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Abstract

Motivation: Protein structure determination has primarily been performed using X-ray crystallog-

raphy. To overcome the expensive cost, high attrition rate and series of trial-and-error settings,

many in-silico methods have been developed to predict crystallization propensities of proteins

based on their sequences. However, the majority of these methods build their predictors by

extracting features from protein sequences, which is computationally expensive and can explode

the feature space. We propose DeepCrystal, a deep learning framework for sequence-based protein

crystallization prediction. It uses deep learning to identify proteins which can produce diffraction-

quality crystals without the need to manually engineer additional biochemical and structural fea-

tures from sequence. Our model is based on convolutional neural networks, which can exploit fre-

quently occurring k-mers and sets of k-mers from the protein sequences to distinguish proteins

that will result in diffraction-quality crystals from those that will not.

Results: Our model surpasses previous sequence-based protein crystallization predictors in terms

of recall, F-score, accuracy and Matthew’s correlation coefficient (MCC) on three independent test

sets. DeepCrystal achieves an average improvement of 1.4, 12.1% in recall, when compared to its

closest competitors, Crysalis II and Crysf, respectively. In addition, DeepCrystal attains an average

improvement of 2.1, 6.0% for F-score, 1.9, 3.9% for accuracy and 3.8, 7.0% for MCC w.r.t. Crysalis II

and Crysf on independent test sets.

Availability and implementation: The standalone source code and models are available at https://

github.com/elbasir/DeepCrystal and a web-server is also available at https://deeplearning-protein.

qcri.org.

Contact: rmall@hbku.edu.qa or hbensmail@hbku.edu.qa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The problem of protein structure determination is usually solved by

X-ray crystallography. However, it is an expensive process where

more than 70% (Service, 2005) of the total cost is spent on attempts

which fail to yield diffraction-quality crystals. The overall rate of

successful attempts ranges from 2 to 10% (Terwilliger et al., 2009).
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The identification of important biological features that help to in-

crease the protein crystallization propensity still remains a big chal-

lenge. Several machine learning and statistical methods have

been developed for sequence-based protein crystallization propen-

sity prediction (Gao et al., 2018; Kurgan and Mizianty, 2009;

Mizianty and Kurgan, 2011; Wang et al., 2014, 2016). These

methods use different feature extraction and feature selection techni-

ques. These techniques can be applied to extract and select thou-

sands of physiochemical and structural features from raw protein

sequences.

This motivated us to propose, DeepCrystal, a deep neural net-

works (DNNs) based model to predict protein crystallization pro-

pensity without the need to extract additional features. DNNs

have been applied to solve many protein structure prediction (Li

and Yu, 2016; Wang et al., 2017b) and protein function predic-

tion problems (Khurana et al., 2018; Kulmanov et al., 2017; Liu,

2017; Mall et al., 2017). In this study, we use convolutional

neural networks (CNNs), a form of DNN, for identifying fea-

tures such as frequently occurring k-mers and sets of amino acid

k-mers of different lengths. We illustrate that CNNs provide

highly accurate predictions without the need to add additional

sequence-based features to the model, thus reducing the computa-

tion cost.

CNNs were first popularized in LeCun et al. (1998). They are

feed-forward neural networks that can adequately capture non-

linear spatial information effectively as shown in various computer

vision problems such as image classification (Krizhevsky et al.,

2012; Szegedy et al., 2015). Subsequently, excellent results have

been achieved in many natural language processing (NLP) tasks

using CNNs, such as for semantic parsing (Yih et al., 2011; Zhang

et al., 2015) and sentence modeling by Kalchbrenner et al. (2014).

An analogy can be drawn between sentences in NLP and protein

sequences in biology (Asgari and Mofrad, 2015). Here each of the

20 amino acid is a word and together they form the dictionary.

DeepCrystal takes protein sequences as input and passes it to the

CNN model which can then capture local contexts in the form of k-

mers and sets of k-mers. These learned contexts help to predict the

protein crystallization propensity with high accuracy. Our main

contributions are:

• DeepCrystal uses raw protein sequences without additional fea-

tures, such as physiochemical and structural features, whereas

previous in-silico methods have primarily relied on features

extracted from raw sequences. The feature representations learnt

by our model, such as k-mer information and frequent sets of

amino acid k-mers help in identifying discriminative features for

predicting which proteins can produce diffraction-quality

crystals.
• DeepCrystal can be used by researchers and in industrial settings

to predict diffraction-quality crystals with computational effi-

ciency and higher accuracy. Moreover, many constructs of a

given protein sequence can be tested in a fairly short span of run

time.
• The code of DeepCrystal is publicly available for reproducibility

and further enhancements. Moreover, we made a publicly avail-

able web-server for mass usage.
• Performed an experimental case study for X-ray diffraction ana-

lysis of the High-Mobility Group (HMG) domain of stem cell

transcription factor Sox17 mutant, where DeepCrystal predicted

with a confidence of 0.633 that diffraction-quality crystals can

be obtained.

2 Materials and methods

2.1 Overview
The problem of protein crystallization prediction (diffraction-qual-

ity crystals) is a binary classification problem. Our aim is to learn a

function (t) that takes as input a protein sequence, x and outputs a

score in the range ½0;1� 2 R i.e. t : x! ½0;1�, where t is the non-

linear mapping function. In this work, t is a CNN, a sparse variation

of a feed-forward neural network architecture that exploits the co-

occurrence patterns in the input. A protein sequence, is given by a

sequence of vectors, x ¼ ðx1; x2; . . . ;xLÞ, where xi 2 R
d is the one-

hot encoded vector (Khurana et al., 2018) i.e. a binary vector of

length d ¼ 22 (20 for amino acids, 1 for gap and 1 for ambiguous

amino acids) with only 1 bit active for the ith amino acid in a given

protein sequence. This is a widely used encoding scheme in NLP to

have a better representation of words in a sentence (Kalchbrenner

et al., 2014; Zhang et al., 2015).

