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Abstract

Motivation: Determining the structures of proteins is a critical step to understand their biological functions.
Crystallography-based X-ray diffraction technique is the main method for experimental protein structure determin-
ation. However, the underlying crystallization process, which needs multiple time-consuming and costly experimen-
tal steps, has a high attrition rate. To overcome this issue, a series of in silico methods have been developed with
the primary aim of selecting the protein sequences that are promising to be crystallized. However, the predictive per-
formance of the current methods is modest.

Results: We propose a deep learning model, so-called CLPred, which uses a bidirectional recurrent neural network
with long short-term memory (BLSTM) to capture the long-range interaction patterns between k-mers amino acids
to predict protein crystallizability. Using sequence only information, CLPred outperforms the existing deep-learning
predictors and a vast majority of sequence-based diffraction-quality crystals predictors on three independent test
sets. The results highlight the effectiveness of BLSTM in capturing non-local, long-range inter-peptide interaction
patterns to distinguish proteins that can result in diffraction-quality crystals from those that cannot. CLPred has been
steadily improved over the previous window-based neural networks, which is able to predict crystallization propen-
sity with high accuracy. CLPred can also be improved significantly if it incorporates additional features from pre-
extracted evolutional, structural and physicochemical characteristics. The correctness of CLPred predictions is fur-
ther validated by the case studies of Sox transcription factor family member proteins and Zika virus non-structural
proteins.

Availability and implementation: https://github.com/xuanwenjing/CLPred.

Contact: jxwang@mail.csu.edu.cn or yaohang@cs.odu.edu

1 Introduction

Protein crystallography is increasingly favored by the majority of
researchers because protein structure analysis is the basis of protein
functional research (Bethel and Lieberman, 2014), disease treatment
(Xue et al., 2013) and drug design (Chen and Yu, 2013; Cordeiro
and Speck-Planche, 2012). At present, about 80–90% of the known
protein three-dimensional structures are obtained using X-ray dif-
fraction (XRD) analysis technology. XRD determines the three-
dimensional coordinates of heavy atoms in protein molecules within
certain resolution by measuring the spatial distribution of electron
density in protein crystals. To determine the 3D structures of pro-
teins by XRD, forming protein crystals suitable for structural ana-
lysis is crucial. The experimental process of obtaining protein
crystals consists of multiple costly and time-consuming steps, includ-
ing selection, cloning, expression, purification and crystallization.
Over 60% of the structure determination costs are consumed by un-
successful attempts (Kurgan and Mizianty, 2009; Service, 2005).
Only �2 to 10% of protein targets produce high-resolution protein
structures (Slabinski et al., 2007a,b) and �4.6% of targets produce
diffraction-quality crystals (Jahandideh et al., 2014). Crystallization

is characterized by a significant rate of attrition and is among the
most complex but poorly understood problems in structural biology
(Kurgan and Mizianty, 2009), which provides motivation for further
research of this field. Researchers consider the intrinsic factor that
affects the success rate of protein crystallization is the crystallinity of
the protein itself (Sánchez-Puig et al., 2012). If there is a prediction
method that can predict the crystallinity of a protein with satisfac-
tory accuracy, it will enable rapid in silico screening target proteins
that are predicted to have lower crystallization propensity, and con-
sequently, trial-and-error settings and costs of protein structure ana-
lysis will be significantly reduced. Several investigations suggested
that the features derived from protein sequences could be used for
predicting crystallization propensity (Canaves et al., 2004; Goh
et al., 2004). Therefore, it is of a great need to develop highly accur-
ate in silico methods to distinguish proteins that can lead to
diffraction-quality crystals from those that cannot, based on their
sequences and characteristics before crystallization experiments.

In recent years, a series of prediction models and statistical me-
thods for protein crystallization propensity, which use sequence-
derived or secondary structural properties, have been developed.
CrystalP2 (Kurgan et al., 2009) breaks the limitation of its
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predecessor version CrystalP (Chen et al., 2007) to predict only
short-chain proteins. It is a kernel-based method that considers a
large number of input features including composition and colloca-
tion of amino acids (AAs), pI and hydrophobicity. PPCpred
(Mizianty and Kurgan, 2011), based on a Support Vector Machine
(SVM) model, is the first one by integrating sequence-derived fea-
tures with structural features to predict protein production, purifica-
tion, crystallization and production of diffraction-quality crystals as
the four-stop states. Inspired by PPCpred, a two-layer SVM predict-
or PredPPCrys (Wang et al., 2014) is developed using a set of com-
prehensive and multifaceted sequence-derived features, which has
better prediction performance than the single-layer SVM. XtalPred–
RF (Jahandideh, et al., 2014) improves XtalPred (Slabinski et al.,
2007a,b) using a simple statistical analysis of the physicochemical
features of a protein and then applying a random forest model to se-
lect additional features, such as predicted surface ruggedness, hydro-
phobicity, side-chain entropy of surface residues and amino acid
composition of the predicted protein surface. TargetCrys (Hu et al.,
2016) is a two-layer SVM predictor that takes advantage of multi-
view protein features. Crysf (Wang et al., 2018) exploits the
UniProt-derived functional annotations to predict the crystallization
propensity of proteins, but its performance is limited by the proteins
available in UniProt. fDETECT (Meng et al., 2017) uses the logistic
regression model to predict four-stop states with the advantages of
less computational time and more accuracy. The majority of these
tools perform a two-stage classification using a plethora of
sequence-based features: (i) performing feature selection and engin-
eering using additional tools; and (ii) feeding the selected features to
the machine learning algorithms for classification. These computa-
tional methods and tools not only lead to performance improve-
ment, but also promote the understanding of protein crystallization.

