other
predictors in the prediction performance. Taking CRYS_DS dataset
as an example, SADeepcry achieves 14.9%, 10.3%, 10.1%, 100.3%
and 13.4% average enhancements of SEN, SPE, ACC, MCC and
AUC values, respectively, compared with the 2nd-best method
DCFCrystal.
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Table 2. Performance comparison between SADeepcry and other prediction methods on the MF_DS dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

PPCpred 0.389 0.752 0.654 0.176 0.661 1.19 × 10−8 3.81 × 10−8

Crysalis I 0.405 0.773 0.668 0.180 – 1.46 × 10−8 –
Crysalis II 0.380 0.798 0.680 0.180 – 1.46 × 10−8 –
DCFCrystal 0.636 0.742 0.712 0.354 0.757 1.63 × 10−2 9.51 × 10−8

SADeepcry 0.412 0.834 0.762 0.341 0.712 – –

Table 3. Performance comparison between SADeepcry and other prediction methods on the PF_DS dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

PPCpred 0.693 0.293 0.416 0.084 0.575 1.87 × 10−14 3.49 × 10−15

Crysalis I 0.803 0.272 0.404 0.070 – 1.54 × 10−14 –
Crysalis II 0.775 0.330 0.440 0.100 – 2.33 × 10−14 –
DCFCrystal 0.404 0.893 0.772 0.333 0.762 1.65 × 10−12 2.08 × 10−10

SADeepcry 0.731 0.931 0.882 0.677 0.882 – –

Table 4. Performance comparison between SADeepcry and other prediction methods on the CF_DS dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

PPCpred 0.498 0.525 0.501 0.063 0.526 4.11 × 10−11 6.18 × 10−15

Crysalis I 0.628 0.462 0.584 0.080 – 5.20 × 10−11 –
Crysalis II 0.479 0.601 0.511 0.070 – 2.45 × 10−10 –
DCFCrystal 0.806 0.622 0.758 0.409 0.783 5.15 × 10−8 7.83 × 10−11

SADeepcry 0.906 0.762 0.871 0.679 0.902 – –

Table 5. Performance comparison between SADeepcry and other prediction methods on the CRYS_DS dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

PPCpred 0.587 0.677 0.652 0.163 0.669 6.84 × 10−15 2.60 × 10−18

Crysalis I 0.664 0.679 0.678 0.180 – 8.72 × 10−15 –
Crysalis II 0.654 0.728 0.723 0.210 – 1.37 × 10−14 –
DCFCrystal 0.604 0.884 0.866 0.339 0.863 1.34 × 10−13 7.23 × 10−15

SADeepcry 0.820 0.988 0.957 0.684 0.981 – –

Performance comparison with the single-stage
predictors
Here, we also compare SADeepcry with some single-stage pre-
dictors, which only predict the success rate of the final protein
crystallization. We compare the prediction results of SADeepcry
with five state-of-the-art methods, including DeepCrystal [32],
BCrystal [15], XRRpred [33], ATTCry [34] and DCFCrystal [19].
Since the input sequence length of BCrystal is required to be
less than 800, we delete the samples whose original sequence
length exceeds 800 in the CRYS_DS dataset and retrain and test
SADeepcry. XRRpred can predict the resolution and R-free of the
given protein sequences simultaneously. Here, we use the Resolu-
tion_XRRpred and R-Free_XRRpred to represent the two tasks of
XRRpred, respectively. Specially, compared with two deep learn-
ing methods DeepCrystal and ATTCry, SADeepcry extracts global
interaction information about the original amino acid sequence of
a protein and introduces several well-known features that provide
information about the physiochemical, sequence and structural
properties of the proteins. As shown in Table 6, we can find that
SADeepcry achieves the best performance, which shows that our
framework can be used as a useful tool for predicting protein
crystallization prediction.