2.2 Data partitioning
We perform our experiments on publicly available datasets. The ori-

ginal training set is obtained from Wang et al. (2014) and has five

classes including diffraction-quality crystals, protein cloning failure,

protein material production failure, purification failure and crystal-

lization failure. It comprises a total of 28 731 sequences of which

5383 proteins produce diffraction-quality crystals and the remaining

23 348 are non-crystallizable. Here, we treat the crystallization pre-

diction problem as a binary classification problem i.e. diffraction-

quality crystals (positive class) versus the remaining four classes as a

single negative class. As highlighted in Wang et al. (2014), all the

sequences in each class are passed through a filter of > 25% se-

quence similarity to remove redundant and highly similar protein

sequences within each class. We further remove a total of 12 protein

sequences which had > 25% sequence similarity with the Sox9 and

Sox17 proteins (full length þ HMG domains) using the CD-HIT (Fu

et al., 2012) method.

We perform a simple pre-processing step to obtain our training,

validation and test datasets. The maximum length of a protein se-

quence considered in our model is L ¼ 800 as there are very few pro-

teins in our dataset whose length exceeds 800. The remaining few

proteins of length L > 800 are removed from the dataset. Proteins

with L < 800 are padded with the symbolic representation for gaps

to the end of the sequence until the length becomes 800. By perform-

ing this step, the total number of proteins in the dataset is reduced to

27 715. We randomly divided this dataset into two parts: D1 and D2

such that D2 consists of 891 crystallizable and 897 non-

crystallizable proteins forming the fairly balanced test set used for

performance evaluation. D1 has a total of 25 818 protein sequences

from which we randomly select 23 333 proteins for training, where

3846 proteins belong to positive class while remaining 19 487 pro-

teins are non-crystallizable. Finally, the validation set has 2595 pro-

tein sequences, of which 529 proteins produce diffraction-quality

crystals while 2066 proteins belong to the negative class.

We also use two other independent test sets generated in Wang

et al. (2017a) for further validation and comprehensive comparison

with state-of-the-art web-servers like fDETECT (Meng et al., 2018),

Crysf (Wang et al., 2017a), Crysalis I and II (Wang et al., 2016),

TargetCrys (Hu et al., 2016), XtalPred-RF (Jahandideh et al., 2014),

PPCPred (Mizianty and Kurgan, 2011) and CrystalP2 (Kurgan

et al., 2009). For all performance comparison, we provide our test

protein sequences to these web-servers to obtain corresponding
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prediction scores. The two datasets, referred as SP_pre (SwissProt)

and TR_pre (Tremble) in Wang et al. (2017a), have a total of 604

and 2521 protein sequences, respectively. We remove all sequences

of L > 800 from these datasets. As mentioned in Wang et al.

(2017a), these sequences are obtained from the TargetTrack dataset

and our training set is made of sequences from the TargetTrack

dataset, hence the datasets are not necessarily independent from our

training set. Thus, we used CD-HIT to remove sequences with >

25% similarity from SP_pre and TR_pre respectively when compar-

ing with our training set.

We get final reduced sets from SP_pre called SP_final and

TR_pre called TR_final, respectively. In the SP_final dataset, we

have 148 proteins belonging to the positive class while remaining 89

sequences are non-crystallizable whereas in the TR_final dataset,

there are 374 crystallizable proteins and 638 proteins belonging to

the negative class.

2.3 Model
We only use the raw protein sequence as the input to the proposed

CNN model i.e. DeepCrystal. We did not perform any explicit fea-

ture engineering, the CNN is allowed to learn feature representa-

tions that best encode the information essential for protein

crystallization prediction.

2.3.1 Embedding layer

The raw protein sequence is first converted into a sequence of one-

hot coded feature vectors i.e. x 2 R
L�d. By using the embedding

layer, a dense continuous feature representation is learnt for each

amino acid in the protein sequence during the training process. This

process is commonly used in NLP to learn a vector representation

for each word in a document. Representing words as unique, dis-

crete one-hot coded vectors leads to data sparsity, and usually means

that we may need more data in order to successfully train deep

learning models. Using vector representations can overcome some of

these obstacles. This is based on the ‘Distributional Hypothesis’

(Harris, 1954) which states that words which are similar to one an-

other have learnt embedding representations that are close one an-

other (Huang et al., 2012).

Similarly, for protein sequences, by learning a dense continuous

feature representation for each amino acid in the sequence, a distri-

butional representation can be learnt for the amino acids. When

these embedding vectors are projected in 2D, it can be shown that

amino acids having similar hydrophobicity, polarity and net charge,

factors important for covalent chemical bonding, form visually dis-

tinguished groups (Vang and Xie, 2017). This gives validation to

distributed representation as an effective method to encode amino

acids that also helps to preserve important physiochemical

properties.

Hence, the sparse feature vectors for a given protein sequence (x)

are transformed to dense continuous feature representations using

the embedding layer transformation as follows: E ¼ xWe, where

We 2 R
d�e is the embedding weight matrix, e corresponds to the

embedding dimension and E 2 R
L�e is the output matrix obtained

from the embedding layer.

