bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610758; this version posted September 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Benchmarking Protein Language Models for Protein
Crystallization

Raghvendra Mall** Rahul Kaushik?®, Zachary A. Martinez”, Matt W.
Thomson®, Filippo Castiglione®*

@ Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, P.O.Boz
9689, United Arab Emirates
b Division of Biology and Bioengineering, California Institute of
Technology, Pasadena, 91125, California, United States of America
¢ Institute for Applied Computing, National Research Council of Italy, Rome, 00185, Italy

Abstract

The problem of protein structure determination is usually solved by X-ray
crystallography. Several in silico deep learning methods have been devel-
oped to overcome the high attrition rate, cost of experiments and extensive
trial-and-error settings, for the predicting the crystallization propensities of
proteins based on their sequences. In this work, we benchmark the power of
open protein language models (PLMs) through the TRILL platform, a be-
spoke framework democratizing the usage of PLMs for the task of predicting
crystallization propensities of proteins.

By comparing Light GBM / XGBoost classifiers built on the embedding
representations learned by different PLMs, such as ESM2, Ankh, ProtT5-
XL, ProstTh, with the performance of state-of-the-art sequence-based meth-
ods like DeepCrystal, ATTCrys and CLPred, we identify the most effective
methods for predicting crystallization outcomes. The Light GBM classifiers
utilizing embeddings from ESM2 model with 30 and 36 transformer layers
and 150 and 3,000 million parameters respectively have performance gains
by 3—5% then all compared models for various evaluation metrics, including
AUPR (Area Under Precision-Recall Curve), AUC (Area Under the Receiver
Operating Characteristic Curve), and F1 score on independent test sets.

Furthermore, we fine-tune the ProtGPT2 model available via TRILL to
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generate crystallizable proteins. Starting with 3,000 generated proteins and
through a step of filtration processes including consensus of all open PLM-
based classifiers, sequence identity through CD-HIT, secondary structure
compatibility, aggregation screening, homology search and foldability evalu-
ation, we identified a set of 5 novel proteins as potentially crystallizable.

Keywords: open protein language models (PLMs), protein crystallization,
benchmarking, protein generation

1. Introduction

Protein structure at atomic resolution is usually determined by X-ray
crystallography [I] or nuclear magnetic resonance (NMR) [2]. However, this is
an expensive process where > 70% of the total cost is spent on attempts that
do not produce crystals of diffraction quality [3]. Crystallization of proteins is
a prerequisite for structural determination. Yet, it has been a daunting chal-
lenge, with the overall rate of successful attempts ranging between 2 and 10%
[4]. The determination of important biological features that help increase the
propensity for protein crystallization remains a great challenge. Several ma-
chine learning methods and statistical techniques have been developed for
sequence-based protein crystallization prediction [5] 6] 7], [8, [0 10, 11]. These
approaches utilize feature-based protein representations including physico-
chemical and k-mer frequency features from amino acid sequences and cor-
responding structures. Most of these feature-based techniques undergo a
feature selection procedure(s), followed by traditional machine learning tech-
niques such as support vector machines [12 [13], random forests [14] and
gradient-boosting machines [15].

The availability of large-scale protein datasets through public databases
such as PepcDB [I6], enables the use of deep learning techniques for the
problem of protein crystallization prediction. DeepCrystal, a deep neural
network (DNN) based model was proposed by Elbasir et al. [I7] to predict
protein crystallization propensity using just the protein AA sequence
as input without the need to extract additional physio-chemical and k-mer
features by implementing convolutional neural networks (CNNs) [I8] as back-
bone. DeepCrystal captures frequently occurring amino acid (AA) k-mers of
different lengths driving the crystallization prediction and outperforms state-
of-the-art (sota) feature-based methods. Furthermore, techniques such as
ATTCry [19] design a CNN framework based on multi-scale and multi-head
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self-attention for crystallization prediction. CLPred [20] uses a bidirectional
recurrent neural network with long- and short-term memory (BLSTM) to
capture long-range interaction patterns between the k-mers of AA sequence
to predict protein crystallizability using the protein AA sequence as input.

A new deep learning pipeline, GCmapCrys [21], was proposed for multi-
stage crystallization propensity prediction by integrating the graph atten-
tion networks with the predicted protein contact map. Moreover, it uses
BLAST [22] to generate a position-specific scoring matrix, SCRATCH-1D
(https://scratch.proteomics.ics.uci.edu/) to use predicted solvent ac-
cessibility and secondary structure, and HHblits [23] for multiple sequence
alignment (MSA). A similar technique, namely BCrystal [24], utilizes ho-
mology, secondary structure, solvent accessibility, torsion angle features in
combination with an XGBoost model. However, these techniques, in par-
ticular those using MSA are extremely slow (= 30 minutes for one protein
sequence) and cannot be used for high-throughput screening of proteins.

Since, the goal of our work was to compare the crystallization propen-
sity of a protein using just their AA sequence and the ability of the model
to perform high-throughput screening, hence we focus on methods such as
DeepCrystal, ATTCrys and CLPred during our experimental comparisons.

In recent years, application of natural language processing (NLP) meth-
ods to protein sequences has led to remarkable breakthroughs for sota protein
structure and property prediction. The driving force for these breakthroughs
is the transformer, a deep learning architecture [25], which uses the concept
of self-attention to efficiently capture long-range dependencies and intricate
patterns in protein sequences that were previously difficult to discern using
traditional deep learning methods [25].

Analogous to using words and sentences to train typical large language
models (LLMs), transformer-based models such as ESM2 use individual AAs,
peptides, and protein sequences [26] to learn the “language” of life. These
protein language models (PLMs) follow a self-supervised learning framework,
where the model attempts to predict the identity of randomly masked AAs
(usually 15% of the AAs per protein sequence) using the unmasked po-
tions of the protein sequence. For example, ESM2 was pre-trained on the
masked language training task with ~65 million unique protein sequences
from UniRef [26]. After this extensive training, scientists are able to use these
pre-trained models to extract high-dimensional representations for their pro-
teins of interest. These vectors can be used for downstream tasks such as
protein property prediction, protein clustering, and functional comparisons
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[27, 28], 29, 24], 30, 31, 32].

In the present work, we perform efficacy assessments of several open
source PLMs for the task of predicting protein crystallization using the
TRILL platform [33]. TRILL is a comprehensive resource designed to democ-
ratize access to sota open PLMs, eliminating the requirement for advanced
computational skills. Using robust deep learning frameworks such as Pytorch
Lightning [34] and HuggingFace Accelerate [35], TRILL provides access to
several PLMs such as ESM2 [26], Ankh [36] and ProstT5 [37], specifically
for tasks such as protein design and property analysis. Moreover, TRILL
facilitates the usage of these PLMs with different model configurations and
parameter space. These PLMs in TRILL are complemented by a suite of
utilities that enhance user experience and functionality.

