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ABSTRACT

Effective embedding is actively conducted by apply-
ing deep learning to biomolecular information. Ob-
taining better embeddings enhances the quality of
downstream analyses, such as DNA sequence mo-
tif detection and protein function prediction. In this
study, we adopt a pre-training algorithm for the ef-
fective embedding of RNA bases to acquire seman-
tically rich representations and apply this algorithm
to two fundamental RNA sequence problems: struc-
tural alignment and clustering. By using the pre-
training algorithm to embed the four bases of RNA
in a position-dependent manner using a large num-
ber of RNA sequences from various RNA families,
a context-sensitive embedding representation is ob-
tained. As a result, not only base information but also
secondary structure and context information of RNA
sequences are embedded for each base. We call this
‘informative base embedding’ and use it to achieve
accuracies superior to those of existing state-of-the-
art methods on RNA structural alignment and RNA
family clustering tasks. Furthermore, upon perform-
ing RNA sequence alignment by combining this infor-
mative base embedding with a simple Needleman–
Wunsch alignment algorithm, we succeed in calcu-
lating structural alignments with a time complexity
of O(n2) instead of the O(n6) time complexity of the
naive implementation of Sankoff-style algorithm for
input RNA sequence of length n.

INTRODUCTION

Unstructured data, such as biological sequences and net-
works, require an embedding operation that encodes the un-
structured data into a high-dimensional numerical vector
space. This is a necessary step for processing unstructured
data in downstream analysis using computational models

such as neural networks. In the deep learning field, embed-
ding using the pre-training framework with a large set of
unlabelled data has been shown to be effective for the down-
stream supervised learning task even when smaller size of
labelled data is available. When embedding an RNA se-
quence, each nucleotide (A, C, G, U) is usually encoded
to a numerical representation so that the RNA sequence is
embedded into a numerical vector. An effective embedding
method further attempts to encode contextual information
into the numerical vector representation (see Figure 1).

Recently, DNA, RNA and amino acid sequences have
been attempted to be effectively embedded using deep rep-
resentation learning, especially techniques developed in the
field of natural language processing (1–3). These studies are
based on the idea that nucleotide composition and sequence
structure determine the motif and function of a gene se-
quence, just as the complex grammatical structure of nat-
ural language determines the meaning of a sentence. As a
consequence, word embedding techniques for natural lan-
guage have been applied to nucleotides for DNA sequences.
In the dna2vec method (4), word2vec is applied to a DNA
sequence to obtain the distributed representation of k-mers
(a DNA subsequence of length k). Word2vec, an effective
word embedding technique (5) that vectorizes the context
and meaning of a word using a large amount of text data,
is based on the hypothesis that words with similar mean-
ings have similar peripheral words. Dna2vec adopts the
word2vec technique by defining a k-mer as a word in the
DNA sequence; however, since dna2vec assumes a sufficient
number of different words used for embedding, the four nu-
cleotides (four words) are not large enough to obtain an ef-
fective embedding when dna2vec is applied to base-by-base
DNA sequence embedding.

Two recently developed state-of-the-art embedding meth-
ods, namely, embeddings from language models (ELMo)
and bidirectional encoder representations from transform-
ers (BERT), are used to generate context-sensitive dis-
tributed word representations (6,7). In these methods, the
same word is assigned to different distributed representa-
tions depending on the context. In particular, BERT is a
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Figure 1. Schematic view of the pre-training-based embedding and its downstream analysis. The pre-trained neural network with a large set of unlabelled
data encodes input DNA sequences into high-dimensional numerical vectors. The embedding by pre-trained neural networks is effective for downstream
analysis such as DNA sequence alignment and clustering.

pre-training algorithm that obtains word and sentence em-
beddings by performing two tasks: a masked language mod-
elling (MLM) task and a next sentence prediction (NSP)
task. The MLM task predicts multiple masked tokens
(words) in a sentence, whereas the NSP task determines
whether two statements are consecutive. UniRep (8) and
PLUS (9) are representative examples of applying BERT
to protein sequence representation; specifically, UniRep ob-
tains the embedding of each amino acid in a protein se-
quence and uses this embedding to achieve accurate struc-
tural and functional predictions of proteins.

In this study, we propose RNABERT for the effective em-
bedding of RNA bases by adopting the pre-training BERT
algorithm to non-coding RNA (ncRNA). We apply infor-
mative base embedding to encode the characteristics of each
RNA family and structure. To see whether this informa-
tive base embedding technique successfully captures these
characteristics, we apply RNABERT to two basic RNA se-
quence analysis tasks: structural alignment and clustering.
Then, we evaluate the quality of the informative base em-
bedding results by structural alignment of RNA sequences
and by RNA family clustering.

The first important problem in RNA sequence analysis
is the structural alignment of RNA sequences, which cal-
culates the alignment of not only RNA sequences but also
their secondary structures. The most influential method for
the structural alignment of RNA sequences is the Sankoff
algorithm, which simultaneously performs secondary struc-
ture prediction and alignment (10). However, the time
complexity of the naive implementation of the Sankoff
algorithm is O(n6) for the length n of input RNA se-
quences, and accelerating the Sankoff algorithm is an un-
solved hard problem (11). While Sankoff-style algorithms
such as LocARNA (12) and Dynalign (13) calculate the
alignment considering the secondary structure, a standard

sequence-based (non-structural) alignment method such as
the Needleman–Wunsch algorithm (14) determines only the
correspondence between each base position of two input
sequences, and its time complexity is only O(n2) using the
dynamic programming technique. Hence, we aim to apply
the informative base embedding to determine the position-
dependent and secondary structure-dependent score matrix
in calculating alignments so that the structural alignment is
obtained using a simple Needleman–Wunsch algorithm in-
stead of the computationally expensive Sankoff-style algo-
rithm.