2.3.2 Multi-layer multi-scale CNN

The embedding matrix, E, is convolved with multiple parallel con-

volution blocks at each CNN layer in our proposed DeepCrystal

model (see Fig. 1). Figure 1 illustrates that there are three such con-

volution layers in our model. Each convolution block (k) at a given

convolution layer (i) is represented by a set of triplets

ff i
k; q

i
k; a

i
kgk¼1;...;Ki ;i¼f1;2;3g. Here f i

k is the convolution filter size, qi
k is

the number of convolution filters and ai
k is the activation function.

We perform a one dimensional convolution along the length of the

protein sequence. The one dimensional convolution automatically

constrains the filter’s column size to be identical to the incoming in-

put matrix’s column size. Each convolution block outputs a set of

feature maps, fTi
k 2 R

L�qi
kgk¼1;...;Ki . A one dimensional convolution

block k at the ith CNN layer can mathematically be represented as:

Ti
kðr; sÞ ¼ ai

k

Xe

l¼0

Xf i
k

m¼0

Ciðl;m; sÞ � Eðl; rþmÞ

0
@

1
A: (1)

Here s ¼ 1; . . . ; qi
k; Ci 2 R

e�f i
k
�qi

k is the weight tensor that con-

tains all the qi
k convolution filters and ai

k is the corresponding activa-

tion function. We use the rectified linear unit (Nair and Hinton,

2010) as the activation function and Ti
kðr; sÞ is the ðr; sÞth element of

the convolution feature map Ti
k. The weight tensor Ci is learnt dur-

ing the training phase. A detailed working mechanism of a convolu-

tion block for a protein sequence can be found in (Khurana et al.,

2018).

After obtaining a convolution feature map, Ti
k, we carry out a

max pooling operation. The max pooling operation is performed

with a sliding window of length w s.t. w ¼ 5 adjacent values in

Ti
kð:; sÞ are compared and the maximum value is retained. Thus, it

acts as a low pass filter preserving only the significant interactions.

The output of the max pooling operation is a feature map Zi
k 2

R
L�qi

k having the same dimension as Ti
k but fewer unique and sig-

nificant interactions. This operation prevents over-fitting by reduc-

ing the number of unique features learnt during the training phase.

The output of the max pooling operation at the final CNN

layer (i ¼ 3) are flattened leading to a vector, h 2 R
p. Here, p repre-

sents the dimension of h and can be calculated as: p ¼ L�
PKi

k¼1

qi
k.

2.3.3 Fully connected layer

We pass h through a fully connected hidden layer composed of fc

hidden neurons, to get Fc ¼ ReLUðhWfc
Þ. Here, Wfc

2 R
p�fc is the

weight matrix related to the fully connected layer.

2.3.4 Output Layer

The output layer takes the input from the fully connected layer and

produces a score using the sigmoid function s.t. PðxÞ ¼ 1
1þe�FcWo .

Here Wo 2 R
fc represents the output weight vector. The score P can

take values between [0, 1], where 0 corresponds to non-

crystallizable and 1 corresponds to crystallizable. Thus, for proteins

which belong to the true positive (TP) set, we ideally want PðxÞ to

be closer to 1, whereas for proteins which belong to the true nega-

tive (TN) set, we ideally want PðxÞ to be closer to 0. For a given pro-

tein sequence, if PðxÞ � 0:5, then that protein is considered to be

crystallizable, otherwise it belongs to the negative class.

2.4 Training procedure
The model is trained to distinguish crystallizable proteins from non-

crystallizable ones, using a weighted binary cross entropy objective:

CE ¼ �
XN
n¼1

aynlnðPðxnÞÞ þ bð1� ynÞlnð1� PðxnÞÞ:

Here xn represents the nth protein sequence and yn is its corre-

sponding crystallizable/non-crystallizable label, N represents the

total number of proteins in the training set, a is inversely

2218 A.Elbasir et al.
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proportional to the fraction of positive class samples and b is in-

versely proportional to the fraction of negative class samples. More

specifically, a ¼ N
Np

and b ¼ N
Nn

, where Np is total number of crystal-

lizable proteins and Nn is the total number of non-crystallizable pro-

teins in the training set, respectively. The weighted binary cross

entropy objective can handle the imbalance in the training set. The

DeepCrystal model is trained for several epochs using the Adam

optimizer (Kingma and Ba, 2015) which depends on several parame-

ters including learning rate, batch size, maximum epochs and early

stopping patience as described in Khurana et al. (2018). During the

training, we integrate the DeepCrystal model with dropouts, i.e. ran-

domly dropping 30% of the weights between every two layers in the

model to reduce the risk of over-fitting (Srivastava et al., 2014).

Dropout also has the effect of preventing co-adaptation between

neurons i.e. the state where two or more neurons learn the same fea-

ture (Vang and Xie, 2017).

2.5 Evaluation metrics
The performance of DeepCrystal was compared with various other

bioinformatics web-servers using quality metrics such as accuracy

and Matthew’s correlation coefficient (MCC) as in Rawi et al.