In the case of protein sequence classification, the platform provides func-
tionalities to embed protein sequences into vector representations, visualize
the embedded protein sequence representation, train custom classifiers, and
predict class labels for unseen protein sequences. These diverse tools and
functionalities are encapsulated within a command-line interface, organized
through ten commands as detailed in the original TRILL paper [33]. In the
present work, we utilize the TRILL platform to determine the vector rep-
resentation of proteins for each PLM using just the AA sequence as input.
These vector representations are then passed as training data to classifiers
which are optimized through hyper-parameter tuning. This results in opti-
mal crystallization propensity predictor for individual PLM. We then per-
form a comprehensive comparison of these PLM-based predictors on several
independent test sets. Finally, we generate 3000 proteins through a fine-
tuned ProtGPT2 model (on the crystallizable class) and through a series of
computational filtration steps identify a reduced set of 5 novel proteins as
potentially crystallizable.

The key contributions of the manuscript are:

e Benchmarking different ESM2 models for the task of protein crystal-
lization prediction using raw protein sequences on external balanced,
SwissProt and TrEMBL test sets;

e Benchmark PLMs such as Ankh, Ankh-Large, ProstT5 and ProtT5-XL
for the task of protein crystallization prediction on external balanced,
SwissProt and TrEMBL test sets;

e Comprehensive comparison of open-source PLMs to predict diffraction-
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Figure 1: Flowchart of the proposed PLM benchmarking framework for protein crystal-
lization propensity prediction.

quality crystals with superior performance on aforementioned test sets;

e Provide all the code used for benchmarking open-PLMs for crytalliza-
tion prediction task via github (https://github. com/raghvendrab68&/
crystallization_benchmark) for reproducibility and enabling com-
munity to utilize TRILL for their protein property prediction task.

e Fine-tune a protein generator namely ProtGPT2 [38] to generate de
novo protein sequences belonging to the crystallizable class;

e Evaluate, screen and validate the generated proteins to identify a unique
set of stable and well-folded proteins.

Figure[l| provides a flow diagram of the proposed framework for predicting
protein crystallization propensity.
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2. Materials and Methods

2.1. Owverview

The problem of predicting the crystallization propensity of a protein is a
binary classification task. A protein sequence, is given by a sequence of AAs
x = (x1,79,...,21), where z;, is the i amino acid in the sequence and is part
of a vocabulary comprising 20 amino acids, while L is the length of the protein
sequence. A given PLM uses its encoder referred as “tokenizer” (t(-)) that
encodes the AA sequence z to an encoded representation (¢(z) € R%) that is
then ingestible for deep learning technique. This is a widely used encoding
scheme in natural language processing (NLP) to have a vector representation
for words in a sentence [39, [40].

The encoded representation ¢(x) is then given as input to the PLM and the
final transformer layer of the PLM generates an embedding representation of
the protein, preserving meaningful inter-residue relationships and contextual
information within the original protein sequence. In mathematical terms
e(t(z)) is the embedding of the protein z, with e : RY — R? where d
represents the embedding dimension of the transformer layer of the PLM
(note: for comparison reasons, we use different PLMs, thus d changes).

Our aim is to learn a function c¢(-) that takes as input the embedded
protein sequence e(t(r)) and outputs a probability, i.e., ¢ : RE — [0,1],
where ¢(+) is the function computed by the nonlinear classifier. In this work,
c(+) is an XGBoost [41] or a Light GBM [42] classifier.

While fine-tuning individual PLM (either all layers or few layers) with
a classification head is an option, some of the PLMs tested in this work
are extremely large i.e. ESM2 with 36 transformer layers and ~ 3 billion
parameters. Thus, it is impossible to fine-tune such PLM even with a batch
size of 2, given the configuration of the available GPU - NVIDIA RTX A6000
with 48 Gb RAM. Hence, to have a fair evaluation given our GPU capacity,
and to understand the learning representation capacity of these PLMs, we
considered all these PLMs in a zero-shot learning framework to generate the
embedded vector representations for proteins using their AA sequence.

2.2. Data Partitioning

We perform our experiment on the processed PepcDB dataset (http://
pepcdb.rcsb.org) following the protocols set by Wang et al. [I1]. The data
set comprises proteins which have been classified into five groups, namely
i) diffraction-quality crystals, ii) protein cloning failure, iii) protein material
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production failure, iv) purification failure, and v) crystallization failure. We
consider the proteins labeled as diffraction-quality crystals to be the crystal-
lizable class, while other proteins are assigned to the non-crystallizable class.
The final dataset comprises 28,731 sequences of which 5,383 proteins belong
to the crystallizable class, and the remaining 23,348 are non-crystallizable.

As in [11} [17], all sequences in each class are passed through a filter of se-
quence identity > 25% with other proteins in that class to remove redundant
and similar protein sequences within each class.

To divide our dataset into training and test sets, we follow a simple pro-
tocol. The maximum length of a protein sequence considered for our model
is Lax = 800. This is done to be compliant with methods like DeepCrystal
[17] and CLPred [20], which use the same L as the maximum length of the
protein sequence. Proteins with L < L., are padded with the symbolic
representation of gaps. By performing this protein filtering step, the total
number of proteins in the dataset is reduced to 25,120.

We follow the procedure used in DeepCrystal [I7], ATTCrys [19] and
CLPred [20] to divide this dataset into two parts: Iy and Dy such that D,
consists of D} = 891 crystallizable and DY = 896 non-crystallizable proteins.
Here 1 corresponds to crystallizable and 0 corresponds to non-crystallizable
class. Thus, D, represents the fairly balanced test set for performance evalu-
ation as used in DeepCrystal, ATTCrys and CLPred methods. D; has a total
of 23,333 protein sequences, where D} = 3,846 proteins belong to crystalliz-
able class while remaining D? = 19,487 proteins fall are non-crystallizable.

We also use two independent test sets generated in [I] as external valida-
tion sets. The two external datasets, referred as SP_final and TR_final were
obtained from SwissProt and TrEMBL databases respectively, following the
protocol detailed in Elbasir et al. [I7]. In the SP_final dataset, we have
148 proteins belonging to the positive class while remaining 89 sequences are
non-crystallizable, whereas in the TR_final dataset there are 374 crystalliz-
able proteins and 638 proteins belonging to the negative class. We compare
our methods with sota web-servers such as fDETECT [§], DeepCrystal [17],
ATTCrys [19] and CLPred [20] on these datasets. For all performance com-
parison, we provide our test protein sequences to these web-servers to obtain
corresponding prediction scores.