In recent years, deep learning makes significant contributions to
the field of bioinformatics. Recent work (Elbasir et al., 2019a,b)
shows that using deep learning to extract features often achieves bet-
ter results compared to its closest machine learning competitors.
The majority of these deep learning algorithms rely on features
extracted from raw sequences. The study (Elbasir et al., 2019a,b)
builds a convolutional neural network (CNN) (LeCun et al., 1998)
to extract features such as frequency sets of amino acid k-mers and
k-mers information. Studies in protein secondary structure show
that the types of neighboring residues play a predominant role in the
secondary structure conformation that a residue adopts. In particu-
lar, residues in contacting parallel or antiparallel b-sheets are con-
nected by hydrogen bonds in alternative positions. The hydrogen
bonds between residues at positions i and iþ3, i and iþ4 and i and
iþ5 lead to the formation of 3–10 helices, a-helices and p-helices,
respectively (Li et al., 2011). Certain k-mers form structural key-
words that can effectively distinguish between major protein folds
(Elhefnawy et al., 2019). CNN can often effectively capture such
local motif patterns between interactions of k-mers, but have diffi-
culty in learning high-order, long-range interactions of k-mers,
which are essential to form stable spatial structures. Mining the
long-range peptide-peptide interactions in proteins (i.e. non-local,
remote interactions between k-mers) is critical to solve the riddle of
protein crystallization propensity prediction.

In this study, we build a deep learning network to extract global
interaction patterns, improving over the traditional window-based
neural network. CNN is a feed-forward neural network, which can
effectively capture non-linear spatial information in image classifica-
tion and other computer vision problems (Szegedy et al., 2015).
Moreover, it has also achieved promising results in many natural
language processing (NLP) tasks. CNN is often used to capture local
patterns, but have difficulty in learning long-range interactions in-
formation. In contrast, recurrent neural network (RNN) is usually
effective in solving this problem. Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) is a special RNN designed to
address vanishing gradient problem, so that the network is able to
learn over hundreds of time steps. LSTM has a designed memory
sub-architecture called ‘memory cell’ to store non-decaying informa-
tion, which is realized by volume-conserving mappings constructed
through a linear unit with a weight one self-recurrent connection. It

performs well in machine translation (Sutskever et al., 2014) and
speech recognition (Graves and Jaitly, 2014) as well as the predic-
tion of protein secondary structure based on protein sequence
(Sønderby and Winther, 2014).

In this article, we propose CLPred, a deep learning framework
protein crystallization prediction only based on sequence informa-
tion. It first takes a raw protein sequence as input and converts the
amino acids into word vector representation through a word embed-
ding layer. Then the word vectors are passed to a CNN layer whose
goal is to capture the high-frequency k-mers features. Finally, the k-
mers features are supplied to an LSTM layer, which uses feed-
forward neural networks for concatenation of predictions from the
forward and backward networks in the bidirectional model to cap-
ture the long-range interactions information between k-mers amino
acids and generate predictions. The key amino acids and tripeptides
influencing protein crystallization are obtained by analyzing the fea-
ture vectors. CLPred can be improved significantly if it incorporates
additional features. In addition, the correctness of our CLPred
predictions is further validated by the case studies of Sox transcrip-
tion factor family member proteins and Zika virus non-structural
proteins.

2 Materials and methods

2.1 Data preparation
We use four datasets in this work, including a training set and three
test sets. The training set and one of the test sets are obtained from
DeepCrystal (Elbasir et al., 2019a,b). It was originally generated by
Wang et al. (2014), including five categories: diffraction-quality
crystal, protein cloning failure, protein material production failure,
purification failure and crystallization failure. In Elbasir et al.
(2019a,b), diffraction-quality crystal is treated as a positive class
and the remaining four are combined as a single negative class. Then
it exploits the CD-HIT (Fu et al., 2012) method to remove sequences
from the training set which have over 25% sequence identity with
the test set. For sequences with length less than 800, zero padding is
applied to make all input sequences have equal lengths of 800.
Finally, the dataset is randomly divided into two disjoint parts: a
training set with 26 821 sequences (4420 crystallizable and 22 401
non-crystallizable) and a test set with 1787 sequences (891 crystal-
lizable and 896 non-crystallizable). We also remove sequences from
the training set with over 25% sequence identity to Sox9, Sox17 and
Zika proteins for our case studies. We name the test set ‘DC_final’
since it is obtained from DeepCrystal.