Building an appropriate clustering algorithm for ncR-
NAs is an effective step towards unsupervised analysis of
ncRNA sequences without their family labels (15,16), as
high-throughput sequencing continues to generate a large
number of RNA sequences, including novel transcripts.
With the recent increase in deep learning usage, many al-
gorithms for ncRNA classification (supervised clustering)
using convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been proposed (17,18). These
algorithms adopt a simple embedding technique, one-hot
encoding of RNA bases. Most of these algorithms uti-
lize supervised learning using ncRNA families as labels for
training. Nevertheless, since supervised learning requires
the data to be labelled, this approach is not practical when
analysing ncRNA sequences without their family labels.

For our goals of RNA structural alignment of lower com-
putational complexity and accurate RNA family clustering,
we construct an informative base embedding method, RN-
ABERT, for RNA sequences that takes into account the
context and secondary structure of RNA sequences through
two training tasks: MLM and structural alignment learn-
ing (SAL). In RNABERT, pre-training is performed using a
large number of unlabelled ncRNA sequences. RNABERT
introduces a novel pre-training task, SAL, in addition to the
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usual MLM task to more explicitly incorporate RNA sec-
ondary structure information into the base embedding for
structural alignments. The SAL task employs pre-training
using seed alignments obtained from the Rfam database
(19) so that the bases aligned in the seed structural align-
ment are expected to have more similar embeddings. By al-
ternately training the MLM and SAL tasks, RNA base em-
bedding can be expected to adequately capture the struc-
tural differences among RNA families. We compare the ac-
curacy and computational complexity of structural align-
ment and family clustering of RNA sequences between our
method and the state-of-the-art methods.

MATERIALS AND METHODS

The architecture of the RNABERT model

The architecture of the RNABERT model consists of three
components: token and position embedding, a transformer
layer and pre-training tasks. The input to RNABERT is an
RNA sequence. First, the token embedding randomly gen-
erates a 120-dimensional numerical vector that encodes four
RNA bases (A, C, G, U) and assigns the same vector to
each base in the input RNA sequence. Second, the position
embedding generates a 120-dimensional vector that encodes
the position information of each base in the input RNA se-
quence. Third, the element-wise sum of token embedding
and position embedding for each base in the input RNA
sequence is fed to the transformer layer. The transformer
layer component consists of a stack of six transformer lay-
ers, each of which is composed of a multi-head self-attention
mechanism followed by a feedforward neural network. The
final output from the transformer layer is an informative
base embedding, denoted Z. The weight parameters of the
transformer layer are trained by alternately training two dif-
ferent tasks (MLM and SAL) on top of the output of the
transformer layer. The architecture of RNABERT is illus-
trated in Figure 2.

The self-attention mechanism (20) is a central compo-
nent of the transformer layer. For the transformer layer that
takes the output of the previous layer X = [x1, . . . , xn ]
as input, the multi-head self-attention mechanism with H
heads computes the output sequence C = [c1, . . . , cn ] with
the following formula:

C = Concat (head1, . . . , headH) WO,

headi = sof tmax

(
(Qi ) (Ki )

�
√

D

)
Vi ,

where

Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i .

The self-attention mechanism is described as mapping a
query and a set of key-value pairs to an output sequence,
where the query, key, and value are all matrices: query
Qi = [qi

1, . . . , qi
n ], key Ki = [ki

1, . . . , ki
n ] and value Vi =

[vi
1, . . . , v

i
n ]. These matrices are the inner products of X and

the weight matrices WQ
i , WK

i , and WV
i of size D × D that

are learned, where D is the input and output vector dimen-
sion (D= 120 in this study). In the scaled dot-product at-

tention mechanism, each head calculates the next hidden
state by computing the attention-weighted sum of the value
vector v. An attention coefficient is the output of the soft-
max function applied to the dot product of the query and
key (Qi )(Ki )� divided by

√
D. Finally, the Hhead results

calculated by different sets of {WQ
i , WK

i , WV
i } are concate-

nated, and the inner product between this concatenated ma-
trix and WO yields the output sequence C. After the trans-
former layer process including multi-head attention is per-
formed six times, the informative base embedding denoted
Z is obtained (see the Supplementary Data and Supplemen-
tary Figure S1 for more detailed explanation about the self-
attention mechanism.)

Masked language modelling (MLM)

MLM is a task that masks a part of the input RNA se-
quence and predicts the masked part using the surround-
ing bases. The MLM task performs a base embedding so
that the masked part can be restored, which enables context-
sensitive embedding. First, 15% of the bases are randomly
selected in a given RNA sequence for training. Next, one of
the following three actions is performed on the selected base
in the input: 80% of the selected bases are replaced with a
token indicating an unspecified base (denoted [mask] in Fig-
ure 2), 10% are randomly substituted with one of the other
three bases, and the remaining 10% of the selected bases are
unchanged from their original base. The MLM task trains
the model to maximize the probability of correctly predict-
ing the selected 15% of the RNA bases at the output. In this
training model, a classification layer is built on top of the
output of the transformer layer. Finally, the output proba-
bility of each base is calculated using the softmax function.
The cross-entropy function is used as the loss function. The
pre-training set for the MLM task consists of 762 370 se-
quences generated from 76 237 human ncRNA sequences
obtained from RNAcentral (21) by taking 10 copies of each
ncRNA and applying 10 different mask patterns to each.