(2017) and Mall et al. (2018). We assessed several other evaluation

metrics, based on TP, TN, false positives (FP) and false negative

(FN). We highlight that TP represents the set of proteins which are

crystallizable (true label is 1) and are correctly identified by a given

method as crystallizable i.e. PðxÞ � 0:5. Similarly, TN represents the

set of proteins which are non-crystallizable (true label is 0) and are

correctly identified by a given method as non-crystallizable

PðxÞ < 0:5. Based on the same principle, the score distribution for

the FP set represents the score distribution for all proteins whose

true label is 0 but are incorrectly identified as crystallizable. The

score distribution for the FN set represents the score distribution for

all proteins whose true label is 1 but are incorrectly identified as

non-crystallizable. The metrics used for evaluation include:

Accuracy ACCð Þ ¼ ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ

MCC ¼ ðTP� TN � FP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p

Recall RECð Þ ¼ TP

ðTPþ FNÞ

Precision PREð Þ ¼ TP

ðTPþ FPÞ

F� score Fð Þ ¼ 2 � REC � PRE

RECþ PRE

NPV ¼ TN

ðTN þ FNÞ :

2.6 Implementation details
The DeepCrystal model was implemented in Keras version 2.1.2

(Chollet et al., 2015) with a Tensorflow backend (Abadi et al.,

2016). It involved multiple hyper-parameters. These hyper-

parameters were tuned on the validation set (see Section 2.2) using a

grid search procedure. Their optimal values are mentioned below:

1. Embedding dimension: we tested for e 2 f50; 64; 100g and

found that the optimal model performance was obtained at

e ¼ 50.

2. Convolution filters: at the first convolution layer, we chose eight

convolution filters, s.t. f 1
k 2 f2;3; 4; 5; 6;7; 8; 9g. This allowed us

to capture amino acid k-mer frequencies for k-mers of lengths,

k ¼ 2 (dipeptide) to k ¼ 9 (nonapeptide). These k-mers represent

the local contextual ‘biological’ words (Asgari and Mofrad,

2015). For the second convolution layer, the optimal filter sizes

were f 2
k 2 f11;13;15g. This led to inference of interactions be-

tween amino acid k-mers i.e. detect frequencies of local context-

ual biological phrases consisting of two k-mers having same or

Fig. 1. The architecture of proposed DeepCrystal model. The protein sequence x is converted to a sequence of one-hot coded vectors, which are passed to the

embedding layer to get dense continuous embedding matrix E. The first layer of CNN is composed of eight convolution blocks with different filter sizes. The filter

sizes f 1
k 2 f2; 3; 4; . . . ; 9g while q1

k ¼ q is the number of convolution filters. The first layer of CNN seizes information about local contextual words. These are con-

catenated and fed to the second layer of the CNN. The second layer of CNN identifies sets of k-mers i.e. frequent local contextual phrases. The third CNN layer

catches interactions between groups of such k-mer sets. The fully connected layer consists of f c ¼ 256 neurons. The final layer is the output layer which uses the

sigmoid activation function to classify whether a protein sequence can produce diffraction-quality crystals or not
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different k. For example, the second convolution layer could ap-

prehend interactions between two different dipeptides as well as

estimate frequency of a biological phrase comprising a dipeptide

and a tripeptide. Similarly, the optimal filter sizes, f 3
k , based on

validation performance, for convolution layer 3 include {5, 9,

13}.

3. Fully connected layer dimension: we tested for fc 2
f128;256; 512g and for optimal model fc was 256.

4. Learning rate: the learning rate for the Adam optimizer was

0.001.

5. Number of epochs: the maximum number of epochs was set to

300 but we enforced early stoppage if the validation loss func-

tion stopped improving for two consecutive epochs.

6. Batch size: we tested for batch sizes {64, 128, 256}. The optimal

model performance was attained for batch size ¼64.

Due to the random nature of the initialization in a deep learning

framework, 10 models were trained simultaneously. The final

DeepCrystal model used for evaluation purposes is an ensemble

model, which took the average of the scores attained from these

models to generate the final prediction score for a given test protein.

3 Results

We test the predictive performance of DeepCrystal on a fairly bal-

anced test set extracted from the publicly available dataset (Wang

et al., 2014) as described earlier (see Section 2.2). Moreover, we

evaluate the quality of DeepCrystal predictions on two independent

datasets obtained from SwissProt and TrEMBL, namely the SP_final

and the TR_final datasets, respectively. A comprehensive compari-

son of the DeepCrystal model is conducted against state-of-the-art

sequence-based protein crystallization predictors including Crysf,

fDETECT, TargetCrys, Crysalis I, Crysalis II, XtalPred-RF, PPCPred

and CrystalP2. We compare DeepCrystal with Crysf only on the

SP_final and TR_final datasets as Uniprot Ids, an input requirement

for Crysf, are available only for those independent test sets.

3.1 Balanced test set results
On the balanced test set consisting of 1787 proteins (891 crystalliz-

able and 896 non-crystallizable), DeepCrystal achieves a prediction

accuracy of 82.8%. DeepCrystal is at least 2.4% superior w.r.t. ac-

curacy, than its closest competitor, Crysalis II. Crysalis II achieves

an accuracy of 80.4% on the same test set. Moreover, the accuracy

of the DeepCrystal model is at least 18, 20, 5, 17, 15 and 23% better

than fDETECT (64.6%), TargetCrys (62.7%), Crysalis I (77.7%),

XtalPred-RF (65%), PPCPred (67.20%) and CrystalP2 (58.5%), re-

spectively. Similarly, DeepCrystal achieves an MCC value of 0.66

which is at least 5% higher than Crysalis II (0.61), 13% higher than

Crysalis I (0.56) and at least 30% higher other sequence-based

predictors. A detailed comparison of DeepCrystal with these

sequence-based crystallization predictors on several evaluation met-

rics is provided in Table 1. Figure 2a and Table 1 showcase that

DeepCrystal achieves an AUroc of 0.90 on the fairly balanced test

set, which is better than its nearest competitor, Crysalis II (0.89) and

Crysalis I (0.87). Moreover, it is far superior than fDETECT (0.74),

XtalPred-RF (0.71), PPCPred (0.67), TargetCrys (0.64) and

CrystalP2 (0.61) crystallization predictors, respectively.