In addition, we adopt two other independent test sets named
‘SP_final’ and ‘TR_final’ from BCrystal (Elbasir et al., 2020) for fur-
ther verification. These two test sets are first extracted from
‘SP_test_nr’ and ‘TR_test_nr’ (Wang et al., 2018), which have 604
and 2521 protein sequences, respectively. Since ‘SP_test_nr’ and
‘TR_test_nr’ are derived from TargetTrack (Kouranov, 2006), they
may overlap with the training set. Elbasir et al. (2020) use CD-HIT
method to remove sequences from ‘SP_test_nr’ and ‘TR_test_nr’
with over 25% sequence identity to the training set. Sequences with
length over 800 are also removed. The post-processed ‘SP_test_nr’
and ‘TR_test_nr’ datasets are named ‘SP_final’ and ‘TR_final’,

Table 1. Statistics for training and testing sets

Dataset No. of

crystallizable

No. of

uncrystallizable

Total

Training set

(Elbasir et al., 2019a,b)

4420 22 401 26 821

DC_final

(Elbasir et al., 2019a,b)

891 896 1787

SP_final (Elbasir et al., 2020) 148 89 237

TR_final (Elbasir et al., 2020) 374 638 1012
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respectively. Moreover, we remove the N-terminal hexaHis tag
(MGHHHHHHSH) and the C-terminal LEHHHHHH tag pre-
sented in some sequences. These tags are not part of the original pro-
tein sequences, but are added artificially to ease purification
(Gräslund et al., 2008). Detailed statistics information of the above
four datasets is listed in Table 1.

2.2 Model architecture
The protein crystallization prediction is a binary classification
problem. For an input protein sequence, the corresponding crystal-
lization score in range [0, 1] is predicted. As shown in Figure 1,
CLPred obtains the raw sequence from input, transforms k-mers
amino acids into word vector representation through the embedding
layer, then respectively extracts high-frequency k-mers features and
long-range interaction features through CNN and BLSTM layers,
and thus completes end-to-end protein diffraction-quality crystals
prediction. Our model architecture including features embedding
and various layers are described next.

The embedding layer in CLPred transforms the discrete amino
acid sequence encoding into a dense, continuous vector representa-
tion. Compared to the one-hot representation, which is sparse,
the embedding layer has the advantage of dimension reduction
while preserving the important physicochemical properties of amino
acids in a protein sequence (Vang and Xie, 2017). In the embed-
ding layer, the input of a protein sequence is encoded as
X ¼ x1; x2; . . . ; xLð Þ; xi 2 f0; 1; . . . ; 21g, where 1–20 represent
the types of amino acids in alphabet order, gaps are filled with
0 s, ambiguous or unknown amino acids are denoted as 21, and
L ¼ 800 is the fixed length. The embedding algorithm learns a
feature matrix, which is denoted by We 2 R

22 � 50, where 22 is the

number of input types and 50 is the embedding dimension. The ma-
trix represents the dense representation of each amino acid. We is
initialized randomly and trained along with the whole network.
By looking up We, the embedding layer outputs a feature map
Fe 2 R

L � 50.
After the embedding layer, the protein sequence is encoded into

a dense, continuous vector representation Fe and fed to the CNN
layer. Inspired by previous work (Elbasir et al., 2019a,b), we con-
struct a multi-layer multi-scale one-dimensional convolution module
but with certain adjustments. Our convolution module consists of
two CNN layers. The first CNN layer contains eight kernels as
shown in Figure 1(b). The variational size of the convolution filter
is designed to capture k-mers amino acid fragments, where k
ranges from two (a dipeptide) to nine (a non-apeptide). The second
layer is composed of three kernels, which is represented as
fKn

j gn ¼ 1;2;3; j ¼ 5;9;13
, where n is the nth kernels and j is the corre-

sponding kernel size. The kernel size is equal to the size of a convo-
lutional window across j characters and the parameters are tuned
according to training and validation. An intermediate feature map
Fi

m in CNN layer with respect to the ith kernel is extracted as

Fi
m ¼ ReLU Conv Fe;K

i
� �� �

;

where ReLU is the rectified linear unit activation function and Conv
denotes the convolution operation (Krizhevsky et al., 2012; LeCun
et al., 2015; Nair and Hinton, 2010).

After obtaining an intermediate convolution feature map Fi
m,

average pooling operation is used to down-sample the latent repre-
sentation by taking the average value over the sub-regions of the
CNN layer outputs, which is helpful to maintain the integrity of in-
formation and facilitate the subsequent extraction of global features.

Fig. 1. The architecture of CLPred. (a) The overall workflow of CLPred. (b) The architecture of the CNN module. (c) BLSTM module. The discrete raw sequence is trans-

formed into a dense, continuous vector through feature embedding and then fed into the CNN layer with multi-scale convolution kernels to capture local amino acid k-mers

features. The extracted characteristic map of the CNN layer is passed to BLSTM concatenating the forward and backward information to capture the long-range interaction

characteristics between k-mers. Finally, all the BLSTM outputs are passed to the fully connected layers to produce protein crystal prediction scores
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After average pooling, the outputs from all the kernels are concaten-
ated for another average pooling operation to generate the feature
map Fc for the next layer. The overall generation of the feature map
Fc is formulated as follows:

Fc ¼ AvgPoolingðConcatðAvgPoolingðFi
mÞÞÞ;

where AvgPooling and Concat are the average pooling and the con-
catenation operations, respectively.