Structural alignment learning (SAL)

The SAL task, which performs a base embedding task to
learn the relationship between two RNA sequences, is based
on RNA structural alignment. RNA structural alignment
aligns multiple RNA sequences by inserting gaps between
bases so that the conserved secondary structures are aligned
in the same column. The SAL task aims to obtain closer
embeddings for bases in the same column of reference align-
ment and obtain secondary structure embeddings by train-
ing based on the RNA structural alignment. The Rfam
seed alignment for each family is downloaded from Rfam
(19) as the reference structural alignment for the SAL task.
To define the loss function in the SAL task, we introduce
the � matrix, which is defined for a pairwise alignment
of two RNA sequences and is intended to be used as a
score matrix when calculating the pairwise alignment. Let
Z = [z1, . . . , zn ] and Z′ = [z′

1, . . . , z′
m] denote the embed-

ded representations output from the transformer layer for
the input of two RNA sequences of length n and m. Each
element ωi j in the � matrix is defined to be the normalized
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Figure 2. Architecture of the RNABERT model. The RNABERT model consists of three components: token and position embedding, a transformer layer
and pre-training tasks. Token and position embedding randomly generates a 120-dimensional vector representing four RNA bases. The transformer layer
component consists of a stack of six transformer layers, each of which is composed of a multi-head self-attention mechanism followed by a feedforward
neural network. The final output from the transformer layer is an informative base embedding, denoted Z. The weights of the transformer layer are trained
by alternately training two different tasks (MLM and SAL) on top of the output of the transformer layer.

inner product between zi and z′
j :

ωi j = zi · z
′
j

‖zi‖‖z′
j‖

.

The loss function in the SAL task is defined to in-
crease ωi j at the matched position in the reference align-
ment so that a sequence alignment algorithm such as
the Needleman–Wunsch algorithm produces the reference
alignment.

A simple way to implement this loss function in the SAL
task is to apply binary classification learning with respect to
ωi j . That is, ωi j in the aligned position is trained to 1, and
ωi j in an unaligned position is trained to 0. However, this
causes strong overfitting. To alleviate this problem, we ap-
ply a machine learning method called a structured support
vector machine (22,23) to the pre-training phase in the SAL
task. Let the alignment between a pair of RNA sequences
x = x1 , . . . , xn and x′ = x′

1 , . . . , x′
m be represented by a se-

ries of matched (aligned) positions (i, j ) and gap insertion
positions (i,−) or (−, j ), where 1 ≤ i ≤ n, 1 ≤ j ≤ m. For
a given training dataset D consisting of triplets (x, x′, y),
where x and x′ are a pair of RNA sequences and y is the cor-
responding reference alignment between x and x′, we aim to
find a set of parameters w that minimize the following loss
function L:

L =
∑

(x,x′, y)∈D

{
f
(
x, x′, ŷ

) + � (y, ŷ) − f
(
x, x′, y

) + λ‖w‖2
}
,

where f is the function that returns the alignment score y
between x and x′. The term λ‖w‖2 in the above formula
is the L2 regularization term to avoid overfitting, where w
refers to the parameters of the entire model, ‖ w‖2 is the
squared value of the model parameters and λ is a param-
eter that controls the strength of regularization. The align-
ment score is calculated as the sum of the ωi j value at the
matched position (i, j ) and the gap score at the gap insertion
positions (i,−) or (−, j ). ŷ is the predicted alignment path
calculated by the Needleman–Wunsch algorithm to maxi-
mize the sum of the alignment score f (x, x′, ŷ)and the mar-
gin term �(y, ŷ). The margin term �(y, ŷ) defines the dif-
ference between the reference alignment and the predicted
alignment as follows:

� (y, ŷ) = δF N × (the number of positions included in y but not in ŷ)

+δF P × (the number of positions included in ŷ but not in y) .

Here, δF N and δF P are hyperparameters that control the
trade-off between sensitivity and specificity for learning pa-
rameters. By default, we used δF N = 0.05 and δF P = 0.1,
which were determined by the grid-search optimization in
the range 0.01–0.30. Decreasing the loss function L brings
the predicted alignment closer to the reference alignment.

RNA structural alignment

A pairwise RNA sequence alignment based on the base em-
bedding is calculated using the Needleman–Wunsch algo-
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rithm using the � matrix as the score matrix, which is de-
rived from the training of SAL and MLM tasks. The match
score in position (i, j ) is ωi j in the score matrix �, and the
gap opening score and gap extension score are set to -1 and
-0.1, respectively. As the MLM task enables the position-
and context-sensitive embedding and SAL task enables
the structural information embedding, the Needleman–
Wunsch algorithm, a simple sequence alignment algorithm,
is expected to generate RNA structure alignments using the
� matrix derived from the SAL and MLM tasks. Note that
the time complexity of the Needleman–Wunsch algorithm
is O(n2) for the input RNA sequence of length n.

RNA family clustering

RNA family clustering is performed as the second evalua-
tion test to confirm the quality of the informative base em-
bedding. A similarity measure between two RNA sequences
with respect to soft symmetric alignment (24) is defined as
follows. Let Z = [z1, . . . , zn ] and Z′ = [z′

1, . . . , z′
m] denote

the embedded representations output from the transformer
layer for the input of a pair of RNA sequences of length n
and m. The similarity ŝ between the two RNA sequences
is defined to be the weighted sum of the normalized inner
product between all zi and z′

j pairs:

ŝ = 1
A

n∑
i = 1

m∑
j = 1

ai jωi j , ωi j = zi · z′
j

‖zi‖‖z′
j‖

, A =
n∑

i=1

m∑
j=1

ai j ,

where ai j is

ai j = αi j + βi j − αi jβi j ,

αi j = exp
(
ωi j

)
∑m

k=1 exp (ωik)
,

βi j = exp
(
ωi j

)
∑n

k=1 exp
(
ωkj

) .

The similarity ŝ is calculated for all pairs of ncRNA se-
quences to be clustered, and a classification matrix of size
N × N is created, where N is the number of RNA sequences
in the test dataset. We applied spectral clustering to the rows
of the classification matrix by considering each row of the
N-dimensional vector a cluster indicator. To confirm the
improvement in the embedding quality by the SAL task,
we compared the clustering accuracy when using only the
MLM task with that when using the two tasks together.