2.8. Benchmarking Models

The TRILL platform [33] provides access to several PLMs, such as ESM2
[26], Ankh [36], ProstT5 [37] and ProtT5-XL [43], which can generate protein
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embedding representations via a zero-shot learning framework. Moreover,
there are several pretrained PLMs, such as ESM2 [26], ProtGPT2 [38] and
ZymCTRL [44], which can either directly generate proteins in a zero-shot
fashion or first by fine-tuning these models and then proceed with protein
generation. Here we provide a summary of several PLMs used in the present
work. For further details of these PLMs, reader’s indulgence is sought.

2.3.1. Evolutionary Scale Modeling (ESM2)

ESM2 is a sota transformer-based protein language model trained on /65
million unique protein sequences [26]. ESM2 has been shown to outperform
all tested single-sequence PLMs across a range of structure prediction tasks,
enabling atomic resolution structure prediction. While the ESM2 model
has been benchmarked for structure prediction, it has not been gauged for
protein property prediction and has been shown to not scale for protein
function prediction [45]. Moreover, the ESM2 models are available with
different architectural configurations, that is, with an increase in number of
transformer layers leading to an increase in number of model parameters.
The ESM2 models are available with 6, 12, 30, 33 and 36 transformer layers
having ~ 8, 12, 150, 650 and 3,000 million parameters respectively.

2.3.2. Ankh

The Ankh is an optimized general-purpose PLM, as a first version for
future specialized high-impact protein modeling tasks. Ankh is pre-trained
on the UniRef50 dataset [40], that provides more variability and represen-
tation compared to UniRefl00 [46] and BFD [47]. The model is tested on
a comprehensive set of downstream tasks spanning protein function predic-
tion, structure prediction, and localization prediction. Ankh demonstrated
superior performances on the tasks such as fluorescence prediction, solubil-
ity prediction, contact prediction, fold prediction, and secondary structure
prediction. Additionally, Ankh used Google’s latest TPU v4 hardware and
JAX/Flax software for efficient training. Thus, Ankh is presented as a pow-
erful general-purpose PLM that can serve as a foundation for specialized
protein modeling tasks, with outstanding performances demonstrated on a
wide range of benchmarks. Ankh-Large has ~2 billion parameters and is
trained using the encoder-decoder architecture, while Ankh base has < 10%
parameters when compared to the sota models.
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2.3.83. ProstTH

ProstTh is a bilingual language model for protein sequences and struc-
tures that leverages the AlphaFold Protein Structure Database (AFDB) [45].
ProstT5 was pre-trained using 34.6 million proteins. It can translate be-
tween 1-D amino acid sequences and 1-D structure sequences (3Di tokens).
ProstT5 demonstrated the improved performance in various protein function
prediction tasks compared to sota sequence-based models such as ProtT5,
ESM2 and Ankh. It can perform inverse folding, generate novel AA se-
quences that adopt a desired structural template, and assess the quality of
its own predictions. ProstT5 exemplifies how language modeling techniques
and transformers can be used to leverage the wealth of information from
protein structure databases such as AFDB. Finally, ProstT5 is a proof-of-
concept bilingual PLM that showcases the potential of integrating sequence
and structure information for various protein modeling tasks.

2.3.4. ProtT5-XL

ProtT5-XL uses an encoder-decoder framework for training [25]. ProtT5-
XL has 3 billion parameters and is trained using an 8-way model parallelism.
ProtT5-XL is trained on BFD for 1.2 million steps, followed by a fine-tuning
on UniRef50 for 991k steps. Contrary to the original T5 model [48] that
masks spans of multiple tokens, ProtThH-XL adopts BERT’s denoising ob-
jective to corrupt and reconstruct single tokens using a masking probability
of 15%. ProtT5-XL uses the AdaFactor optimizer with inverse square root
learning rate schedule for pretraining. Using embeddings from ProtT5-XL as
the input to supervised models to predict secondary structure and subcellular
localization, it outperformed previous methods on these tasks.

2.3.5. ProtGPT?2

ProtGPT2 is a PLM that can generate novel protein sequences which are
structurally and functionally similar to natural proteins [3§]. ProtGPT?2 ef-
fectively generates sequences that are distantly related to natural ones but are
not a consequence of memorization and repetition. Majority of ProtGPT2
sequences (93%) have significant sequence similarity to natural proteins [38].
AlphaFold predictions show 37% of ProtGPT2 sequences have high confi-
dence (pLDDT > 70) for being ordered structures, comparable to 66% for
natural sequences. Molecular dynamics simulations indicate ProtGPT2 se-
quences have similar dynamic properties as natural proteins [38] .
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Integrating Prot GPT2 sequences into a structural network representation
of the protein universe reveals they bridge separate “islands” of known pro-
tein structures. ProtGPT2 generates sequences across different structural
classes like all-a, all-8, a/3, etc. The model can be conditioned to design
proteins for specific families, functions or structural classes. Thus, the un-
supervised ProtGPT2 model effectively learns the “protein language” and
generates novel sequences that populate unexplored regions of protein struc-
ture space while maintaining key structural and functional properties. This
highlights the potential of PLMs for de novo protein design.

2.4. Model Building € Test

We follow a simple protocol to use the TRILL platform for our task of
benchmarking PLMs for protein crystallization propensity prediction. Start-
ing with the training sequences z € Dy, we obtain embedding representations
e (t(x)) for each of the following 9 protein language models: ESM2 T6-8M,
ESM2 T12-35M, ESM2 T30-150M, ESM2 T33-650M, ESM2 T36-3B, Ankh,
Ankh Large, ProstT5, ProtT5-XL PLMs using the embed function.

The embedding representations ey (t(z)),k = 1...9 are generated in a
zero-shot learning setting. These embedding representations of the training
set ID; are then passed to the XGBoost classifier using the classify util-
ity, where a 10-fold cross-validation technique is used for hyper-parameter
optimization. The details of the hyperparameters are available via
[classifier scriptl

The XGBoost classifiers optimizes a weighted average F1-metric during
the classification step to address the problem of class-imbalance. We also pass
the embedding representations ey (¢(z)) from each PLM to custom Light GBM
models [42] in 10-fold cross-validation setting to generate Light GBM classi-
fiers. We performed a randomized search over a grid of parameters including
number of estimators, maximum depth of a tree, number of leaves, minimum
child samples, learning rate, subsampling rate, L1 and L2 regularizers dur-
ing hyper-parameter optimization. The details of the parameter space for
Light GBM classifiers are available at [hyperparameter tuning script}.