A multi-layer Bidirectional LSTM (BLSTM) module is designed
following the CNN and pooling layers, as shown in Figure 1(c).
CLPred has three BLSTM layers. Each direction in the BLSTM con-
sists of 200 time step nodes while each time step is composed of 128
hidden units. Fully connected neurons in the network are activated
by ReLU. We adopt 0.5 dropout rates to prevent overfitting and co-
adaptation (Hinton et al., 2012). The BLSTM layer ht ¼ ½~ht : ht

 
�

concatenates the forward LSTM unit ~ht and backward LSTM unit
ht

 
to obtain the characteristic representation of the long-range inter-

action information between the amino acids k-mers.
The output of the LSTM layer is flattened to a one-dimensional

array and then fed into a fully connected layer with 256 hidden neu-
rons using a ReLU activation function. Finally, the prediction score
is generated by a fully connected output layer with a softmax activa-
tion function:

rðzÞj ¼
ezj

ez1 þ ez2
;

where rðzÞj is the probability value of the jth element.

2.3 Model training
We use 10-fold cross-validation to train 10 models, respectively.
The protein sequences are randomly divided into 10 disjoint parts.
Alternatively, nine parts serve the purpose of training and the rest
is used for validation. The final results are reported by taking ad-
vantage of the 10 models. The Adam (Adaptive moment estima-
tion) optimizer (Kingma and Ba, 2014) is adopted for model
training. Validation sets are used to allow early stop during train-
ing to prevent the network from overfitting. It is important to note
that there are approximately five times more uncrystallizable pro-
teins than the crystallizable proteins in our training set, which leads
to an imbalance training problem. To address this issue, in the
training of each fold, we randomly down sample all negative
sequences to the number approximately the same as the positive
ones. The negative sequence down sampling step is repeated in
each epoch.

CLPred is implemented using Google’s open source TensorFlow
library (Abadi et al., 2016). To speed up the training, we
use the GPU version of TensorFlow to train on the Nvidia Titan
X GPU.

2.4 Evaluation strategies
We use multiple evaluation indicators including the area under
the curve (AUC), accuracy (ACC), Recall (REC), Precision (PRE),
F-score, NPV and Matthews correlation coefficient (MCC)
(Matthews, 1975) as the measures to evaluate the predictive per-
formances of the protein crystallization predictors. The AUC value
quantifies the area under the receiver operating characteristic curve
(ROC) by plotting the true-positive rates against the false-positive
rates. Matthews Correlation Coefficient (MCC) takes true positive
(TP), true negative (TN), false positive (FP) and false negative (FN)
into account. The evaluation indicators used in the article are sum-
marized as follows:

MCC ¼ ðTP� TN� FP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � ðTNþ FNÞ

p ;

ACC ¼ ðTPþ TNÞ
ðTPþ TNþ FPþ FNÞ ;

REC ¼ TP

ðTPþ FNÞ ; PRE ¼ TP

ðTPþ FPÞ ;

F� score ¼ 2�REC�PRE

ðRECþ PREÞ ;

NPV ¼ TN

TNþ FN
:

3 Results and discussions

3.1 Performance of the CLPred on three benchmark

datasets
We evaluate the predictive performances of five sequence-based pro-
tein crystallization predictors, including DETECT, TargetCrys,
PPCPred, CrystalP2 and DeepCrystal. The prediction results on
DC_final, SP_final and TR_final are shown in Tables 2–4, respect-
ively. One can find that CLPred outperforms the predictors when
performance is measured by Accuracy, AUC, Recall, F-score, NPV
and MCC. When measured by prediction precision, CLPred
is slightly inferior to DeepCrystal, fDETECT and DeepCrystal/

Table 2. Performance comparison of the available predictors evaluated

on the DC_final dataset

Method Accuracy AUC Precision Recall F-score NPV MCC

fDETECT 0.650 0.782 0.841 0.367 0.597 0.597 0.360

TargetCrys 0.628 0.638 0.620 0.653 0.636 0.636 0.256

PPCPred 0.672 0.754 0.740 0.528 0.616 0.635 0.359

CrystalP2 0.586 0.607 0.570 0.696 0.627 0.612 0.178

DeepCrystal 0.799 0.915 0.885 0.685 0.772 0.744 0.613

CLPred 0.851 0.928 0.849 0.852 0.850 0.852 0.700

Note: Bold represents best results.

Table 3. Performance comparison of the available predictors evaluated

on the SP_final dataset

Method Accuracy AUC Precision Recall F-score NPV MCC

fDETECT 0.616 0.837 0.913 0.426 0.581 0.494 0.382

TargetCrys 0.608 0.642 0.727 0.595 0.654 0.483 0.217

PPCPred 0.666 0.784 0.863 0.554 0.675 0.535 0.403

CrystalP2 0.654 0.697 0.711 0.750 0.730 0.543 0.249

DeepCrystal 0.683 0.866 0.910 0.547 0.684 0.547 0.457

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599

Note: Bold represents the best result.