Existing methods for RNA structural alignment

There is a family of Sankoff-style algorithms for structural
pairwise alignment that simultaneously predicts the optimal
alignment and the consensus secondary structure. For ex-
ample, Dynalign and Foldalign (13,25) use thermodynamic
models to find the minimum free energy consensus struc-
tures, while PARTS (26) uses a probabilistic model based
on the pseudo-energy obtained from base-pairing proba-
bilities and alignment probabilities to find the most likely
structural alignment. While Sankoff-style algorithms yield a

high alignment accuracy, the naive implementation is com-
putationally expensive, with a time complexity of O(n6) for
RNA sequences of length n. PMcomp takes base-pairing
probability matrices generated using McCaskill’s algorithm
as the input and incorporates the energy information of
each sequence into these matrices to quickly find common
secondary structures and alignments (27). Although Lo-
cARNA (12) is based on the PMcomp model, a time com-
plexity of O(n4) is achieved by simplifying the dynamic pro-
gramming method utilizing the fact that the base-pairing
probability matrix is actually sparse. SPARSE (28) takes
further advantage of this sparsity based on the conditional
probabilities of bases and base pairs in the loop region of the
RNA secondary structure, achieving a quadratic improve-
ment in the computational time over LocARNA. RAF (29)
achieves the same time complexity as SPARSE by utilizing
the sparseness of alignment candidates. DAFS is a state-
of-the-art accurate structural alignment program utilizing
integer programming technique (30) and its time complex-
ity is O(n3). R-Coffee is a multiple RNA alignment pack-
age that takes a similar strategy with our study by uti-
lizing an alignment-scoring scheme that incorporates sec-
ondary structure information (31) and its time complexity is
O(n2). As R-Coffee makes use of the base-pairing probabil-
ity calculated with McCaskill’s algorithm, it is considered
as a type of structural alignment algorithm. TOPAS is a
network-based scheme for pairwise structural alignment of
RNAs that can handle pseudoknots (32), and its time com-
plexity is O(n4) in the worst case. TOPAS employs graph
data structures to represent the RNA secondary structure
including pseudoknots and designs an efficient algorithm
to calculate an alignment of two graph structures by match-
ing two nodes in two different graphs. Finally, MAFFT v7
(33), which uses Kimura’s two-parameter model (34) as the
score matrix, was adopted as the baseline for RNA sequence
alignment. Note that MAFFT is a sequence-based align-
ment algorithm that does not take RNA structure informa-
tion into account. The list of command, options, package
and link information for existing alignment methods is pro-
vided in the Supplementary Table S1.

Existing methods for RNA family clustering

The clustering accuracies of the state-of-the-art methods
GraphClust (15), EnsembleClust (16) and CNNclust (18)
were compared. CNNclust is a deep learning-based algo-
rithm that performs supervised learning in which the RNA
family class is given as a label. CNNclust can classify RNA
families that are not used for training by calculating the
similarity score matrix for all pairs of input sequences.
We performed experiments with CNNclust using different
RNA family groups between training and testing. In con-
trast, GraphClust is an unsupervised learning algorithm
that does not require the RNA family class to be a la-
bel and achieves alignment-free clustering with some ex-
ceptions. GraphClust employs a graph kernel approach to
obtain feature vectors that contain both sequence and sec-
ondary structure information. These vectors representing
RNA sequences are clustered with a linear time complexity
over the number of sequences using a hashing technique. Fi-
nally, EnsembleClust calculates the similarity between two
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ncRNAs using the expected structural alignment and then
applies hierarchical clustering based on the similarity. The
list of command, options, package and link information for
existing clustering methods is provided in the Supplemen-
tary Table S1.

Sequence motif detection using a self-attention mechanism

We extracted the sequence motifs specific to each RNA
family by focusing on the self-attention mechanism, which
determines where to focus on the input embedding vec-
tors X = [x1, . . . , xn ] of the input RNA sequence r =
r1 , . . . , rn when generating the output sequence. The at-
tention coefficient sequence M = [m1, . . . , mn ], called at-
tention map, that is calculated for the input sequence r =
r1 , . . . , rn is defined as follows:

M =
H∑

h=1

n∑
i=1

sof tmax

((
qh

i

)
(Kh)�√
D

)
.

The base ri at position i with a high mi value is identified
as part of the motif. Thus, the attention map helps discover
the sequence motif since it indicates a base that is important
for training tasks (see the Supplementary Data and Sup-
plementary Figure S2 for more detailed explanation about
RNA motif detection using self-attention map).

Measures of the accuracies of alignment and clustering

Structural alignment accuracy was measured using sensitiv-
ity, positive predictive value (PPV) and F1 score, which are
calculated as follows. The number of true positives (TP) (or
false positives [FP]) is the number of positions (i, j ) in the
predicted alignment that belong (or do not belong) to the
reference alignment. The sensitivity of the predicted align-
ment is TP divided by the number of positions in the refer-
ence alignment, and the PPV is TP divided by the number
of positions in the predicted alignment. The F1 score is the
harmonic mean of sensitivity and PPV.

Clustering accuracy was measured with the Rfam fam-
ily as the true reference class. Three indices, namely, the
adjusted Rand index (ARI), homogeneity, and complete-
ness, were used to evaluate the clustering performance. The
ARI is a measure of how well two types of clustering re-
sults match. ARI takes a real number from -1 to 1: if the
value of ARI is -1, the two clustering results do not match at
all, while a value of 1 indicates that they completely match.
In this study, the ARI reflects how close the predicted clus-
tering result is to the true reference class composed of the
Rfam family.