Thus, in total we have 9 XGBoost classifiers and 9 Light GBM classifiers,
where each classifier is built on top of embedding representations (ex(t(x)))
obtained from a PLM. After obtaining the XGBoost / Light GBM classifier for
each of the 9 PLMs, we pass the test sets to each PLM to obtain embedding
representations for the respective set of proteins. Finally, the class label and
probability ¢ (ex(t(x))) for each protein sequence x in a given test set and the
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k™ PLM is obtained by passing its embedding representation ey(x) to the
classifier ¢(-). We utilize the classify function with ‘~preComputed_Embs’
and ‘—preTrained’ utilties in TRILL to obtain the class probability as shown
in Figure[2] A consensus of the predictions from the 18 classifiers is obtained
by taking average of the probabilities estimated by these classifiers.

A detailed workflow of building the classifiers and obtaining predictions
on test sets is highlighted in Figure [2|

Train O (A
Sequences - Evzilura(\e w| e !
Pass [\X > | \ M R4 W ‘. S i Predictions m Evaluations
Test /T V m - : o °e “
Sequences . \”XA uq
.

. L5 £ (S 41

Obtain
X: X can be either ESM2 / Ankh / Ankh-Large / ProstT5 / ProtT5-XL Protein Language Models X: X is an input protein sequence

M: M is either XGBoost (implemented in TRILL) / custom LightGBM classifier

Figure 2: Workflow of building the crystallization propensity prediction classifiers for
each PLM and obtaining test set predictions using the TRILL platform. Here the ‘red’
colored dots represent crystallizable proteins and ‘black’ colored dots correspond to non-
crystallizable proteins.

2.5. Protein Generation

We fine-tune the ProtGPT2 PLM on the crystallizable class (D1) us-
ing the fine-tune function available in TRILL for 10 epochs. In [33] it
was shown that 10 epochs are sufficient to generate synthetic cell penetrat-
ing peptides and anti-crispr proteins using ProtGPT2. Thus, the fine-tuned
ProtGPT2 model learns the underlying distribution of crystallizable proteins.
We then generate a total of 3,000 proteins using the fine-tuned ProtGPT2
model via the lang gen utility. Once we have generated the synthetic pro-
teins, we obtain the embedding representation for the same using the PLMs
and visualize these embeddings in a low-dimensional space (2 dimensions)
using the visualize function. This function utilizes the Unified Manifold
and Approximation (UMAP) algorithm [49] to project the embeddings into a
two-dimensional space. Then, the embedding representation for a generated
protein is obtained and classified by each of the 18 classifiers. This protein
generation and classification process is illustrated in Figure[3] We then follow
a series of filtration steps to determine the most promising candidates:
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Figure 3: The protocol followed to generate crystallizable proteins using fine-tuned Prot-
GPT2 PLM and further downstream filtering and evaluation.

Step 1: A consensus of all PLM-based classifiers consistently identified 706
out of the 3,000 generated proteins as crystallizable proteins.

Step 2: To remove generated sequences with high sequence identity with
training set, we perform CD-HIT-2D [50] with a identity cut-off of
< 40%, resulting in 700 protein sequences.

Step 3: CD-HIT is then performed to cluster proteins with > 25% sequence
identity into groups, leading to a total of 347 proteins with low se-
quence identity within the group and with the training set.

Step 4: Filtered protein sequences are screened by sequence to secondary
structure compatibility scores [51], 52]. The secondary structural
characterization of the designed protein sequences is performed by
utilizing PSIPRED (standalone ver. 4.02) [53]. This reduces the
generated protein set from 347 to 32 candidate sequences.

Step 5: The screened proteins are further evaluated on the basis of presence
of aggregation prone regions [54] and 4 sequences are filtered out.

Step 6: The screened proteins are subjected for the availability of any ho-
molog(s) in known protein sequence database, UniRef100 [46], re-
sulting in a reduced set of 5 proteins.

Step 7: The 5 filtered proteins are modeled using a consensus approach by
implementing RoseTTAFold2 [55], and AlphaFold2 [56], resulting in
6 model structures (5 from AlphaFold2 and 1 from RoseTTAFold
end-2-end prediction) for each protein.
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Step 8: Each model structure is refined by implementing GalaxyRefine [57]
to generate 5 refined model structures, resulting in 30 candidate
model structure for each protein.

Step 9: The modeled structure for each protein are thoroughly analyzed to
identify the best model structure (1 out of 30) among the candidate
structures using ModFold (ver. 9.0) [23] and ProFitFun [52] 51].

Step 10: Finally, the stereo-chemical quality (all atoms contact and geometry)
of the best model structure for each protein is assessed by passing it
through ProCheck [58], Errat [59], and MolProbity [60].

By following the aforementioned steps, we filter an initial set of 3,000 pro-
teins generated from crystallizable class to the set of 5 most likely and high
confidence crystallizable proteins.

2.6. Evaluation Metrics

The performance of benchmark classifiers is compared with various other
sota techniques using quality metrics such as accuracy, Matthew’s correlation
coefficient (MCC) as in [31 [I7]. We assessed other evaluation metrics, based
on TP, TN; false positives (FP) and false negative (FN). We highlight that
TP represents the set of proteins which are crystallizable (the true label
is 1) and are correctly identified by a given method as crystallizable, i.e.,
c(e(t(x))) > 0.5. Similarly, TN represents the set of proteins which are non-
crystallizable (true label is 0) and are correctly identified by a given method
as non-crystallizable ¢ (e(t(z)))) < 0.5.

The metrics for evaluation include:

TP + TN
Accuracy (ACC) = TP + FP + TN + FN

TP-TN - FP-FN

Mee= /(TP + FP) - (TP + FN) - (TN + FP) - (TN + FN)
TP
Recall (Rec) = W
Precision (Prec) = @R
2 - Prec - Rec
Fl-score (F1) = “Prec + Rec .

13
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3. Experimental Results

We benchmark the predictive performance of the PLMs on the DD, test
set extracted from the publicly available dataset [I1] as described earlier
(see Section II B). Moreover, we evaluate the quality of predictions from
these models on two independent datasets obtained from SwissProt and
TrEMBL, the SP_final and TR_final datasets, respectively. A comprehen-
sive comparison of the PLMs of varying size and configurations including
ESM2 T6-8M, ESM2 T12-35M, ESM2 T30-150M, ESM2 T33-650M, ESM2
T36-3B, Ankh, Ankh Large, ProstT5, ProtT5-XL was done against meth-
ods like fDETECT, DeepCrystal, ATTCrys and CLPred across these test
sets. The evaluation metric values for fDETECT and CLPred were obtained
from [I7] and [20] respectively. Finally, the cross-validation performance of
the XGBoost and Light GBM classifiers built on embedding representations
learnt via each PLM on various evaluation metrics is highlighted in Supp.
Figures 1 and 2. From Supp. Figures 1 and 2 and Tables [I] [2 and [3| we
observe that the XGBoost models are over-fitting on the training set and
have poor generalization performance. On the other hand, the Light GBM
classifiers have better generalization performance as their cross-validation
performance aligns with the performance attained on multiple independent

test sets (see Supp. Figure 2 and Tables , and .