Furthermore, Table 1 shows that DeepCrystal outperforms previous

predictors’ w.r.t. all evaluation metrics on this test set.

3.2 SP_final dataset results
A second experiment is performed on the reduced SP_final dataset

obtained from SP_Pre dataset (Wang et al., 2017b). Our model out-

performs several state-of-the-art sequence-based crystallization pre-

dictors for the majority of the metrics including F-score, NPV,

Accuracy, AUroc and MCC as depicted in Table 2. DeepCrystal

achieves a prediction accuracy of 75.9%, which is �6% better than

Crysf and �1% better than the closest competitor Crysalis II.

DeepCrystal reaches an MCC value of 0.53 which is 10, 15, 2.5, 8,

13% higher than Crysf (0.426), fDETECT (0.381), Crysalis II

(0.505), Crysalis I (0.448) and PPCPred (0.403), respectively.

Moreover, DeepCrystal can correctly identify crystallizable proteins

Table 1. Prediction performance of DeepCrystal and eight other se-

quence-based protein crystallization predictors on the balanced set

Method Precision Recall F-score NPV Accuracy AUC MCC

fDETECT 0.840 0.36 0.504 0.593 0.646 0.778 0.355

TargetCrys 0.619 0.656 0.637 0.641 0.627 0.637 0.255

Crysalis I 0.799 0.738 0.767 0.758 0.777 0.865 0.556

Crysalis II 0.828 0.767 0.796 0.784 0.804 0.888 0.610

XtalPred-RF 0.645 0.663 0.654 0.655 0.650 0.710 0.301

PPCPred 0.740 0.528 0.616 0.635 0.672 0.754 0.359

CrystalP2 0.568 0.700 0.627 0.613 0.585 0.608 0.177

DeepCrystal 0.851 0.795 0.822 0.809 0.828 0.903 0.658

Note: Bold represents best results.

Fig. 2. Comparison of area under receiver operating curve (AUroc) of DeepCrystal method with state-of-the-art sequence-based crystallization predictors for the

three different test sets. For all these datasets, DeepCrystal easily surpasses all its competitors. (a) AUroc curve for fairly balanced test set, (b) AUroc curve for

SP_final dataset and (c) AUroc curve for TR_final dataset

2220 A.Elbasir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/13/2216/5194339 by guest on 25 O
ctober 2024

Deleted Text: <IMG_FOUND/>
Deleted Text: W
Deleted Text: T
Deleted Text: T
Deleted Text: 2
Deleted Text: W
Deleted Text: equal to 
Deleted Text: T
Deleted Text: S
Deleted Text: R
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: s
Deleted Text: D
Deleted Text: R
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;


with an F-score of 0.788, whereas Crysf obtains an F-score of 0.727,

Crysalis II achieves 0.783, Crysalis I attains 0.763, CrystalP2 man-

ages 0.734, whereas PPCPred and fDETECT methods reach a mea-

ger F-score of 0.675 and 0.580, respectively as shown in Table 2.

Although, fDETECT attains highest precision (0.913) and CrystalP2

achieves highest recall (0.756) values on SP_final dataset, it comes at

the expense of very low recall (0.425) or its inability to correctly

identify crystallizable proteins in the case of fDETECT and low pre-

cision (0.713) or inability to distinguish non-crystallizable proteins

from crystallizable ones in the case of CrystalP2. Methods like

DeepCrystal, Crysalis I and II maintain both high precision and re-

call, hence the relatively high F-score.

The performance of DeepCrystal w.r.t. AUroc and AUpr curves

is the best as illustrated in Figures 2b and 3b as well as in Table 2.

DeepCrystal achieves an AUroc of 0.874. This is 6.3% higher than

Crysf, 3.7% higher than fDETECT, 2.3% higher than Crysalis II

(0.851), 4% higher than Crysalis I (0.835) and 9% higher than

PPCPred (0.784). The SP_final test set comprises 237 protein

sequences with very little sequence similarity with the training set

and DeepCrystal method outperforms majority of the sequence-

based predictors on most of the evaluation metrics highlighting its

effectiveness for crystallization propensity prediction.

3.3 TR_final dataset results
We perform a final experiment to test for crystallization propensities

of proteins using state-of-the-art crystallization tools and DeepSol

on the TR_final dataset (Wang et al., 2017c). DeepCrystal achieves

a prediction accuracy of 84.1%, which is same as Crysf (84.1%),

but better than fDETECT (75.0%), Crysalis II (81.6%), Crysalis I

(78.7%) and PPCPred (74.8%) as specified in Table 3. Moreover,

DeepCrystal is the best method w.r.t. F-score, NPV and AUroc qual-

ity metrics. It obtained a F-score of 0.781, which is higher than

Crysf, fDETECT, TargetCrys, Crysalis II, Crysalis I, XtalPred-RF,

PPCPred and CrystalP2 by 3.4, 23.3, 16.7 3.3, 6.6, 32.9, 14 and

20.4%, respectively. In terms of AUroc metric, DeepCrystal is super-

ior than all the previous predictors (see Fig. 2c attaining an AUroc

value of 0.91). This is 2.3% higher than Crysf (0.887), 6.3% higher

than fDETECT, 1.8% higher than Crysalis II (0.892), 4% higher

than Crysalis I (0.84) and 9.1% better than PPCPred (0.819).