The ARI is derived from the Rand index (RI), defined as
follows:

RI = T P + TN
T P + TN + F P + F N

E = (T P + F P) (T P + F N) + (TN + F P) (TN + F N)
T P + TN + F P + F N

ARI = (T P + TN) − E
(T P + TN + F P + F N) − E

where TP is the number of RNA sequences of the same
Rfam family in the same predicted cluster, TN is the num-
ber of RNA sequences of a different Rfam family in differ-
ent predicted clusters, FP is the number of RNA sequences
of different Rfam families in the same predicted cluster, and
FN is the number of RNA sequences of the same Rfam fam-
ily in different predicted clusters. Homogeneity is a measure
of the proportion of RNA sequences of a single Rfam fam-
ily that belong to a single predicted cluster, and complete-
ness measures the proportion of RNA sequences of a par-
ticular Rfam family that are assigned to the same predicted
cluster.

Datasets

For the pre-training of the MLM task, 76 237 human-
derived small ncRNAs with lengths ranging from 20 to 440
bases from RNAcentral (21) were utilized.

In the training of the SAL task, two types of datasets,
named TrainSet-A and TrainSet-B, were devised. In both
datasets, the pairwise structural alignment extracted from
Rfam alignment (19) was used. TrainSet-A consists of RNA
sequences sampled from seed RNA sequences in 36 RNA
families in which all families were overlapped with the fol-
lowing structural alignment benchmark dataset. TrainSet-
B consists of RNA sequences from all RNA families (3983
families) in Rfam database except the RNA families used in
the benchmark dataset BRAliBase2.1 k2 database (35). In
other words, the training and test datasets do not overlap
with respect to the RNA family.

For the structural alignment benchmark, we utilized the
BRAliBase2.1 k2 database (35) used in the previous study as
the gold standard benchmark dataset. Sequence pairs con-
taining unknown bases were eliminated. A total of 8587
RNA sequence pairs with an average length of approxi-
mately 100 bases were used for the benchmark test dataset.
The lists of RNA families in BRAliBase2.1 k2 database and
TrainSet-A of the SAL task are provided in the Supple-
mentary Data. Note that no alignment overlapped between
TrainSet-A and the benchmark test dataset.

To evaluate the clustering accuracy of RNABERT, the
test dataset was collected from the BRAliBase2.1 database.
The multiple alignment of each ncRNA family provided by
the database was treated as a true reference cluster, and each
ncRNA sequence in the multiple alignment was treated as
a member sequence. All reference clusters with a sequence
identity of <40% were selected. The dataset contained 37
RNA sequences and 12 RNA families. The RNA sequences
used in the RNA family clustering test did not overlap with
those used for the pre-training of the SAL task.

Implementation

The RNABERT model was implemented using PyTorch
for deep learning. All experiments were run on Linux Red
Hat 4.8.5–2 (GPU: Tesla v100, CPU: Intel(R) Xeon(R)
Gold 6148). Optuna (36) was used to find the optimal
hyperparameters for the MLM task. The hyperparame-
ters optimized for the transformer layer were the number
of attention heads, number of transformer layers, feature
size, activation function, and training algorithms, includ-
ing Adam, AdaGrad and momentum stochastic gradient
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Figure 3. Visualization of RNA base embedding. Shown is a t-SNE projection from a 120-dimensional embedded space to a two-dimensional space.
RNA base embeddings are visualized with colours according to the type of RNA base (left) and the type of characteristic secondary substructure (right).
The embedding space adequately represents the clusters for four RNA bases (left) and the subclusters for characteristic secondary structures (right). The
secondary structure of an RNA is basically composed of a combination of six substructures; hairpin loop, base pair in stem, bulge and internal loop,
multibranch loop, external loop at 3′, and external loop at 5′. The Supplementary Figure S4 illustrates the six substructures.

descent (SGD). In the MLM task, 5-fold cross-validation
was performed, and the hyperparameters were determined
to maximize accuracy.

RESULTS

Pre-training of base embedding encodes properties of RNA
secondary structure

To investigate whether RNABERT acquired an informa-
tive base embedding to encode four RNA bases and sec-
ondary structure information, the embedded representa-
tions output from the transformer layer for a set of RNA
sequences were projected into two-dimensional space us-
ing t-distributed stochastic neighbour embedding (t-SNE)
(37), which is a dimension reduction algorithm for map-
ping high-dimensional data to low dimensions. Figure 3
shows the result of mapping the 120-dimensional vector of
each base into a two-dimensional space (with the option
‘n components = 2’). In the dimension reduction by t-SNE,
the distance relationship between bases embedded in the
original 120-dimensional space is projected in two dimen-
sions so as to be preserved as much as possible. The em-
bedding space adequately represents the clusters for four
RNA bases (Figure 3, left) and the subclusters for char-
acteristic secondary substructures (Figure 3, right). Figure
3 shows that the RNA base embedding is globally sepa-
rated by four RNA bases and locally separated by char-
acteristic secondary substructures (hairpin loop, base pair
in stem and external loop) within each RNA base. This re-
sult clearly shows that RNABERT embedding using pre-
training with SAL and MLM tasks succeeded in encoding
not only base (nucleotide) information but also secondary
structure information (see the Figure S3 for t-SNE projec-
tion of embedding for all secondary substructures. The sec-

Table 1. RNA structural alignment accuracies and computational times
(shown in seconds) of RNABERT and state-of-the-art algorithms

Sensitivity PPV F1 Time (s)

RNABERT
(TrainSet-A)

0.881 0.947 0.913 288

RNABERT
(TrainSet-B)

0.851 0.932 0.890 284

LocaRNA 0.862 0.922 0.891 13,221
SPARSE 0.848 0.931 0.888 4,216
RAF 0.865 0.938 0.900 1,423
PARTS 0.860 0.931 0.894 432,585
Dynalign2 0.706 0.913 0.796 601,104
R-Coffee 0.842 0.934 0.886 878
TOPAS 0.879 0.938 0.908 2,103
Foldalign 0.861 0.922 0.890 451,112
DAFS 0.862 0.936 0.897 2,210
MAFFT 0.810 0.901 0.853 1,282

ondary structure of an RNA is basically composed of a
combination of six substructures; hairpin loop, base pair
in stem, bulge and internal loop, multibranch loop, exter-
nal loop at 3′ and external loop at 5′. The Supplementary
Figure S4 illustrates the six substructures.