3.1. Balanced Test Set Results

On the balanced test set consisting of 1787 proteins (891 crystallizable
and 896 non-crystallizable), the ESM2 T30-150M PLM (with LightGBM
classifier) achieves a prediction accuracy of 85.7%. This is better than the
current sota method, CLPred (85.1%). The ESM2 T30-150M (LightGBM)
also reaches the best performance of 0.854 and 0.715 for quality metrics
such as F1 score and MCC, respectively, as observed from Table [ These
quality metrics take into account the class imbalance in the data set. The
performance of ESM2 T30-150M (LightGBM) is 0.4% and 1.5% better in
absolute terms than the current sota sequence-based crystallization predictor
i.e., CLPred. Moreover, ESM2 T30-150M is 3.2%, 2.9%, and 5.7% better
than DeepCrystal for F1 score, accuracy, and MCC metrics, respectively.

However, with respect to quality metrics such as AUPR and AUC, the
ESM2 T30-150M (with XGBoost classifier) model leads when compared to
all other benchmark models as observed from Table [[|and Figures [4a] [Ab] [pal,
and [pb] The ESM2 T30-150M (XGBoost) model reaches AUPR = 0.929 and
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AUC = 0.936. This is 4.3% and 3.3% better than DeepCrystal for AUPR
and AUC metrics, respectively, as observed in Table Furthermore, from
Table [1} we observe that PLMs with XGBoost classifier available via TRILL
tend to handle the class-imbalance worse than PLMs with custom Light GBM
classifier. This is highlighted from the superior performance of PLMs with
Light GBM classifier on F1l-score and MCC metrics when compared to their
equivalent XGBoost classifiers available via TRILL as depicted in Table [I}
Overall, PLMs trained with either Light GBM classifier outperform CLPred,
ATTCrys and DeepCrystal across all metrics on balanced test set.

Table 1: Benchmarking of PLMs in TRILL on the balanced test set against sota methods.

‘ Model ‘ Method ‘ F1 ‘ ACC ‘ MCC ‘ Prec ‘ Rec ‘ AUPR ‘ AUC ‘
fDETECT RF 0.504 | 0.646 | 0.355 | 0.840 | 0.360 | 0.777 | 0.778
DeepCrystal CNN 0.822 | 0.828 | 0.658 | 0.851 | 0.795 0.886 | 0.903
ATTCrys Multi-Stage CNN | 0.811 | 0.810 | 0.621 | 0.805 | 0.817 | 0.850 | 0.876
CLPred CNN + Bi-LSTM | 0.850 | 0.851 | 0.700 | 0.849 | 0.852 0.900 | 0.928
ESM2 T6-8M XGBoost 0.674 | 0.746 | 0.546 | 0.934 | 0.527 0.9 0.916
ESM2 T12-35M XGBoost 0.643 | 0.726 | 0.51 | 0.921 | 0.494 | 0.905 0.916
ESM2 T30-150M XGBoost 0.803 | 0.826 | 0.669 | 0.92 | 0.713 | 0.929 | 0.936
ESM2 T33-650M XGBoost 0.754 | 0.794 | 0.618 | 0.928 | 0.635 0.91 0.928
ESM2 T36-3B XGBoost 0.716 | 0.767 | 0.571 | 0.914 | 0.588 | 0.908 0.92
Ankh XGBoost 0.764 | 0.792 | 0.602 | 0.883 | 0.672 0.893 | 0.913
Ankh Large XGBoost 0.783 | 0.804 | 0.619 | 0.874 | 0.709 | 0.906 | 0.917
ProstTh XGBoost 0.761 | 0.791 0.6 0.885 | 0.667 | 0.907 | 0.924
ProtT5-XL XGBoost 0.757 | 0.791 | 0.606 | 0.903 | 0.651 0.913 | 0.924
ESM2 T6-8M Light GBM 0.828 | 0.837 | 0.676 | 0.869 | 0.791 0.9 0.914
ESM2 T12-35M Light GBM 0.803 | 0.821 | 0.652 | 0.891 | 0.731 0.916 0.92
ESM2 T30-150M Light GBM 0.854 | 0.857 | 0.715 | 0.871 | 0.838 | 0.916 | 0.932
ESM2 T33-650M Light GBM 0.845 | 0.845 | 0.69 | 0.843 | 0.846 0.9 0.917
ESM2 T36-3B Light GBM 0.829 | 0.833 | 0.666 | 0.843 | 0.816 | 0.904 | 0.916
Ankh Light GBM 0.848 | 0.843 | 0.687 | 0.82 | 0.877 | 0.896 0.91
Ankh Large Light GBM 0.831 | 0.832 | 0.663 | 0.83 | 0.833 | 0.907 | 0.918
ProstTh Light GBM 0.85 | 0.851 | 0.702 | 0.855 | 0.845 0.916 | 0.929
ProtT5-XL Light GBM 0.838 | 0.842 | 0.685 | 0.86 | 0.817 | 0.919 | 0.928

3.2. SP_final Test Set Results

A second experiment is performed on the reduced SP_final dataset ob-
tained from SP_Pre dataset [I]. The ESM2 T36-3B model (with LightGBM
classifier) outperforms sota sequence-based crystallization predictors like CL-
Pred and DeepCrystal for the majority of the metrics, including F'1, accuracy,
MCC and precision as depicted in Table . The ESM2 T36-3B (Light GBM)
model also outperforms other PLMs available via TRILL for these quality
metrics as shown in Table 2l ESM2 T36-3B model (Light GBM) achieves a
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Figure 4: Comparison of area under receiver operating curve (AUC) of benchmark PLMs
for the crystallization prediction task across the three different test sets. (a) AUC for fairly
balanced test set using XGBoost, (b) AUC for SP_final dataset using XGBoost, (¢) AUC
for TR._final dataset using XGBoost, (d) AUC for fairly balanced test set using Light GBM,
(e) AUC for SP _final dataset using LightGBM, and (f) AUC for TR_final dataset using

Light GBM.

prediction accuracy of 89%, which is 9% and 14% better than CLPred and
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Figure 5: Comparison of area under precision-recall curve (AUPR) of benchmark PLMs
for the crystallization prediction task across the three different test sets. (a) AUPR for
fairly balanced test set using XGBoost, (b) AUPR for SP_final dataset using XGBoost, (c)
AUPR for TR final dataset using XGBoost, (d) AUPR for fairly balanced test set using
LightGBM, (e) AUPR for SP_final dataset using Light GBM, and (f) AUPR for TR._final
dataset using Light GBM.

