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Abstract

Learning effective protein representations is critical in a
variety of tasks in biology such as predicting protein
functions. Recent sequence representation learning methods
based on Protein Language Models (PLMs) excel in
sequence-based tasks, but their direct adaptation to tasks
involving protein structures remains a challenge. In contrast,
structure-based methods leverage 3D structural information
with graph neural networks and geometric pre-training
methods show potential in function prediction tasks, but
still suffers from the limited number of available structures.
To bridge this gap, our study undertakes a comprehensive
exploration of joint protein representation learning by
integrating a state-of-the-art PLM (ESM-2) with distinct
structure encoders (GVP, GearNet, CDConv). We introduce
three representation fusion strategies and explore different
pre-training techniques. Our method achieves significant
improvements over existing sequence- and structure-based
methods, setting new state-of-the-art for function annotation.
This study underscores several important design choices
for fusing protein sequence and structure information.
Our implementation is available at https://github.com/
DeepGraphLearning/ESM-GearNet.

Introduction

Proteins, as fundamental building blocks of life, play a
pivotal role in numerous biological processes, ranging
from enzymatic reactions to cellular signaling. Their
intricate  three-dimensional structures and dynamic
behaviors underscore their functional diversity. Effective
understanding of proteins is crucial for unraveling
mechanisms underlying diseases, drug discovery, and
synthetic biology. Herein, protein representation learning
has emerged as a highly promising avenue, showcasing its
efficacy across diverse protein comprehension tasks, such
as protein structure prediction (Jumper et al. 2021; Baek
et al. 2021), protein function annotation (Gligorijevi¢ et al.
2021; Meier et al. 2021; Zhang et al. 2022b), protein-protein
docking (Corso et al. 2023; Zhang et al. 2023a) and protein
design (Hsu et al. 2022; Dauparas et al. 2022).

Given the recent strides in the advancement of large pre-
trained language models for natural languages (Vaswani
et al. 2017; Devlin et al. 2019; Brown et al. 2020), various
categories of language models have been repurposed for
protein representation learning. These protein language

models (PLMs) consider protein sequences as the essence
of life’s language, treating individual amino acids as tokens.
Self-supervised learning methods are applied to acquire
informative protein representations from billions of natural
protein sequences. Notable instances include long short-
term memory (LSTM)-based PLMs like UniRep (Alley
et al. 2019), as well as transformer-based PLMs like
ProtTrans (Elnaggar et al. 2021b), Ankh (Elnaggar et al.
2023a) and ESM (Rives et al. 2021; Lin et al. 2023).
While these methods exhibit substantial potential in protein
function prediction tasks (Rao et al. 2019; Xu et al. 2022),
their direct application to tasks involving structural inputs,
such as protein structure assessment and protein-protein
interaction prediction, presents challenges.

Inspired by advancements in protein structure prediction
tools (Jumper et al. 2021; Lin et al. 2023) and the critical
role of protein structures in determining functionality,
another strand of methods focuses on acquiring protein
representations based on 3D structures. These approaches
model proteins as graphs, with atoms or amino acids
serving as nodes and edges indicating spatial adjacency.
Subsequently, 3D graph neural networks (GNNs) facilitate
message propagation to capture interactions between
residues, enabling the extraction of representations invariant
to structural translation and rotation. Typical examples
include GearNet (Zhang et al. 2022b), GVP (Jing et al.
2021), CDConv (Fan et al. 2023). Additionally, efforts have
been made to design pre-training strategies that leverage
unlabeled protein structures from PDB (Berman et al.
2000) and the AlphaFold Database (Varadi et al. 2021).
These methods rely on self-supervised learning techniques
such as contrastive learning (Zhang et al. 2022b; Chen
et al. 2023b), self-prediction (Zhang et al. 2022b), and
denoising (Guo et al. 2022; Zhang et al. 2023b), enabling
structure encoders to achieve top-tier performance on tasks
related to protein structure, even pre-trained on a relatively
small set of unlabeled proteins. Nonetheless, these structure-
based approaches still suffer from the limited number of
available structures compared with PLMs, raising questions
about their ability to surpass sequence-based methods.

In order to understand how to combine the advantages of
both worlds, we conduct a comprehensive investigation into
joint protein representation learning. Our study combines a
state-of-the-art PLM (ESM-2) with three distinct structure



encoders (GVP, GearNet, and CDConv). We introduce
three fusion strategies—serial, parallel, and cross fusion—to
combine sequence and structure representations. We further
explore six diverse pre-training techniques, employing
the optimal model from the aforementioned choices and
leveraging pre-training on the AlphaFold Database. Our
findings indicate that:

1. Serial fusion, a straightforward approach, proves
remarkably effective, outperforming the other two
fusion strategies across most tasks.

2. Adapting a reduced learning rate for PLMs is crucial
to safeguard their representations from disruption.

3. Despite GearNet’s relative performance lag behind the
other encoders, it demonstrates superior results after
integration with PLMs.