However, Crysf is the best method w.r.t. the precision, AUpr and

MCC metrics and TargetCrys is the best method w.r.t. recall on this

test set.

On the TR_final dataset which consists of 1012 proteins (far

more than SP_final test set), Crysf is competitive with DeepCrystal

w.r.t. several evaluation metrics. However, DeepCrystal is far super-

ior to other state-of-the-art sequence-based crystallization predictors

for the majority of the evaluation metrics as depicted in Table 3.

3.4 Sequence length versus prediction scores
We performed an additional experiment illustrating how the crystal-

lization propensity varies with the length of protein sequence (see

Fig. 4). We combined the protein sequences in the three test sets

to build one large test dataset. This large test set was divided

into bins which are defined as intervals B ¼ f½1;99�; ½100; 199�;
½200;299�; ½300; 800�g. Each protein from the test set was assigned

to one of the Bi’s, i ¼ 1; . . . ; 4 s.t. L 2 Bi. Figure 4a and b depicts the

score distribution for proteins which are predicted to be crystalliz-

able and non-crystallizable respectively by several state-of-the-art

Table 2. Prediction performance of DeepCrystal on the SP_final

dataset and its comparison with other protein crystallization

predictors

Method Precision Recall F-score NPV Accuracy AUC MCC

Crysf 0.840 0.641 0.727 0.572 0.700 0.811 0.426

fDETECT 0.913 0.425 0.580 0.494 0.616 0.837 0.381

TargetCrys 0.729 0.601 0.659 0.486 0.611 0.641 0.223

Crysalis I 0.826 0.709 0.763 0.609 0.725 0.835 0.448

Crysalis II 0.856 0.722 0.783 0.633 0.751 0.851 0.505

XtalPred-RF 0.564 0.533 0.548 0.288 0.451 0.449 0.149

PPCPred 0.863 0.554 0.675 0.535 0.666 0.784 0.403

CrystalP2 0.713 0.756 0.734 0.550 0.658 0.696 0.257

DeepCrystal 0.876 0.716 0.788 0.637 0.759 0.874 0.53

Fig. 3. Comparison of area under precision-recall curve (AUpr) of DeepCrystal method with state-of-the-art sequence-based crystallization predictors for the three

different test sets. DeepCrystal is competitive with all the state-of-the-art bioinformatics tools for crystallization prediction. (a) AUpr curve for balanced test set,

(b) AUpr curve for SP_final dataset and (c) AUpr curve for TR_final dataset

Table 3. Prediction performance of DeepCrystal on the TR_final

dataset and its comparison with other protein crystallization

predictors

Method Precision Recall F-Score NPV Accuracy AUC MCC

Crysf 0.918 0.631 0.747 0.817 0.841 0.887 0.663

fDETECT 0.823 0.411 0.548 0.733 0.75 0.847 0.447

TargetCrys 0.503 0.788 0.614 0.814 0.634 0.693 0.325

Crysalis I 0.707 0.724 0.715 0.836 0.787 0.87 0.546

Crysalis II 0.756 0.74 0.748 0.849 0.816 0.892 0.603

XtalPred-RF 0.39 0.537 0.452 0.651 0.451 0.525 0.04

PPCPred 0.677 0.606 0.64 0.782 0.748 0.819 0.448

CrystalP2 0.460 0.775 0.577 0.78 0.581 0.673 0.241

DeepCrystal 0.800 0.762 0.781 0.864 0.841 0.910 0.657
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sequence-based crystallization predictors including fDETECT,

Crysalis I, Crysalis II, PPCPred, CrystalP2 and compare them with

the predicted score distributions of DeepCrystal.

From Figure 4a, we observe a general monotonically decreasing

trend in the score distribution as the sequence length increases. This

suggests that it gets more and more difficult to accurately identify

proteins which will produce diffraction-quality crystals as the size of

the protein sequence increases. For Crysalis I, the median scores for

B1, B2, B3 and B4 for the TP set are 0.66, 0.59, 0.56 and 0.53, re-

spectively. Similarly, for Crysalis II, the median scores for B1, B2, B3

and B4 are 0.58, 0.54, 0.52 and 0.52. Since, in our problem formula-

tion, we assigned a label of 1 for proteins which can produce

diffraction-quality crystals, we want scores for the proteins in the

TP set to be as close as possible to 1. In the case of DeepCrystal, the

median scores for Bi, i ¼ f1;2; 3; 4g (TP set) are 0.75, 0.72, 0.66

and 0.64, respectively. A similar trend is observed for PPCPred

which achieves median scores (TP set) of 0.77, 0.68, 0.62 and 0.61,

respectively, for the four different intervals in which proteins

sequences are divided. However, the trend is not so obvious in the

case of the median score of the proteins in the TP set for fDETECT

and CrystalP2 technique.

Figure 4a highlights that DeepCrystal has higher median scores

for the TP set in the case of all sequence length ranges except B1, in

which case PPCPred is better. Moreover, when comparing the differ-

ence between the median score of TP set with the median score of

FP set for each Bi, DeepCrystal has the maximum difference for B2

(0.05), B3 (0.06) and B4 (0.035), whereas fDETECT has largest dif-

ference in the case of B1 (0.085). This suggests that DeepCrystal has

the highest confidence (among all the sequence-based crystallization

predictors) in its prediction when it suggests a protein will produce

diffraction-quality crystals for protein sequences with L > 100.