DeepCrystal respectively (see Table . From Table , we observe ESM?2

17


https://doi.org/10.1101/2024.09.02.610758
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610758; this version posted September 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

T36-3B model (Light GBM) attains an MCC of 0.769 and F1-score of 0.911,
whereas CLPred obtains an MCC of 0.599 and F1-score of 0.832 indicating
17% and 8% improvement in performance. The ProstT5 model (with Light-
GBM classifier) achieves the best AUC (0.940) and AUPR (0.964) compared
to other PLM-based classifiers as depicted in Figures [dd [Ad], [5d and [5d]

We observe from Table 2] that small sized ESM2 models such as ESM2
T6-12M and ESM2 T12-35M cannot outperform CLPred for several quality
metrics but bigger sized ESM2 models easily surpass sota models like fDE-
TECT, DeepCrystal, ATTCrys and CLPred. Finally, the SP_final test set
comprises 237 proteins with very little sequence similarity with training set
and still ESM2 T36-3B classifiers (desgined with XGBoost / Light GBM) out-
performs majority of sequence-based predictors on several evaluation metrics
highlighting their effectiveness for crystallization propensity prediction.

Table 2: Benchmarking of PLMs in TRILL on the SP_final test set against sota methods.

‘ Model ‘ Method ‘ F1 ‘ ACC ‘ MCC ‘ Prec ‘ Rec ‘ AUPR ‘ AUC ‘
fDETECT RF 0.580 | 0.616 | 0.381 | 0.913 | 0.425 0.882 0.837
DeepCrystal CNN 0.788 | 0.759 | 0.53 | 0.876 | 0.716 | 0.877 | 0.874
ATTCrys Multi-Stage CNN | 0.814 | 0.772 | 0.521 | 0.831 | 0.797 0.856 0.827
CLPred CNN + Bi-LSTM | 0.832 | 0.801 | 0.599 | 0.885 | 0.783 | 0.880 | 0.887
ESM2 T6-8M XGBoost 0.712 | 0.713 | 0.524 | 0.955 | 0.568 | 0.948 | 0.913
ESM2 T12-35M XGBoost 0.615 | 0.646 | 0.445 | 0.957 | 0.453 0.929 0.881
ESM2 T30-150M XGBoost 0.836 | 0.814 | 0.646 | 0.933 | 0.757 | 0.947 | 0.919
ESM2 T33-650M XGBoost 0.795 | 0.781 0.61 0.953 | 0.682 0.948 0.922
ESM2 T36-3B XGBoost 0.814 | 0.802 | 0.657 | 0.981 | 0.696 | 0.964 | 0.935
Ankh XGBoost 0.761 | 0.743 | 0.528 | 0.907 | 0.655 | 0.932 | 0.906
Ankh Large XGBoost 0.84 | 0.819 | 0.653 | 0.934 | 0.764 | 0.955 0.93
ProstT5 XGBoost 0.829 | 0.81 | 0.648 | 0.948 | 0.736 | 0.957 | 0.94
ProtT5-XL XGBoost 0.794 | 0.776 | 0.593 | 0.936 | 0.689 | 0.938 | 0.909
ESM2 T6-8M LightGBM 0.871 | 0.848 | 0.694 | 0.924 | 0.824 0.953 0.915
ESM2 T12-35M LightGBM 0.803 | 0.781 | 0.585 | 0.914 | 0.716 | 0.934 | 0.888
ESM2 T30-150M Light GBM 0.873 | 0.848 | 0.688 | 0.912 | 0.838 0.954 0.931
ESM2 T33-650M Light GBM 0.883 | 0.857 | 0.699 | 0.901 | 0.865 0.946 0.921
ESM2 T36-3B Light GBM 0.911 | 0.89 | 0.769 | 0.924 | 0.899 | 0.961 0.938
Ankh Light GBM 0.885 | 0.857 | 0.694 | 0.885 | 0.885 0.931 0.912
Ankh Large LightGBM 0.876 | 0.848 | 0.681 | 0.894 | 0.858 | 0.954 | 0.929
ProstT5 LightGBM 0.898 | 0.878 | 0.751 | 0.941 | 0.858 | 0.964 | 0.94
ProtT5-XL LightGBM 0.873 | 0.848 | 0.688 | 0.912 | 0.838 0.952 0.927

3.3. TR_final Test Set Results

We perform a final experiment to test for crystallization propensities of
proteins using sota crystallization tools and benchmark PLM-based classifiers
available via TRILL platform on the TR final dataset [I]. ESM2 T30-150M
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model (with Light GBM classifier) achieves a prediction accuracy of 89.4%,
which is 4% better than CLPred (85.4%), 5.3% better than DeepCrystal
(84.1%) and fDETECT (84.1%). It is also 0.9% better than the next-best
ESM2 T6-8M (Light GBM) model that attains an accuracy of 88.5% as de-
picted in Table 3 The ESM2 T30-150M model (LightGBM) achieves the
best F1 (0.862) and MCC (0.778) as highlighted in Table [3| and second best
performance for AUC (0.929) and AUPR (0.959) when compared to ESM2
T30-150M (XGBoost), which achieves an AUC of 0.933 and AUPR of 0.960
as indicated in Table [3l and Figures [4¢] [4f] [5e and

Interestingly, we observe from Table [3]that Light GBM classifiers are supe-
rior than their counterpart XGBoost classifiers for the same PLM models and
configurations highlighting their generalization capability (see Supp. Figure
2). Finally, on the TR_final dataset comprising 1012 proteins (far more than
SP_final test set), the PLM-based classifiers are superior than DeepCrystal,
ATTCrys and CLPred w.r.t. several evaluation metrics.

Table 3: Benchmarking of PLMs in TRILL on the TR_final test set against sota methods.