Performance comparison with the membrane
protein predictors
Membrane proteins play a vital role in various biological
processes. However, predicting the crystallization propensities
of membrane proteins is much more complex than that of
non-membrane proteins. For the performance comparison of
membrane protein-specific crystallization prediction models, we
have compared SADeepcry with six recently developed protein
crystallization propensity predictors, XRRPred [33], BCrystal [15],
ATTCry [34], DeepCrystal [32], TMCrys [22] and MDCFCrystal [19]
on the MCRYS_DS dataset. Specifically, TMCrys and MDCFCrystal
are developed for membrane protein crystallization propensity.
As shown in Table 7, SADeepcry achieves the best performance
on SEN, ACC, MCC and AUC metrics.

Analysis of the contribution of each type of
features
To build SADeepcry, we introduce the optimized self-attention and
AE modules to extract the original amino acid sequence, struc-
ture, and physical and chemical features from the proteins. Here,
we divide the 9139-dimensional artificial features into three types,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac352/6678422 by guest on 25 O

ctober 2024



6 | Wang and Zhao

Table 6. Performance comparison between SADeepcry and other single-stage methods on CRYS_DS dataset with sequence length less
than 800

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

Resolu-
tion_XRRPred

0.002 0.983 0.916 -0.034 0.647 3.42 × 10−15 2.65 × 10−20

R-Free_XRRPred 0.003 0.995 0.927 -0.018 0.588 2.65 × 10−15 6.67 × 10−20

ATTCry 0.542 0.844 0.822 0.225 0.769 1.21 × 10−13 1.72 × 10−16

DeepCrystal 0.818 0.653 0.664 0.245 0.793 1.95 × 10−13 4.58 × 10−16

BCrystal 0.952 0.943 0.944 0.702 0.972 1.44 × 10−3 3.95 × 10−4

DCFCrystal 0.608 0.878 0.859 0.338 0.878 5.88 × 10−13 6.41 × 10−14

SADeepcry 0.779 0.969 0.951 0.678 0.977 – –

Table 7. Performance comparison between SADeepcry and other prediction methods on the MCRYS_DS dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

Resolu-
tion_XRRPred

0.054 0.972 0.856 0.050 0.610 6.89 × 10−15 1.85 × 10−18

R-Free_XRRPred 0.016 0.991 0.868 0.022 0.610 2.43 × 10−15 1.85 × 10−18

BCrystal 0.844 0.982 0.964 0.838 0.965 1.04 × 10−8 1.78 × 10−6

ATTCry 0.147 0.994 0.887 0.311 0.714 3.41 × 10−13 2.64 × 10−17

DeepCrystal 0.302 0.973 0.887 0.380 0.728 1.48 × 10−12 4.09 × 10−17

TMCrys 0.656 0.848 0.829 0.374 0.921 1.28 × 10−12 5.94 × 10−12

MDCFCrystal 0.710 0.965 0.940 0.665 0.945 1.48 × 10−6 4.93 × 10−10

SADeepcry 0.876 0.984 0.971 0.869 0.985 – –

Table 8. Performance of SADeepcry when one type of feature is
introduced

Included feature type SEN SPE ACC MCC AUC

Global feature 0.012 0.989 0.935 0.133 0.726
Structural feature 0.532 0.985 0.951 0.595 0.951
Frequency feature 0.015 0.994 0.925 0.108 0.666
Sequence feature 0.013 0.997 0.934 0.107 0.707
All 0.820 0.988 0.957 0.684 0.981

namely global feature, structural feature and frequency feature
and define the original amino acid sequence as the sequence
feature. Determining the contribution of each type of feature to
SADeepcry is an interesting problem. Accordingly, we reconstruct
SADeepcry that takes as input each of the four considered fea-
tures separately to assess the relative contribution of each feature.
Thus, four SADeepcrys are obtained. These classifiers are also
trained and evaluated via the CRYS_DS dataset, producing five
measurements (Table 8). The performance of SADeepcry with few
features is lower than the original SADeepcry with all features,
suggesting that all features provided less or more contributions.
After careful checking, structural features provide the most con-
tribution. The performances of the remaining features are almost
at the same level.