RNA structural alignment result

Table 1 summarizes the performance evaluation results
based on the BRAliBase2.1 k2 database for our RNA struc-
tural alignment method, RNABERT trained on TrainSet-
A and TrainSet-B, and for the state-of-the-art algorithms
for RNA sequence alignment. As shown in Table 1, RN-
ABERT trained on TrainSet-A outperformed the existing
state-of-the-art structural alignment algorithms in all three
measures of accuracy. On the other hand, the performance
of RNABERT trained on TrainSet-B was still sufficiently
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Figure 4. SEN and PPV score plots for pairwise RNA structural alignments using RNABERT(TrainSet-A), RNABERT(TrainSet-B), LocARNA,
SPARSE, RAF, PARTS, Dynalign, Foldalign, R-Coffee, TOPAS, DAFS and a sequence-based alignment using MAFFT.

high, similar to other structural alignment algorithms. This
result indicates that RNABERT has sufficient generaliza-
tion ability when trained on a large set of RNA families.

In terms of computation time, RNABERT was faster
than the existing state-of-the-art algorithms and even faster
than the sequence-based (non-structural) alignment algo-
rithm MAFFT. The alignment computation of RNABERT
consists of three sub-procedures: the first procedure (trans-
former) obtains the embedding of each base, the second
procedure calculates the match score between the two in-
put sequences, and the third procedure calculates the align-
ment by the Needleman–Wunsch algorithm. The first two
procedures can be accelerated by GPU computation, and
the Needleman–Wunsch algorithm is a simple algorithm
that requires a computation time of O(n2) for two sequences
of length n. We achieved high-speed computation by im-
plementing the deep learning algorithm using Python and
PyTorch while implementing the Needleman–Wunsch algo-
rithm in C++. Note that the loading time of the transformer
model into the GPU was excluded from the time measure-
ment of pairwise alignment by RNABERT. The typical
amount of time needed to load the transformer model onto
GPU was around 4.376 s. In addition, the maximum mem-
ory consumption for the RNA structural alignment was
around 35.2G bytes in RNABERT.

Figure 4 shows the sensitivity (denoted SEN) and PPV
curves calculated for each RNA sequence alignment al-
gorithm. These values were plotted by sequence identity.
As shown in Figure 4, RNABERT yielded very accurate
structural alignment results and outperformed the existing
state-of-the-art structural alignment algorithms where the
sequence identity exceeded 50%. At lower sequence iden-
tities, the alignment accuracy of RNABERT(TrainSet-A)
was slightly lower than those of LocARNA, SPARSE and
Foldalign, which required larger computation times, and
was higher than that of RAF, which exhibited the fastest
computational time among the existing structural align-

Table 2. RNA family clustering accuracy. The ARI, homogeneity and
completeness are shown for RNABERT and the state-of-the-art tools for
RNA family clustering

ARI Homogeneity Completeness Time (s)

RNABERT
(TrainSet-A)
(MLM + SAL)

0.268 0.663 0.758 28.69

RNABERT
(TrainSet-B)
(MLM + SAL)

0.187 0.568 0.664 27.16

RNABERT (MLM) 0.177 0.556 0.663 27.81
CNNclust 0.189 0.612 0.642 17.45
EnsembleClust 0.200 0.587 0.661 11.32
GraphClust 0.243 0.746 0.666 520.22

ment algorithms. All existing Sankoff-style algorithms con-
duct RNA secondary structure predictions to calculate the
distances and similarities between RNA sequences. On the
other hand, RNABERT does not explicitly use secondary
structure predictions, which implies that the RNA base em-
bedding efficiently captures structural information. In par-
ticular, for sequences with very low sequence identities, the
accuracy of the sequence-based alignment MAFFT tends
to decrease, while RNABERT and the existing structural
alignment algorithms maintain high accuracy.

RNA family clustering results

Table 2 shows the ARI, homogeneity and completeness
of our RNA clustering method, RNABERT, and those
of the state-of-the-art tools for RNA family clustering.
RNABERT(TrainSet-A) with the MLM and SAL tasks
achieved the highest ARI and completeness among all
state-of-the-art tools. The existing methods all utilize RNA
secondary structure predictions to calculate the distances
and similarities between RNA sequences. This implies
that the RNABERT base embedding, which does not ex-
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Figure 5. Extracted sequence motifs of tRNA (A), (B) and snoRNA families (C and D). (A) and (C) are visualizations of the attention map at each base.
Bases with a darker backgrounds have higher attention map values.

plicitly use secondary structure prediction but uses the
same RNA family for SAL task, efficiently captures struc-
tural information. On the other hand, the performance of
RNABERT(TrainSet-B) trained on different RNA families
is less accurate compared with GraphClust and similar with
CNNclust. This result indicates that the SAL task designed
for effective structural alignment, but not for family cluster-
ing, is not sufficient for unknown RNA family clustering.