Model Method F1 ACC | MCC | Prec | Rec | AUPR | AUC
fDETECT RF 0.747 | 0.841 | 0.663 | 0.918 | 0.631 0.768 0.887
DeepCrystal CNN 0.781 | 0.841 | 0.657 | 0.800 | 0.762 | 0.815 | 0.910
ATTCrys Multi-Stage CNN | 0.758 | 0.810 | 0.605 | 0.718 | 0.802 0.793 0.880
CLPred CNN + Bi-LSTM | 0.807 | 0.854 | 0.690 | 0.787 | 0.829 | 0.865 | 0.930
ESM2 T6-8M XGBoost 0.729 | 0.835 | 0.648 | 0.926 | 0.602 0.911 0.944
ESM2 T12-35M XGBoost 0.692 | 0.819 | 0.616 | 0.932 | 0.551 | 0.901 | 0.939
ESM2 T30-150M XGBoost 0.816 | 0.875 0.73 0.9 0.746 | 0.933 0.96
ESM2 T33-650M XGBoost 0.772 | 0.854 | 0.685 | 0.912 | 0.668 0.917 0.954
ESM2 T36-3B XGBoost 0.783 | 0.863 | 0.708 | 0.94 | 0.671 | 0.925 | 0.955
Ankh XGBoost 0.756 | 0.839 | 0.649 | 0.858 | 0.676 0.875 0.932
Ankh Large XGBoost 0.797 | 0.858 | 0.69 | 0.844 | 0.754 | 0.898 | 0.942
ProstT5 XGBoost 0.762 | 0.84 0.65 | 0.846 | 0.693 0.88 0.943
ProtT5-XL XGBoost 0.776 | 0.852 | 0.678 | 0.878 | 0.695 0.91 0.948
ESM2 T6-8M LightGBM 0.846 | 0.885 | 0.755 | 0.841 | 0.85 0.909 | 0.947
ESM2 T12-35M LightGBM 0.807 | 0.868 | 0.712 | 0.873 | 0.751 0.9 0.941
ESM2 T30-150M LightGBM 0.862 | 0.894 | 0.778 | 0.833 | 0.893 | 0.929 | 0.959
ESM2 T33-650M LightGBM 0.829 | 0.867 | 0.723 | 0.787 | 0.877 0.901 0.944
ESM2 T36-3B LightGBM 0.862 | 0.894 | 0.777 | 0.835 | 0.89 0.925 | 0.956
Ankh LightGBM 0.82 | 0.853 | 0.706 | 0.748 | 0.906 | 0.869 | 0.928
Ankh-Large Light GBM 0.835 | 0.87 | 0.732 | 0.785 | 0.89 0.892 | 0.944
ProstT5 LightGBM 0.839 | 0.875 | 0.739 | 0.799 | 0.882 | 0.903 | 0.949
ProtT5-XL LightGBM 0.844 0.88 0.749 | 0.814 | 0.877 0.912 0.951

3.4. Protein Generation Results
The selected crystallizable candidates (n = 347) were trimmed on the
basis of sequence to secondary structural compatibility (CS-Score > 40 and
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CSS-Scores > 20) [52, [51], resulting in a dataset of 32 proteins. The cut-
off values for CS- and CSS-Scores were adopted from their benchmarking of
successfully designed proteins [51]. These proteins were further tapered to
28 proteins, based on presence of aggregation protein region screening [61],
and to 5 proteins based on screening against UniRef100 [46].

Prot-142 N d )\ml’rm»sslm =
"l \‘ 1358y r| , 135, ‘
) “ o @ g
_ a5 - q e ‘,4 ) W ' s ] . .
. \ S 1 . 4
1 & J h

Figure 6: Best model structures for the 5 candidate proteins identified through our crys-
tallizable protein generator workflow.

The proteins with pairwise sequence coverage > 40%, sequence identity
> 35% and e-value < 0.5 were discarded while screening for available ho-
molog(s) in known protein sequence database (UniRef100), resulting in the
set of 5 proteins. These protein were modeled by implementing RoseTTAFold
(end-2-end prediction; 1 candidate structure for each protein) [62] and Al-
phaFold2 (n = 5 candidate structures for each protein) [56], followed by
structure refinement by using GalaxyRefine (n = 30; 5 refined candidate
structures for each candidate structure) [63]. The best model structure for
each protein, selected on the basis of consensus score from ModFold [23] and
ProFitFun [52]. The best model structure for each protein along with the
distribution of backbone di-hedrals (Ramachandran Map) are depicted in
Figure [0l A summary of different quality assessment statistics of the best
model structures is provided in Table ] Additionally, the predicted Global
Distance Test - Template Score (GDT-TS), Template Modeling Score (TMS),
Global Quality Score (GQS), and Average Quality Score (OAQS) for all the
candidate model structures are provided in Table [4]

The quality metrics for the best model structure of selected proteins
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(Prot-142; Prot-630, Prot-851, Prot-1120, and Prot-1302) ensured the accu-
racy of the tertiary structure prediction (Table . For all the model struc-
tures, the Ramachandran distribution of backbone di-hedral angles (¢ and )
is found to be distributed in the allowed regions, mainly the core region (col-
ored ‘red’), as shown in Table i and Figure [l The predicted model structure
for Prot-630 and Prot-1302 had the highest quality score (=0.69), followed
by Prot-142 (=0.67), Prot-1120 (=0.65), and Prot-851 (=0.58). Notably,
the predicted GDT-TS (0.84 for Prot-630 and 0.88 for Prot-1302) and pre-
dicted TM Score (0.83 for Prot-630 and 0.82 for Prot-1302) for these protein
structure fall in the highly reliable range for predicted model structure (0.8 -
1.0). The GDT-TS and TM Score varies from 0-1, where 1 shows the highest
level of structural prediction. The relative predicted quality of the model
structure for Prot-851 was observed to be lower as compared to the model
structures of other proteins. The secondary and tertiary structures of the
selected protein revealed them to be mainly a-proteins, except for Prot-142
that has some fraction of residues (about 4%) resulting into S-strands.

Table 4: Summary of different quality evaluation parameters for the best model structure
for each of the selected protein.