4. The two pre-training methods leveraging both
sequence and structure information can yield superior
performance compared to other methods relying solely
on either sequence or structure information.

Drawing from these insights, our method achieves
significant improvements over existing sequence- and
structure-based methods, establishing a new state-of-the-
art on Enzyme Commission and Gene Ontology annotation
tasks. We believe that this work holds practical significance
in the adaptation of PLMs with structure-based encoders.

Related Work

Sequence-based representation learning. Regarding
protein sequences as the language of life, models from
the rapidly developing field of NLP are widely used in
modeling protein sequence data. Examples include the
CNN-based models (Shanehsazzadeh, Belanger, and Dohan
2020), LSTM-based models (Rao et al. 2019), ResNet (Rao
et al. 2019) and transformer-based models (Elnaggar et al.
2021b; Rives et al. 2021; Lin et al. 2023; Zhang et al.
2022a; Xu et al. 2023b; Notin et al. 2022; Madani et al.
2023; Chen et al. 2023a). Given the rising number of
protein sequences and the substantial cost of labeling their
functions, representation learning is typically conducted in
a self-supervised manner to leverage the extensive protein
sequence datasets, via autoregressive modeling (Notin
et al. 2022; Madani et al. 2023; Hesslow et al. 2022;
Elnaggar et al. 2021a, 2023a), masked language modeling
(MLM) (Elnaggar et al. 2021b; Rives et al. 2021; Lin
et al. 2023), pairwise MLM (He et al. 2021), contrastive
learning (Lu et al. 2020), etc. PLMs have shown impressive
performance on capturing underlying patterns of sequences,
thus predicting protein structures (Lin et al. 2023) and
functionality (Rao et al. 2019; Xu et al. 2022; Chen et al.
2023a). However, these existing PLMs cannot explicitly
encode protein structures, which are actually determinants
of diverse protein functions. In this work, we seek to
overcome this limitation by enhancing a PLM with a protein
structure encoder so as to capture detailed protein structural
characteristics.

Structure-based representation learning. Diverse types
of protein structure encoders have been devised to capture

different granularities of protein structures, including
residue-level structures (Gligorijevié et al. 2021; Zhang et al.
2022b; Xu et al. 2023a; Jing et al. 2021; Hsu et al. 2022;
Dauparas et al. 2022), atom-level structures (Jing et al.
2021; Hermosilla et al. 2021) and protein surfaces (Gainza
et al. 2020; Sverrisson et al. 2021). These structure encoders
have boosted protein function understanding (Gligorijevic¢
et al. 2021; Zhang et al. 2022b), protein design (Jing
et al. 2021; Hsu et al. 2022; Dauparas et al. 2022; Gao,
Tan, and Li 2023) and protein structure generation (Wu
et al. 2022b; Trippe et al. 2023). Various self-supervised
learning algorithms are designed to learn informative
protein structure representations, including contrastive
learning (Zhang et al. 2022b; Hermosilla and Ropinski
2022), self-prediction (Zhang et al. 2022b; Chen et al.
2023b), denoising score matching (Guo et al. 2022; Wu et al.
2022a) and structure-sequence multimodal diffusion (Zhang
et al. 2023b). Structurally pre-trained models outperform
PLMs on function prediction tasks (Zhang et al. 2022a;
Hermosilla and Ropinski 2022), given the principle that
protein structures are the determinants of their functions.

Joint representation learning. The integration of protein
sequence-based models with protein structure models
remains unexplored. Early attempts like LM-GVP sought
to combine PLMs with structure encoders (Wang et al.
2022a). While recent methods have been introduced, their
outcomes have not consistently surpassed those of single-
modality models (Huang et al. 2023; Heinzinger et al. 2023).
In this study, we introduce three novel fusion methods aimed
at harnessing the bimodal information of both sequence
and structure. Different from earlier approaches, we
emphasize the potential benefits of leveraging bimodal data.
This is achieved by incorporating sequential information
into distinct residue-level encoders—GearNet, GVP, and
CDConv(Zhang et al. 2022b; Jing et al. 2021; Fan et al.
2023). Furthermore, we enhance the effectiveness of the
proposed sequence-structure hybrid encoder, ESM-GearNet,
through structure-based pre-training.

Methods

In this section, we describe basic concepts of proteins
and sequence- and structure-based protein representation
learning methods. Next, we propose three different strategies
for combining sequence and structure representations.
Finally, we present how different pre-training algorithms can
be applied on the proposed architecture.

Proteins

Proteins are large molecules composed of residues, a.k.a.
amino acids, linked together in chains. Despite there being
only 20 standard residue types, their numerous combinations
contribute to the immense diversity of proteins found
in nature. The specific arrangement of these residues
determines the 3D positions of all the atoms within the
protein, forming what we call the protein’s structure. A
residue includes elements like an amino group, a carboxylic
acid group, and a side chain group that defines its type.
These components connect to a central carbon atom known



as the alpha carbon. For simplicity in our work, we use
only the alpha carbon atoms to represent the main backbone
structure of each protein. Each protein can be represented
as a sequence-structure pair P = (R, X), where R =
[r1,72, -+ ,r,] denotes the sequence of the protein with
r; € {1,...,20} indicating the type of the i-th residue, and
X = [x1,%2...,x,] € R™3 denotes its structure with
x; representing the Cartesian coordinates of the ¢-th alpha
carbon atom, and n denotes the number of residues.