Ablation experiment
For improving the performance of models in protein crystalliza-
tion propensity, our proposed framework introduces two popular
deep learning architectures, the self-attention module and AE, to
extract two types of features of proteins, respectively. To verify the
effectiveness of these two architectures, we perform an ablation
experiment based on the CRYS_DS dataset. Table 9 shows the per-
formance comparison between SADeepcry and its two variants’
effect in terms of SEN, SPE, ACC, MCC and AUC, and we can find
SADeepcry outperforms other methods.

Table 9. Performance comparison between SADeepcry and two
variants on the CRYS_DS

Model name SEN SPE ACC MCC AUC

w/o AE 0.425 0.959 0.949 0.524 0.954
w/o Self-attention 0.479 0.964 0.952 0.537 0.961
SADeepcry 0.820 0.988 0.957 0.684 0.981

Table 10. The performance of SADeepcry with different numbers
of self-attention layers on the CRYS_DS

Self-attention layers SEN SPE ACC MCC AUC

1 0.694 0.975 0.961 0.679 0.979
2 0.822 0.970 0.960 0.717 0.976
3 0.820 0.988 0.957 0.684 0.981
4 0.822 0.968 0.959 0.687 0.977
5 0.788 0.975 0.958 0.736 0.971

Impact of the number of self-attention layers
The number of self-attention layers is a key parameter for crys-
tallization propensity prediction of proteins. Here, we compare
the impact of several projection dimensions on the performance
of SADeepcry under 10-fold cross-validation. Table 10 shows the
performance achieved by our model when the number of self-
attention layers is set at 1, 2, 3, 4 and 5. One can find that the
prediction performance of the model do not increase significantly
as the number of network layers increased. Considering each self-
attention layers need to train many learnable parameters, but the
number of samples in the training set is relatively small. Stacked
self-attention layers may lead to overfitting and vanishing gra-
dient problems. So, the number of self-attention layers is 3 in
SADeepcry.

Performance of independent test set
We conduct an independent test to evaluate the performance
of our model. In the independent test, the training set of the
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Table 11. Performance of SADeepcry and other methods on the SP final dataset

Model name SEN SPE ACC MCC AUC P-value of MCC P-value of AUC

Resolution_XRRPred 0.006 0.932 0.354 -0.173 0.715 6.67 × 10−19 1.85 × 10−18

R-Free_XRRPred 0.002 0.988 0.371 -0.083 0.618 1.52 × 10−18 1.90 × 10−15

BCrystal 0.925 0.831 0.870 0.724 0.951 1.89 × 10−6 8.90 × 10−4

ATTCry 0.791 0.865 0.819 0.638 0.888 1.50 × 10−11 4.19 × 10−10

DeepCrystal 0.716 0.831 0.759 0.531 0.875 6.81 × 10−14 1.15 × 10−10

SADeepcry 0.864 0.890 0.877 0.748 0.964 – –

Table 12. The top 20 false-positive samples in the CRYS_DS dataset are predicted by SADeepcry

Rank Protein name Predicted score PDB ID Method

MF_DS PF_DS CF_DS CRYS_DS

1 APC109569_MCSG 0.821 0.864 0.897 0.938 5X7L X-ray
2 423436_JCSG 0.863 0.932 0.886 0.926 – –
3 425087_JCSG 0.853 0.852 0.946 0.922 5NFI X-ray
4 BrsuA_00771_a_SSGCID 0.853 0.941 0.888 0.914 – –
5 FrtuB_01320_a_SSGCID 0.916 0.961 0.968 0.912 – –
6 425014_JCSG 0.888 0.892 0.969 0.909 – –
7 511794_EFI 0.837 0.927 0.949 0.904 – –
8 508516_EFI 0.702 0.919 0.949 0.898 4GIB X-ray
9 030343_NYSGRC 0.880 0.869 0.876 0.897 6EWJ X-ray
10 BrabA_17148_a_SSGCID 0.735 0.890 0.896 0.894 3U97 X-ray
11 IDP63252_CSGID 0.880 0.864 0.872 0.892 5KIN X-ray
12 BrmiA_00143_d_SSGCID 0.830 0.855 0.861 0.888 – –
13 ButhA_00010_i_SSGCID 0.734 0.844 0.760 0.888 – –
14 508492_EFI 0.793 0.940 0.955 0.887 1YMQ X-ray
15 MyleA_18372_a_SSGCID 0.867 0.885 0.954 0.885 – –
16 030711_NYSGRC 0.724 0.832 0.895 0.883 – –
17 OR436_NESG 0.814 0.907 0.924 0.882 – –
18 BrmeB_17333_a_SSGCID 0.861 0.879 0.886 0.881 – –
19 032170_NYSGRC 0.860 0.826 0.913 0.876 5WID X-ray
20 OR433_NESG 0.803 0.814 0.932 0.873 – –