Quality Parameters Prot-142 | Prot-630 | Prot-851 | Prot-1120 | Prot-1302
Ramachandran Distribution

Core Region 98.9% 98.1% 98.8% 98.5% 97.4%
Allowed Region 1.1% 1.9% 1.2% 1.1% 2.6%
Generously Allowed Region 0.0% 0.0% 0.0% 0.4% 0.0%
Disallowed Region 0.0% 0.0% 0.0% 0.0% 0.0%
Bond Lengths within Limits 96.6% 97.3% 96.6% 97.9% 96.5%
Bond Angles within Limits 93.8% 94.3% 92.6% 94.0% 92.9%
Planner Groups within Limits 98.8% 100.0% 98.1% 100.0% 99.0%
Favored Rotamers 98.7% 98.6% 97.8% 97.1% 99.5%
Errat Score 97.3% 99.0% 98.1% 98.0% 96.4%
MolProbity Score 1.72 1.21 1.57 1.31 1.40
Predicted GDT-TS Score 0.75 0.84 0.63 0.72 0.88
Predicted TM-Score 0.83 0.83 0.65 0.80 0.82
Global Quality Score 0.44 0.41 0.45 0.44 0.35
Average Quality Score 0.67 0.69 0.58 0.65 0.69

The functional annotations including biological processes (BP), molecu-
lar functions (MF) and cellular components (CC) associated with the gen-
erated proteins are provided in Supp. Table 1. Additionally, the two pro-
teins with the maximum functional annotations were Prot-1120 and Prot-
1302. The functional annotations associated with these proteins is depicted
in Figure [7] We observed that Prot-142 and Prot-630 are localized in cy-
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Figure 7: Functional annotations associated with Prot-1120 and Prot-1302.

toplasm, associated to different membranes such as cellular anatomical en-
tity and mainly involved in different metabolic processes and bio-synthetic
processes as depicted in Supp. Table 1. The designed protein, Prot-851,
while being associated with plasma membrane and cell peripheries such as
cellular anatomical entity, was predicted to perform diverse transporter ac-
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tivities by its involvement in different metabolic and transport processes.
In contrast to the functional characterization of Prot-142, Prot-630, and
Prot-851, the designed proteins Prot-1120 and Prot-1302 were predicted to
be involved in the highly diverse set of molecular functions and biological
processes as illustrated in Figure [/l For instance, Prot-1120, with the sim-
ilar cellular localization of other designed proteins, was predicted to be in-
volved in a wider range of metabolic processes, viz. phosphorous, phosphate-
containing, and organo-nitrogen compound metabolic processes, primary and
cellular metabolic processes, and overall regulation of cellular processes. The
Prot-1120 was predicted to be involved catalytic activity, calcium-dependent
phospholipid binding, transferase activity, purine ribonucleoside triphosphate
binding, small molecule binding, phosphoric ester hydrolase activity, ion
binding, organic cyclic compound binding, carbohydrate derivative bind-
ing, and heterocyclic compound binding. Further, Prot-1302 is computa-
tionally characterized to perform metabolic and biosynthetic process along
with trans-membrane transport of various compounds. With the involve-
ment in a diverse set of biological processes, the Prot-1302 was predicted to
perform ion channel activity, ATP binding, trans-membrane transporter ac-
tivity, transferase activity, phosphotransferase activity, purine ribonucleoside
triphosphate binding, small molecules and ions binding, organic cyclic com-
pound binding, carbohydrate derivative binding, and heterocyclic compound
binding.

With a comprehensive computational functional characterization, we be-
lieve that experimental validation of Prot-1120 and Prot-1302 can lead to the
novel functional proteins that can be fine-tuned to have desired functions.

4. Discussion & Conclusion

One of the main challenges for protein structure determination is that only
about 2-10% of pursued protein targets yield high-resolution protein struc-
tures [64]. Upon investigating these estimates in the TargetDB database [6],
it was observed that among the 150, 727 cloned targets that were deposited
into TargetDB, only 37,398 (24.8%) were successfully purified, 12,923 (8.6%)
further successfully crystallized, and 6,942 (4.6%) resulted in diffraction qual-
ity crystals [65]. Additionally, majority of the cost of structure determination
is consumed by the failed attempts [7] as crystallization is a process that is
characterized by a significant rate of attrition. The reasons for this attrition
include the need for the crystals to be sufficiently large (> 50 micrometers),
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pure in composition, regular in structure, and without significant internal
imperfections. Furthermore, to produce diffraction-quality crystals, an em-
pirical or trial-and-error approach is commonly used, in which a large number
of experiments are brute-forced to find a suitable setup [66], often resulting
in failure. Thus, the above provides strong motivation to develop accurate
and efficient in silico sequence-based protein crystallization predictors that
allow high-throughput screening of candidate protein sequences for favorable
crystallization propensity.

In this paper, we benchmark open-PLMs accessed via the TRILL plat-
form, a framework enabling democratization of protein language models, for
sequence-based protein crystallization propensity prediction. The main ob-
jective is to determine whether PLMs trained on hundreds of millions of pro-
tein sequences can discriminate crystallizable proteins from non-crystallizable
ones without fine-tuing using just the raw protein sequences as input. These
PLMs encode the raw protein sequences and generate embedding (vector)
representations. We then built optimized tree-based classifiers (XGBoost /
Light GBM) on top of these embedding representations to estimate their dis-
criminative capacity without the need to manually engineered biological and
physiochemical features. By implementing a thorough benchmarking on a
set of independent test sets, we observe that these open-PLM based classi-
fiers consistently outperform state-of-the-art deep learning techniques, such
as DeepCrystal, ATTCrys and CLPred, on several evaluation metrics.

DeepCrystal [I7] captures frequent amino acid k-mers in the input se-
quence using a set of parallel convolution filters of varying sizes with the
CNN design providing the freedom of calculating local dependencies with
different filter sizes. Conversely, CLPred [20] uses a BiLSTM deep learning
architecture to capture high-order, long-range interaction patterns between
k-mers making it better than the CNN-based DeepCrystal as indicated in
Tables 1] 2] and [8] However, open source protein language models trained on
several million protein sequences are much better than smaller and crystal-
lization specific deep learning models like DeepCrystal, ATTCrys and CL-
Pred (see Tables , and , even with no additional fine-tuning and a
simple linear probing approach i.e. building classifiers on top of embedding
representations. In particular, the ESM2 T30-150M and ESM2 T36-3B
based models (with Light GBM classifier) outperform every other benchmark
model on the three independent test sets for quality metrics such as F'1-score,
accuracy, MCC, and precision.

This success can be attributed to the huge amount of data on which these
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PLMs are trained, the underlying transformer architecture which can capture
local and long-range contextual dependencies in protein sequences through
attention mechanism [25] and generate meaningful and discriminative em-
bedding representations for the downstream crystallization task.

The proposed methodology illustrates its ability to generate and filter
unique crystallizable proteins as well as engineer proteins to achieve desired
properties and functions. These proteins may aid in the better understand-
ing of biological processes, as well as the rapid development of new medicines
and materials. For example, a designed protein with certain mutations could
aid in understanding the roles of specific amino acid residue(s) in the natural
protein. Similarly, protein-based therapeutic regimes that involve improve-
ments in the efficacy, stability, solubility, or specificity of certain enzymes,
antibodies, and hormones may be accelerated with computational engineer-
ing with the help of proposed workflow. Furthermore, computational design
may help in the development of more efficient, stable, and selective enzymes
that can considerably boost industrial output in the fields of bio-catalysis,
food industry, and bio-fuels.
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