Table 4. Performance comparison of the available predictors evaluated

on the TR_final dataset

Method Accuracy AUC Precision Recall F-score NPV MCC

fDETECT 0.750 0.848 0.823 0.411 0.548 0.733 0.447

TargetCrys 0.634 0.693 0.503 0.788 0.614 0.814 0.325

PPCPred 0.748 0.819 0.677 0.606 0.640 0.782 0.448

CrystalP2 0.581 0.673 0.460 0.775 0.577 0.780 0.241

DeepCrystal 0.803 0.914 0.838 0.580 0.686 0.792 0.569

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690

Note: Bold represents the best result.
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fDETECT in DC_final, SP_final and TR_final, respectively.
However, the gains of CLPred measured by the other metrics are
more significant. ROC curves for the five predictors of the three dif-
ferent test sets are shown in Figure 2.

3.2 Model analysis
The advantage of using deep learning for protein crystallization is
that the neural networks can have multiple layers, each of which
learns to detect and select hierarchical features of a sequence. This
starts from simple features, such as local k-mers conformations and
properties, and gradually increases in complexity to features, such as
long-range, high-order k-mers interactions, that uniquely character-
ize a protein. Here, we project the feature vectors derived from each
layer in the CLPred model to a two-dimensional feature space via t-
SNE (Maaten and Hinton, 2008), principle component analysis
(PCA) and UMAP (McInnes et al., 2018), and visualize the overall
process of protein crystallization classification in Figure 3. We ex-
tract five features vectors from the embedding layer, the pooling
layer after the first CNN layer, the pooling layer after the second
CNN layer, the BLSTM layer and the fully connected layer. As
shown in Figure 3(a–e), one can observe that, as the layers deepen in
CLPred, the feature vectors learned become gradually more effective
in distinguishing crystallizable proteins from the non-crystallizable
ones. In particular, the features from the embedding layer mainly
characterize the local features of k-mers, which do not contribute
much in separating the two classes. However, as the CNN, pooling
and BLSTM layers derive and select more complex features repre-
senting high-order, global k-mers interactions, the crystallizable pro-
teins and non-crystallizable proteins become more separable.

In Table 5, we compare different CLPred architectures with dif-
ferent hyperparameters and layers. Our current architecture with
two convolution layers, one BLSTM layer and one fully connected
layer yields the optimal prediction capability. Adding additional con-
volution layers or fully connected layers not only increases the com-
putational cost, but also downgrades the prediction performance.

3.3 Key amino acids and tripeptides related to protein

crystallization
We take the 800�64 feature map generated by the first multi-scale
convolution, average the data of the second dimension and normal-
ize them to [0, 1]. Then, each sequence is represented by a vector of
length 800 and each value in this vector is the activation value corre-
sponding to the amino acid in the sequence. The larger the activa-
tion values of amino acid, the greater its contribution to the
classification results. According to the activation values, we sum-
marize the total numbers of amino acids in Table 6. The top seven
amino acids that mostly contribute to protein crystallization are
R(Arg), I(Ile), Q(Gln), G(Gly), V(Vla), S(Ser) and C(Cys). This is
generally consistent with the results presented in Charoenkwan
et al. (2013) while our results indicate that R(Arg) and I(Ile) are also
important to protein crystallization.

In addition to the contribution of an individual amino acid, the
feature vector extracted from the CNN layer with a kernel size of 3
allows us to gain insight in more specific contributions of tripeptides.
By applying similar counting as single amino acids, the top-ranked
triplets are derived and shown in Table 7. It is interesting to note that
most of these tripeptides include R(Arg) and/or I(Ile). This indicates
that the tripeptides heavily involved R(Arg) and/or I(Ile) play an im-
portant role in protein crystallization process. Their mechanism
deserves further computational and experimental studies.

3.4 Effectiveness of BLSTM
The BLSTM layer is a crucial component in CLPred for capturing
the high-order, long-range k-mers interactions. In order to demon-
strate the effectiveness of BLSTM, we compare the prediction per-
formance of CLPred with a CLPred version by replacing the BLSTM
layer with a CNN layer. We name this CLPred_noBLSTM. Notice
that CLPred_noBLSTM has a similar architecture as DeepCrystal.
The 10-fold cross-validation results of CLPred, CLPred_noBLSTM
and DeepCrystal on DC_final, SP_final and TR_final are shown in
Table 8, respectively. One can find that CLPred_noBLSTM and
DeepCrystal differ only 0.1–2% for most of the metrics, but CLPred
with BLSTM is significantly higher in comparison. This confirms
that the feature representation learned by BLSTM plays an import-
ant role in effectively predicting which sequences can produce
diffraction-quality crystals.