From Figure 4b, we observe a monotonically increasing trend in

the score distribution for the TN set as the sequence length increases

for both Crysalis I and Crysalis II. This depicts that for these meth-

ods it becomes increasingly difficult to correctly identify proteins

that cannot produce diffraction-quality crystals as the length of the

protein sequence increases. Moreover, a reverse trend is observed

for the fDETECT and PPCpred methods i.e. the score distribution

for the TN set increases as sequence length increases suggesting it

becomes relatively easier for these methods to correctly identify

non-crystallizable proteins as the length of the sequence increases.

However, the trend is not so apparent for DeepCrystal and

CrystalP2 methods. In our problem formulation, we assigned a label

of 0 for proteins that cannot produce diffraction-quality crystals,

therefore we want predicted scores for the TN set to be as close as

possible to 0. From Figure 4b, it is apparent that DeepCrystal has

the lowest median scores (TN set) 0.09, 0.08, 0.17 and 0.11 for B1,

B2, B3 and B4, respectively. Moreover, DeepCrystal’s median scores

for the FN set are comparable to those obtained the from fDETECT

and PPCPred techniques for intervals B2, B3 and B4. This portrays

that DeepCrystal is the most confident method among all the

sequence-based crystallization predictors when it predicts that a pro-

tein sequence will not crystallize, given the sequence length L > 100.

4 Experimental case study: X-ray diffraction
analysis of HMG domain of Sox17 mutant

Sox transcription factors plays a vital part in the determination of

cell fate, consisting of highly conserved HMG domains (�70–80

amino acids), known for binding and bending the DNA. Sox17 is a

member of Sox family transcription factors and is involved in endo-

dermal differentiation in early mammalian development. A single

mutation in Sox17 (Sox17EK) switches its molecular function into a

pluripotency reprograming factor analogous to Sox2 (Jauch et al.,

2011; Kolatkar et al., 2016). In this study, we showcase the X-ray

diffraction analysis of the HMG domain of Sox17 mutant

(Sox17EK) complexed with DNA.

The mSox17EK-HMG protein was over-expressed and purified

(Ng et al., 2008; Vivekanandan et al., 2015) and the crystallization

trials were set-up using the sitting drop vapor diffusion method for

homogeneously purified mSox17EK-HMG with Lama1 DNA

Fig. 4. Comparison of score distributions for the TP, FP, TN and FN sets of DeepCrystal method with state-of-the-art sequence-based crystallization predictors

on a combined set of the three different test sets. From (a), it can be observed that median prediction score of DeepCrystal for the TP set is higher (should ideally

be closer to 1) than other sequence-based crystallization predictors for various sequence length ranges and is comparable to PPCPred for L 2 ð0; 100�. Similarly,

(b) depicts that median prediction score of DeepCrystal for the TN set is lower (should ideally be closer to 0) than other tools for different sequence length ranges.

Hence DeepCrystal is more confident than state-of-the-art sequence-based crystallization predictors for both correct identification of proteins producing diffrac-

tion-quality crystals, and non-crystallizable proteins. (a) True positive (TP) and false positive (FP) score distributions for various sequence length ranges. (b) True

negative (TN) and false negative (FN) score distributions for various sequence length ranges
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varying length and overhangs (see Supplementary Table S1). The

mSox17EK-HMG protein sequence was provided to the

DeepCrystal model which predicted that the protein would produce

diffraction-quality crystals with a confidence score of 0.633.

To complement that, good diffraction-quality crystals of the

complex (see Fig. 5a) were attained under the following conditions:

0.2 M ammonium sulfate, 30% PEG 4000, 0.1 M Tris pH 8.6 (see

Supplementary Table S2). The optimized crystals of the mSox17EK-

HMG-Lama1 DNA complex diffracted down to 3 Å (see Fig. 5b)

and the crystals belonged to the Orthorhombic space group P212121

with unit-cell parameters a ¼ 71.040 Å, b ¼ 73.205 Å,

c ¼ 81.952 Å. Crystal packing parameters revealed that two

mSox17EK-HMG-Lama1 DNA complex per asymmetric unit with

Matthew’s coefficient of 2.69 Å3Da�1 and a solvent content of

59.16% (Matthews, 1968). The X-ray data collection and process-

ing statistics are presented in Supplementary Table S3. Initial phase

determination was attempted using molecular replacement with

mSox17-HMG-DNA complex (PDB code: 3F27; Palasingam et al.,

2009) as a starting model using Phaser program (McCoy et al.,

2007) implemented in CCP4 suite (Winn et al., 2011). Further

model building and refinement of the structure are still in progress.

Additional details about the experimental settings and parameters

are in the Supplementary Material.

5 Discussion

In this paper, we propose DeepCrystal, a deep learning framework

for sequence-based protein diffraction-quality crystal prediction.

The main objective is to learn discriminative features from raw pro-

tein sequences using deep CNNs distinguishing crystallizable pro-

teins from non-crystallizable ones without the need to manually

engineer biological and physiochemical features. To the best of

our knowledge, this is the first attempt using deep learning to pre-

dict crystallization propensities of proteins from raw sequence

information.