RNA motif

Several well-known sequence motifs in the snoRNA and
tRNA families were identified by observing the attention
maps. Attention maps, which indicate the ratios of con-
tribution to the MLM task, were extracted from the fi-
nal transformer layer of RNABERT, and sequence motifs
were detected from the attention maps. The ‘UUCGA’ se-
quence motif shown in Figure 5A is typical in the T loop of
tRNA (38). This motif is specifically present in TRT-AGT6-
1 (tRNA gene with anticodon AGT), as displayed in the
secondary structure in Figure 5B. The motifs depicted in
Figure 5C are the typical motifs ‘UGAUGA’ and ‘CUGA’
present in the snoRNA C/D box (39,40). These motifs are
specifically present at SNORD113-7, as displayed in the sec-
ondary structure in Figure 5D.

DISCUSSION

In this study, we performed two tasks to obtain informative
base embeddings. The MLM task is a fundamental step in
the original BERT algorithm, whereas SAL is a novel RNA
sequence-specific task introduced in this study. To deter-
mine whether these tasks effectively incorporate RNA sec-
ondary structure information into base embeddings, we per-
formed two tests, RNA clustering and sequence alignment.

Sankoff-style algorithm provides high structural align-
ment accuracy, but these algorithms are usually very com-
plex in both time and space. Unlike the many structural
alignment algorithms based on the Sankoff algorithm, RN-
ABERT does not explicitly consider RNA folding and
boasts a high structural alignment accuracy. This is con-
sidered to be evidence that the base embedding encodes
the secondary structure information specific to RNAs. Fur-
thermore, while RNABERT achieves the same accuracy as
Sankoff-style algorithms, it is much faster because it uses
a simple sequence-based alignment algorithm. In fact, the
time complexity of the RNABERT algorithm is only O(n2)
for two sequences of length n.

SPARSE (28) achieves a quadratic improvement in the
computational time of Sankoff-style algorithms for simul-
taneous alignment and folding by assuming that RNA
secondary structures are sparse. On the other hand, RN-
ABERT similarly achieves a quadratic computational time
improvement by reducing the RNA structural alignment
problem to a sequence alignment problem based on the pre-
training of base embeddings. In this way, the computational
time of RNABERT was an order of magnitude faster than
that of SPARSE, as revealed in this study.

Performance evaluation was done for two types of train-
ing datasets, TrainSet-A and TrainSet-B. TrainSet-A con-
tains the same RNA families as the benchmark test dataset
while TrainSet-B has no RNA family overlap with the test
dataset. When TrainSet-A was used, RNABERT exhib-
ited a superior accuracy than state-of-the-art existing struc-
tural alignment methods. When TrainSet-B was used, the
performance of RNABERT was still sufficiently high and
comparable to the one using TrainSet-A. This result shows
that RNABERT has succeeded in proposing a new scoring
scheme for sequence-based alignment algorithms to accom-
plish RNA structural alignment and has sufficient general-
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ization ability. It has to be noted that with the development
of high-throughput sequencing, hundreds of thousands of
ncRNAs have been detected, but many have not been an-
notated yet. In fact, 86% (24 972 896) of the 28 895 596
ncRNAs present in RNAcentral do not have gene ontology
(GO) annotations. Therefore, fast and accurate structural
alignment of unknown sequences of existing RNA families
is still practically valuable and RNABERT could contribute
to the annotation of such novel transcripts.

The base embeddings obtained by RNABERT are appli-
cable to various fields in RNA informatics. One immedi-
ate problem is the multiple structural alignment of RNA
sequences. RNABERT can be expected to accomplish this
task by combining existing sequence-based multiple align-
ment algorithms such as MUSCLE (41) and MAFFT (33)
with the score matrix � and informative base embedding.
Another area most likely to improve with the application
of RNABERT is the prediction of RNA secondary struc-
tures. Since the base embeddings contain information on
secondary structures, RNABERT is expected to contribute
to the prediction of RNA secondary structures (33,41,42).
Similarly, base embeddings can be applied to the RNA in-
teractome (RNA–protein interaction, RNA–RNA interac-
tion), in which the RNA secondary structure acts on the in-
teraction between molecules. In order to accomplish such
secondary structure-related problems, it would be a bet-
ter approach to incorporate the secondary structure predic-
tion as another pre-training task in the pre-training process
of RNABERT. Finally, while this study has not addressed
RNA modification (e.g. m6A, m1A), these findings may be
helpful for utilizing this information for the more precise
modelling of base embeddings.

DATA AVAILABILITY

The codes, pre-trained RNABERT model, and all datasets
used in this study are available at https://github.com/
mana438/RNABERT.git.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We are grateful to Dr Kengo Sato for helpful discussions.
Author’s Contributions: MA implemented the software,
analysed the data, compared RNABERT with the existing
methods, and co-wrote the paper. YS designed and super-
vised the research, analysed the data, and co-wrote the pa-
per. All authors read and approved the final manuscript.

FUNDING

Japan Society for the Promotion of Science [18H04127];
Ministry of Education, Culture, Sports, Science and Tech-
nology [17H06410]; Core Research for Evolutional Science
and Technology [JPMJCR20S3]. Funding for open access
charge: Ministry of Education, Culture, Sports, Science and
Technology [17H06410].
Conflict of interest statement. None declared

REFERENCES
1. Asgari,E., McHardy,A.C. and Mofrad,M.R.K. (2019) Probabilistic

variable-length segmentation of protein sequences for discriminative
motif discovery (DiMotif) and sequence embedding (ProtVecX). Sci.
Rep., 9, 3577.

2. Heinzinger,M., Elnaggar,A., Wang,Y., Dallago,C., Nechaev,D.,
Matthes,F. and Rost,B. (2019) Modeling aspects of the language of
life through transfer-learning protein sequences. BMC
Bioinformatics, 20, 723.

3. Rives,A., Meier,J., Sercu,T., Goyal,S., Lin,Z., Liu,J., Guo,D., Ott,M.,
Zitnick,C.L., Ma,J. et al. (2021) Biological structure and function
emerge from scaling unsupervised learning to 250 million protein
sequences. Proc. Natl. Acad. Sci. USA, 118, e2016239118.