models is the CRYS_DS dataset and the testing of the protein
crystallization prediction performance is performed based on the
SP final dataset from the reference. In the SwissProt (SP) final
dataset, there are 148 crystallizable protein sequences and 89
non-crystallizable protein sequences. Table 11 shows the compar-
ison results of SADeepcry and the other seven models. Our model
outperforms several state-of-the-art crystallization predictors for
ACC, MCC and AUC metrics.

Case studies
With the advancement of technology and the passage of time,
more and more three-dimensional structures of proteins have
been discovered by XRD technology based on protein crystals.
Due to the limited number of proteins in the benchmark dataset
and the timeliness of the labels, some samples predicted false
positives using our framework. However, we found that some of
the false-positive predictions reported in the newest literature and
the databases are active. To evaluate the reliability of SADeepcry,
we conduct the case analysis on the false-positive samples. We
use the pre-trained SADeepcry to predict the test samples in
the CRYS_DS datasets and rank them by their predicted scores.
From the analysis of the top 20 samples, the 3D structures of
seven protein samples are found in the newest PDB database
(Table 12), and the three-dimensional structures of these pro-
teins are obtained from their crystallographic analysis by XRD.

In addition, we track the intermediate process prediction for the
top 20 false-positive samples. Specifically, we focus on the top
20 false-positive samples and remove these samples from the
MF_DS, PF_DS and CF_DS training sets, respectively. Then, we use
three processed training sets to train SADeepcry and output the
predicted values of these 20 samples, respectively. Table 12 shows
that the model is consistent in the predicted labels of the same
sample at each intermediate stage. This phenomenon suggests
that our framework could be an efficient tool to identify and
discover potential crystallizable proteins.

Discussion and conclusion
The XRD technique based on crystallography is the main exper-
imental method to analyze the three-dimensional structure of
proteins. The accuracy of the existing protein crystallization pro-
cess prediction methods still cannot meet the demand. In this
paper, we propose SADeepcry, an end-to-end learning framework
based on self-attention and AE modules. The framework can be
used to estimate the three steps of the protein crystallization
process (protein material production, purification and crystal
production) and the final protein crystallization success rate. By
comparison with existing crystallization propensity predictors,
the efficacy of SADeepcry has been demonstrated. The superior
performance of the proposed predictor is mainly due to the use of
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the designed advanced deep learning model to extract the original
sequence information and artificial features of the protein, which
can effectively learn the crystalline knowledge hidden in the
benchmark dataset. Moreover, the case studies on the samples
with false-positive predictions in the CRYS_DS dataset also explain
the effectiveness of SADeepcry.

Although SADeepcry obtains good prediction performances,
there is still room for improvement. First, some proteins previ-
ously considered as non-crystallizable proteins would be identi-
fied as crystallizable proteins. The missing and noisy data could
bring a negative impact on protein crystallization propensity pre-
diction. Second, due to the small number of membrane proteins
in the benchmark dataset, SADeepcry cannot predict the interme-
diate process of membrane proteins. In the future, we will update
and expand our benchmark data set based on existing public
databases and collect more membrane protein data to improve
our model.

Key Points

• We propose a novel deep learning framework, which
uses optimized self-attention and auto-encoder mod-
ules to extract the protein features and a multilayer
perceptron to predict protein crystallization propensity.

• SADeepcry integrates multiple types of protein fea-
tures, including global properties, original amino acid
sequences and sequence-derived features, which can
significantly improve crystallization recognition.

• Results on several common evaluation metrics all
showed superior performance of SADeepcry based on
the multiple benchmark datasets.
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