3.5 Additional features other than sequence
Crystallization prediction can be further improved when additional
features, such as evolutionary information and predicted protein
properties such as secondary structure, flexibility, structural motif,
solvent accessibility and disulfide bond, are incorporated. Recently,
BCrystal (Elbasir et al., 2020) uses pre-extracted evolutional, struc-
tural and physicochemical characteristics as additional features and
uses XGBoost (Chen and Guestrin, 2016) to predict protein crystal-
lization propensity, which has shown significant performance en-
hancement. These features can also be used in the CLPred
framework. Table 9 shows the performance comparison between
CLPred, BCrystal and CLPred_AF, which combines the last layer
features of CLPred with 641 additional features, including 8-state
secondary structure (SS), fraction of exposed residues (FER), dis-
order and hydrophobicity. These features are obtained from Elbasir
et al. (2020). One can find that, when these additional features are
incorporated, the performance of CLPred_AF is also significantly
improved compared to CLPred and is at least comparable to
BCrystal. Nevertheless, CLPred, as predictor using sequence-only
features, is still of practical use, since it does not rely on the accuracy
of other feature prediction tools and is not biased to the databases
of deriving additional features.

3.6 Analyzing the impact of sequence identity cutoff
In data preprocessing, most studies remove sequences with over
25% sequence identity in the training set (Elbasir et al., 2019a,b;

Fig. 2. ROC curves for the five predictors of the three different test sets. (a) ROC curve for DC_final, (b) ROC curve for SP_final dataset and (c) ROC curve for TR_final data-

set. The AUC values of the five predictors are shown in the figure legend
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Fig. 3. The feature vectors of the three test sets in the five hidden layers are visualized after dimensionality reduction by t-SNE, PCA and UMAP. The red circle represents the

non-crystallizable sequence and the blue circle represents the crystallizable ones. (a) Feature vectors in the embedding layer. (b) Feature vectors of the first average pooling

layer. (c) Feature vectors of the second pooling layer. (d) Feature vectors of the BLSTM layer. (e) Feature vectors from the final fully connected layer
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Wang et al., 2014, 2018). While 25% cutoff may still lead to homo-
logues with recognizable alignments, we hereby compare the per-
formance of CLPred models trained with lower sequence identity
cutoffs. As shown in Table 10, the prediction results on the test sets
for datasets under 15, 20 and 25% sequence identity cutoffs are ra-
ther consistent, although lowering sequence identity cutoffs results
in training sets with reduced sizes. This indicates that 25% is a rea-
sonable sequence identity cutoff to benchmark CLPred and compare
it with other crystallization prediction methods.

Table 5. Performance comparison of different CLPred architectures on

the DC_final dataset for 10-fold cross-validation

Method Accuracy

E 0.752

EþMSCNN_8 0.799

EþMSCNN_8þMSCNN_3 0.821

EþMSCNN_8þMSCNN_3þBLSTM 0.845

EþMSCNN_8þMSCNN_3þBLSTMþFC_256 0.850

EþMSCNN_8þMSCNN_3þBLSTMþCNN_3þ
CNN_3þCNN_3

0.847

EþMSCNN_8þMSCNN_3þBLSTMþCNN_3þ
CNN_3þCNN_3þFC_256

0.849

EþMSCNN_8þMSCNN_3þBLSTMþCNN_3þ
CNN_3þCNN_3þFC_1024þFC_256

0.848

E, embedding layer; MSCNN_8, multi-scale convolution layer; the convo-

lution kernel size of each scale is f2, 3, 4, 5, 6, 7, 8, 9g; MSCNN_3, multi-

scale convolution layer, the convolution kernel size of each scale is f5, 9, 13g;
BLSTM, three-layer bidirectional long short-term memory neural network;

CNN_3, convolution layer, whose convolution kernel size is 3, followed by

average pooling with a sliding window of length 5 and step length 1;

FC_1024, fully connected layer with 1024 neurons; FC_256, fully connected

layer with 256 neurons.

Table 6. The numbers of amino acids corresponding to the top five and

ten activation values across all samples

Amino

acid

Top 5

(rank)

Top 10

(rank)

Amino

acid

Top 5

(rank)

Top 10

(rank)

R-Arg 84 316 (1) 153 966 (1) T-Thr 11 844 (11) 26 653 (11)

I-Ile 83 155 (2) 151 492 (2) L-Leu 9204 (14) 22 481 (12)

Q-Gln 41 350 (3) 77 743 (3) M-Met 10 465 (12) 22 344 (13)

G-Gly 22 039 (6) 49 354 (4) N-Asn 9198 (15) 20 732 (14)

S-Ser 22 097 (5) 46 728 (5) E-Glu 7807 (17) 19 164 (15)

V-Val 19 970 (7) 44 854 (6) H-His 8736 (16) 19 037 (16)

C-Cys 22 760 (4) 40 599 (7) W-Trp 9279 (13) 18 640 (17)

Y-Tyr 18 295 (8) 36 675 (8) K-Lys 6057 (18) 14 612 (18)

F-Phe 15 533 (9) 32 412 (9) D-Asp 3972 (19) 9989 (19)

P-Pro 12 957 (10) 29 158 (10) A-Ala 1152 (20) 3487 (20)