4. Ng,P. (2017) dna2vec: consistent vector representations of
variable-length k-mers. arXiv doi: https://arxiv.org/abs/1701.06279,
23 January 2017, preprint: not peer reviewed.

5. Mikolov,T., Sutskever,I., Chen,K., Corrado,G.S. and Dean,J. (2013)
Distributed representations of words and phrases and their
compositionality. In: Proceedings of the 26th International Conference
on Neural Information Processing Systems, Volume 2 (Lake Tahoe,
Nevada). Curran Associates, Inc., Red Hook, NY. pp. 3111–3119.

6. Peters,M., Neumann,M., Iyyer,M., Gardner,M., Clark,C., Lee,K.
and Zettlemoyer,L. (2018) Deep contextualized word representations.
In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, New Orleans, Louisiana, pp. 2227–2237.

7. Devlin,J., Chang,M.-W., Lee,K. and Toutanova,K. (2019) BERT:
Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota,
pp. 4171–4186.

8. Alley,E.C., Khimulya,G., Biswas,S., AlQuraishi,M. and Church,G.M.
(2019) Unified rational protein engineering with sequence-based deep
representation learning. Nat. Methods, 16, 1315–1322.

9. Min,S., Park,S., Kim,S., Choi,H.-S. and Yoon,S. (2021) Pre-Training
of deep bidirectional protein sequence representations with structural
information. IEEE Access, 9, 123912–123926.

10. Sankoff,D. (1985) Simultaneous solution of the RNA folding,
alignment and protosequence problems. SIAM J. Appl. Math., 45,
810–825.

11. Lalwani,S., Kumar,R. and Gupta,N. (2014) Sequence-Structure
alignment techniques for RNA: a comprehensive survey. Adv. Life
Sci., 4, 21–35.

12. Will,S., Reiche,K., Hofacker,I.L., Stadler,P.F. and Backofen,R.
(2007) Inferring noncoding RNA families and classes by means of
genome-scale structure-based clustering. PLoS Comput. Biol., 3, e65.

13. Fu,Y., Sharma,G. and Mathews,D.H. (2014) Dynalign II: common
secondary structure prediction for RNA homologs with domain
insertions. Nucleic Acids Res., 42, 13939–13948.

14. Needleman,S.B. and Wunsch,C.D. (1970) A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. J. Mol. Biol., 48, 443–453.

15. Heyne,S., Costa,F., Rose,D. and Backofen,R. (2012) GraphClust:
alignment-free structural clustering of local RNA secondary
structures. Bioinformatics, 28, i224–32.

16. Saito,Y., Sato,K. and Sakakibara,Y. (2011) Fast and accurate
clustering of noncoding RNAs using ensembles of sequence
alignments and secondary structures. BMC Bioinformatics, 12, 11–14.

17. Baek,J., Lee,B., Kwon,S. and Yoon,S. (2018) LncRNAnet: long
non-coding RNA identification using deep learning. Bioinformatics,
34, 3889–3897.

18. Aoki,G. and Sakakibara,Y. (2018) Convolutional neural networks for
classification of alignments of non-coding RNA sequences.
Bioinformatics, 34, i237–i244.

19. Kalvari,I., Argasinska,J., Quinones-Olvera,N., Nawrocki,E.P.,
Rivas,E., Eddy,S.R., Bateman,A., Finn,R.D. and Petrov,A.I. (2018)
Rfam 13.0: shifting to a genome-centric resource for non-coding
RNA families. Nucleic Acids Res., 46, D335–D342.

20. Vaswani,A., Shazeer,N., Parmar,N., Uszkoreit,J., Jones,L.,
Gomez,A.N., Kaiser,Ł. and Polosukhin,I. (2017) Attention is all you

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/4/1/lqac012/6534363 by guest on 02 January 2024

https://github.com/mana438/RNABERT.git
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqac012#supplementary-data
https://arxiv.org/abs/1701.06279


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1 11

need. In: Advances in neural information processing systems.
papers.nips.cc, pp. 5998–6008.

21. Consortium,TheRNAcentral, Petrov,A.I., Kay,S.J.E., Kalvari,I.,
Howe,K.L., Gray,K.A., Bruford,E.A., Kersey,P.J., Cochrane,G.,
Finn,R.D. et al. (2017) RNAcentral: a comprehensive database of
non-coding RNA sequences. Nucleic Acids Res., 45, D128–D134.

22. Akiyama,M., Sato,K. and Sakakibara,Y. (2018) A max-margin
training of RNA secondary structure prediction integrated with the
thermodynamic model. J. Bioinform. Comput. Biol., 16, 1840025.

23. Tsochantaridis,I., Joachims,T., Hofmann,T. and Altun,Y. (2005)
Large margin methods for structured and interdependent output
variables. J. Mach. Learn. Res., 6, 1453–1484.

24. Bepler,T. and Berger,B. (2019) Learning protein sequence
embeddings using information from structure. In: 7th International
Conference on Learning Representations, New Orleans, LA.

25. Sundfeld,D., Havgaard,J.H., de Melo,A.C.M.A. and Gorodkin,J.
(2015) Foldalign 2.5: multithreaded implementation for pairwise
structural RNA alignment. Bioinformatics, 32, 1238–1240.

26. Harmanci,A.O., Sharma,G. and Mathews,D.H. (2008) PARTS:
probabilistic alignment for RNA joinT secondary structure
prediction. Nucleic Acids Res., 36, 2406–2417.

27. Hofacker,I.L., Bernhart,S.H.F. and Stadler,P.F. (2004) Alignment of
RNA base pairing probability matrices. Bioinformatics, 20,
2222–2227.

28. Will,S., Otto,C., Miladi,M., Möhl,M. and Backofen,R. (2015)
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