The state-of-the-art crystallization predictor (Kurgan and

Mizianty, 2009; Wang et al., 2016, 2017a) extracts several features

and uses a two-stage classifier with a feature selection stage to build

its classifier. However, DeepCrystal is a single stage classifier, which

relies on the features generated by CNNs to classify proteins as crys-

tallizable or non-crystallizable. The CNN framework captures

frequent amino acid k-mers in the input protein sequence using a set

of parallel convolution filters of varying sizes to capture ‘biological

words’ (Asgari and Mofrad, 2015). Moreover, all the previous

methods have some limitation in calculating k-mers when k is large,

while using the CNN design provides us the freedom of calculating

the local dependencies with different filter sizes. Furthermore,

DeepCrystal integrates different convolution blocks with different

filter sizes, thereby, easily capturing sets of frequently co-occurring

k-mers or ‘biological phrases’ at the second CNN layer. It can inher-

ently capture the non-linear relationships between the local context-

ual feature vector and the dependent vector (diffraction-quality

crystal classification), while preventing over-fitting using dropout

on the weights, leading to good generalization performance. It over-

comes the limitations faced by two-stage classifiers which have a

separate step for feature selection.

However, unlike conventional machine learning classifiers such

as support vector machines (SVM) (Cortes and Vapnik, 1995),

Random-Forests (RF) (Breiman, 2001) and gradient boosting

machines (GBM) (Friedman, 2001) which are less complex and

more interpretable when working on explicit sequence-derived fea-

tures, DNNs are more complex, prone to over-fitting and have

little interpretability. DNN frameworks are often subject to over-

fitting i.e. they achieve high performance on training set but cannot

attain high performance on unseen test proteins referred as memor-

ization. This can however, be overcome by adding regularization

in the form of dropouts. It was shown recently (Vang and Xie,

2017) that dropout has the effect of preventing co-adaptation be-

tween neurons i.e. the state where two or more neurons learn

the same feature. Furthermore, the main disadvantage of DNNs is

the lack of interpretability. Given the input protein sequence, it is

important to know that what set of features play a primary role

in distinguishing crystallizable proteins from non-crystallizable

ones. Methods based on RF, GBM and SVMs can obtain a ranked

set of important biochemical features, which currently remains

a limitation for DNN models. This issue has recently received

some attention (Zhang and Zhu, 2018) with proposal of techniques

such as Attention Mechanism (Vinyals et al., 2015), back-

propagation and focus on activation differences (Shrikumar et al.,

2017) to identify which sets of amino acid residues in the protein se-

quence are playing a major role to predict the crystallization propen-

sity score.

Fig. 5. Diffraction-quality crystals for mSox17EK-HMG protein, which DeepCrystal classified as crystallizable with a score of 0.633. (a) Crystals of mSox17EK-

HMG-Lama1 DNA complex. (b) X-ray diffraction pattern of mSox17EK-HMG-Lama1 DNA crystal at 3 Å
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Our experimental case study on X-ray crystallization analysis of

the HMG domain mutant for Sox transcription factor was moti-

vated by the fact that DeepCrystal predicted that Sox17EK-HMG

protein sequence can produce diffraction-quality crystals with a

score of 0.633. We tested the predictive capability of DeepCrystal

for several other Sox full length and Sox HMG domains. We com-

pared the predicted scores of DeepCrystal with that of fDETECT,

TargetCrys, Crysalis I, Crysalis II, PPCPred and CrystalP2 as shown

in Table 4.

From Table 4, we can observe that all sequence-based protein

crystallization tools predicted that Sox9 and Sox17 full length pro-

tein sequences do not produce diffraction-quality crystals. There is

no evidence in literature indicating that the full length sequence of

these transcription factors can provide diffraction-quality crystals.

However, it was recently shown in Vivekanandan et al. (2015) that

Sox9 HMG domain can produce diffraction-quality crystals.

Similarly, it was shown in Palasingam et al. (2009) that Sox17

HMG domain sequence can also produce diffraction-quality crys-

tals. Notably, whenever a protein sequence can produce diffraction-

quality crystals, the predictive score i.e. the confidence of

DeepCrystal is much higher than that of all the other sequence-

based predictors as observed from Table 4 and Figure 4. Moreover,

DeepCrystal and Crysalis II are the only methods which could cor-

rectly identify that both Sox9 and Sox17 full length proteins are not

crystallizable and Sox9 HMG, Sox17 HMG and Sox17EK HMG

can produce diffraction-quality crystals. But methods like

fDETECT, PPCPred and TargetCrys have much lower score for

Sox9 and Sox17 full length proteins indicating they are more confi-

dent in their prediction that these proteins will not crystallize.

Lastly, DeepCrystal was more confident than other crystallization

tools to estimate that Sox17EK HMG protein sequence would pro-

duce diffraction-quality crystals, which we further validated through

our experimental X-ray diffraction analysis.

DeepCrystal outperforms on aggregate various state-of-the-art

methods w.r.t. evaluation metrics such as MCC, recall, AUroc and

NPV on the three independent test sets but there can always be pro-

tein sequences where other sequence-based predictors (like

fDETECT, TargetCrys) can have better predictive capability (for

Sox9 and Sox17 full length). Finally, DeepCrystal can evaluate

many constructs of a given protein sequence for crystallization pro-

pensity in a short span of time. This is further highlighted in

Supplementary Figure S2. This may empower crystallographers by

allowing them to utilize their domain knowledge to select certain

constructs from the given protein sequence to test for diffraction-

quality crystals.
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