Table 7. The numbers of tripeptides corresponding to the top five and

ten activation values across all samples

Tripeptides Top 10 Tripeptides Top 5

RRR 1812 III 1399

III 1733 RRR 1383

IIS 1279 IIS 848

RII 1141 RII 833

RRI 1055 RRI 695

IIG 978 QRR 627

RVR 943 RIR 620

LII 938 RVR 613

RIR 926 RQR 609

IIF 887 IIR 582

IFI 868 IFI 573

RQR 848 IIF 571

IIV 841 RRQ 570

QRR 828 QII 556

SII 825 IIG 536

IIR 823 LII 518

RRV 811 IRR 503

FII 792 RRV 489

QII 791 RSR 487

IRR 790 SII 481

Table 8. Verify the effectiveness of the BLSTM on three benchmark

datasets

Model ACC AUC PRE REC F-score NPV MCC

DC_final

DeepCrystal 0.799 0.915 0.885 0.685 0.772 0.744 0.613

CLPred_noBLSTM 0.815 0.911 0.862 0.750 0.802 0.780 0.636

CLPred 0.851 0.928 0.849 0.852 0.85 0.852 0.700

SP_final

DeepCrystal 0.683 0.866 0.910 0.547 0.684 0.547 0.457

CLPred_noBLSTM 0.722 0.879 0.890 0.628 0.738 0.586 0.493

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599

TR_final

DeepCrystal 0.803 0.914 0.838 0.580 0.686 0.792 0.569

CLPred_noBLSTM 0.816 0.907 0.796 0.676 0.731 0.826 0.597

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690

Bold represents best results.

Table 9. Performance comparison between CLPred, BCrystal and

CLPred_AF, which combines the last layer features of CLPred with 641

additional features

Method ACC AUC PRE REC F-score NPV MCC

DC_final

CLPred 0.851 0.928 0.849 0.852 0.850 0.852 0.700

BCrystal 0.954 0.979 0.938 0.973 0.955 0.972 0.910

CLPred_AF 0.957 0.987 0.945 0.970 0.957 0.969 0.914

TR_final

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690

BCrystal 0.964 0.987 0.931 0.976 0.953 0.985 0.925

CLPred_AF 0.968 0.993 0.945 0.971 0.958 0.982 0.933

SP_final

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599

BCrystal 0.903 0.948 0.888 0.966 0.926 0.934 0.793

CLPred_AF 0.911 0.971 0.904 0.960 0.931 0.925 0.810

Table 10. Compare the performance of CLPred models in test sets with

different cutoff sequence identity

Cutoff ACC AUC PRE REC F-score NPV MCC

DC_final

25% 0.851 0.928 0.849 0.852 0.850 0.852 0.700

20% 0.850 0.927 0.864 0.829 0.847 0.837 0.700

15% 0.843 0.926 0.863 0.814 0.837 0.825 0.687

SP_final

25% 0.801 0.887 0.885 0.783 0.832 0.698 0.599

20% 0.793 0.888 0.909 0.743 0.817 0.672 0.600

15% 0.785 0.890 0.900 0.736 0.810 0.664 0.582

TR_final

25% 0.854 0.930 0.787 0.829 0.807 0.896 0.690

20% 0.852 0.924 0.808 0.787 0.797 0.877 0.680

15% 0.852 0.927 0.815 0.778 0.796 0.873 0.681
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4 Cases analysis

4.1 Sox transcription factors analysis
Sox proteins are sequence-specific transcription factors that regulate
several key developmental processes. It contains a highly conserved
high-mobility group (HMG) domain of �80 amino acids, known
for binding and bending the DNA (Vivekanandan et al., 2015).
Sox17 and Sox9 are members of the Sox transcription factor family.
Sox17 is involved in endodermal differentiation during early mam-
malian development. Sox9 is a fundamental sex-determining gene
involved in the development of various vital organs, such as testicles,
kidneys, heart and brain, and skeletal development. We use CLPred
to predict several Sox proteins such as the full-length Sox17, full-
length Sox9, Sox17 HMG domain, Sox9 HMG domain and Sox17
mutant (EK) HMG domain collected by Elbasir et al. (2019a,b) and
compare with the other sequence-based protein crystal predictors.
The results are listed in Table 11. Recent studies have shown that
Sox9 HMG, Sox17 HMG and Sox17EK HMG can produce
diffraction-quality crystals (Elbasir et al., 2019a,b; Palasingam
et al., 2009; Vivekanandan et al., 2015). In addition, there is no evi-
dence to show that full-length sequences of Sox9 and Sox17 can pro-
duce diffraction-quality crystals. The results in Table 11 show that
CLPred and DeepCrystal are the only two methods that can correct-
ly identify Sox9 HMG, Sox17 HMG and Sox17EK HMG as the
ones that can produce diffraction-quality crystals. It is worthy to
note that the score of CLPred is much higher than the other predic-
tors. For those having no evidence of producing diffraction-quality
crystals, all sequence-based protein crystallization tools, including
CLPred, make the same predictions which are uncrystallizable.
This indicates that both full-length sequences of Sox9 and Sox17
are unlikely to produce diffraction-quality crystals in industrial
production.

4.2 Zika virus proteins analysis
Zika virus is a plus single-stranded RNA virus, a member of the fla-
vivirus genus of the Flaviviridae, and its genome encodes three struc-
tural proteins (nucleocapsid protein C, membrane protein M and
envelope protein E) and seven non-structural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B and NS5). We have collected some crys-
tallizable Zika protein sequences, including full-length NS1 (Brown
et al., 2016), C-terminal fragment of NS1 (Song et al., 2016),
unlinked NS2B-NS3 protease in complex with a compound frag-
ment (Zhang et al., 2016), NS2B-NS3 protease in complex with a
boronate inhibitor (Lei et al., 2016), and NS5 methyltransferase in
complex with GTP and SAH (Zhang et al., 2017). We have also
tested some other non-structural proteins, where no evidence shows
that they can produce diffraction-quality crystals so far, like the full-
length protein sequences of NS2A, NS2B, NS4A and NS4B.
Determining the structures of these important non-structural pro-
teins will lay a significant foundation to understand and overcome
the Zika virus.

We use CLPred to predict these proteins and compare them with
the sequence-based protein crystal predictors. The results are pro-
vided in Table 12. As shown in Table 12, CLPred is the only model
that 100% correctly identifies the non-structural Zika virus proteins

which can produce diffraction-quality crystals. For non-structural
full-length proteins NS2A, NS2B and NS4A with uncertain labels,
crystallization propensity predicted by CLPred is consistent with the
predictions generated by most of the other predictors. For full-
length NS4B, the predicted score of CLPred is 0.028, which is also
consistent with other predictors. In addition, we observe that full-
length NS2B is predicted with relatively high confidence by CLPred
and four other tools, which deserves further investigation by the
Zika virus research community.

5 Conclusions and future work

To avoid time-consuming and expensive experimentations with pro-
teins that are not likely to result in resolvable crystallized structures,
the selection of targets for structure determination is one of the
greatest challenges in structural genomics experiments (Varga et al.,
2017). In this study, we propose CLPred, a sequence-based deep
learning framework. Using only information from sequence, CLPred
uses a BLSTM in its deep learning architecture to capture the high-
order, long-range interaction patterns between k-mers, which makes
up the deficiency of the previous work using CNN. It has been
steadily improved over the previous window-based neural networks
and is able to predict the crystallization propensity with higher ac-
curacy. This performance enhancement is due to the ability of
BLSTM to recognize non-local interactions, as using the local inter-
action features has already reached its limit in traditional neural net-
works. Cross-validation and independent tests on three benchmark
datasets and ablation study have confirmed the efficacy of BLSTM
in protein crystallization prediction where non-local interactions are
crucial. By analyzing the feature vectors derived from various layers
in CLPred architecture, we have found the key amino acids and tri-
peptides mostly contributing to protein crystallization. By combin-
ing the last layer features of CLPred with 641 additional features,
we obtain the improving performance, which is at least comparable
to that of BCrystal. Finally, the correctness of our CLPred predic-
tions is further validated by the case studies of Sox transcription fac-
tor family member proteins and Zika virus non-structural proteins.
Our future work will be analyzing and interpreting the patterns
learned in CLPred via deep learning and understanding the funda-
mentals governing protein crystallization.

CLPred is freely available and downloadable at GitHub: https://
github.com/xuanwenjing/CLPred.
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Table 11. Prediction scores of the CLPred and other predictors for some

Sox transcription factor family protein

Sox9

Full Length

Sox9

HMG

Sox17

Full length

Sox17

HMG

Sox17

EK HMG

CLPred 0.155 0.886 0.235 0.858 0.872

DeepCrystal 0.315 0.676 0.430 0.643 0.633

fDETECT 0.070 0.432 0.075 0.462 0.418

TargetCrys 0.032 0.045 0.037 0.029 0.031

PPCPred 0.039 0.658 0.089 0.462 0.523

CrystalP2 0.327 0.459 0.470 0.436 0.402

Table 12. Prediction scores of the CLPred and other predictors for some

Zika virus non-structural proteins

Protein CLPredDeepCrystalfDETECTTargetCrysPPCPredCrystalP2

NS1 FL 0.997 0.472 0.157 0.084 0.233 0.57

NS1‹ 0.717 0.667 0.224 0.030 0.257 0.534

NS2B-NS3› 0.686 0.680 0.456 0.137 0.320 0.645

NS2B-NS3fi 0.827 0.808 0.925 0.563 0.961 0.581

NS5fl 0.865 0.494 0.274 0.030 0.215 0.375

NS2A FL 0.001 0.140 0.629 0.075 0.307 0.454

NS2B FL 0.636 0.626 0.594 0.145 0.585 0.577

NS4A FL 0.338 0.425 0.536 0.123 0.364 0.701

NS4B FL 0.028 0.066 0.015 0.097 0.302 0.468

NS1‹, C-terminal fragment of NS1; NS2B-NS3›, NS2B-NS3 protease in

complex with a boronate inhibitor; S2B-NS3fi, Unlinked NS2B-NS3 protease

from Zika virus in complex with a compound fragment; NS5fl, NS5 methyl-

transferase in complex with GTP and SAH; FL, Full Length.
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