Sequence-Based Protein Representation Learning

Treating protein sequences as the language of life, recent
works draw inspirations from large pre-trained language
models to learn the evolutionary information from billions
of protein sequences via self-supervised learning. In this
work, we illustrate our method using the transformer-
based Protein Language Model (PLM) ESM (Rives et al.
2021; Lin et al. 2023). These models process residue type
sequences through multiple self-attention layers and feed-
forward networks to capture inter-residue dependencies.
Specifically, we represent the hidden state of the -
th residue as hgl), initialized with the residue’s type
embedding h\” = Embedding(r;) € R? where d
denotes the hidden representation dimension. Self-attention
layers compute attention coefficients cv;;, measuring residue
contact strength between ¢ and j. The output representations
are further fed into forward networks.

Oéz(é») = Softmaxj(ﬁLinearq(hgl)) ~Lineark(h§l)))
140.5 ! n .. .
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In practice, positional embeddings, multi-head attention and
layer norm layers are incorporated, enhancing the modeling
process (details omitted here).

These models are pre-trained with masked language
modeling (MLM) loss by predicting the type of a masked
residue given the surrounding context. An additional linear
head employs the final-layer representations h(X) for the
prediction. The loss function for each sequence is

Lyrpv = Em[D e pr —logp(rilr an)],

where a random set of indices M is chosen for masking,
replacing the true token at each index ¢ with a mask token.
For each masked token, the loss aims to minimize the
negative log likelihood of the true residue r; given the
masked sequence 7,57 as context. By fully utilizing massive
unlabeled data, these models have achieved state-of-the-art
performance on various protein understanding tasks (Lin
et al. 2023; Elnaggar et al. 2023b).

Structure-Based Protein Representation Learning

The achievements of AlphaFold2 (Jumper et al. 2021)
have revolutionized precise protein structure prediction,
triggering a wave of research on structure-driven pre-
training (Zhang et al. 2022b; Chen et al. 2023b; Zhang et al.
2023b) due to the direct influence of structures on protein

functionalities. Given a protein, structure-based techniques
often establish a graph incorporating both sequential and
spatial details, leveraging graph neural networks to learn
representations. In this work, we focus on three commonly
used protein structure encoder: GearNet, GVP and CDConv.

GearNet (Zhang et al. 2022b) GearNet represents
proteins using a multi-relational residue graph G =
(V,E,R), where V and £ denote the sets of residues
and edges, respectively, and R represents the edge types.
Three directed edge types are incorporated into the graph:
sequential edges, radius edges, and K-nn edges. Specifically,

g(seq) = {(Z,])‘Z,] S V? |] - Z| < dseq}7
S(radius) = {(Z,])‘Z,j S V? |mj - wzl < dradius}y
g8 = {(i, j)li,j € V. j € knn(i)},
E= g(seq) U g(radius) U g(knn),

where dy.q = 3 defines the sequential distance threshold,
dragivs = 10A defines the spatial distance threshold, and
knn(7) indicates the K-nearest neighbors of node ¢ with k =
10. For sequential edges, edges with different sequential
distances are treated as different types. These edge types
collectively reflect distinct geometric attributes, contributing
to a holistic featurization of proteins. Upon constructing the
graph, a relational message passing procedure is conducted.
We denote u(") as the representations at the I-th layer,
initialized with ugo) = Embedding(r;). The message
passing process can be written as:

l -1 -1
w! =l 4o (T W Syen V),

where N.(7) is the set of neighbors of 7 with edge type r,
and o(-) is the ReLU function.

GVP (Jing et al. 2021) The GVP module replaces
standard MLPs in GNN aggregation and feed-forward
layers, operating on scalar and geometric features—features
that transform as vectors with spatial coordinate rotations

A radius graph is constructed with £ = &) wwhere
dragivs = 10A. A radius graph, £ = £ (radivs) - (yith
dragivs = 10A, is constructed. Node features begin as
uz(.o) = (Embedding(r;),0), while edge features are
e(j,i) = (bf(x; — x;),x; — x;), using rbf(-) for

pairwise distance features. For message functions, the GVP
network concatenates node and edge features, applying
the GVP module for message passing on the (scalar,
vector) representations. A feed-forward network follows
each message passing layer. Formally,

(+0.5) _ (1) 1 O]
u; =Y+ W Zje/\/(i) GVP([uj s €i)))s
ugl+1) _ u§z+o.5) n GVP(uEHO's)),
where uz(»l) € R? x RY*3 denotes hidden representation

tuples at the {-th layer, and N (¢) is neighbors of 7. GVP(+)
is the proposed module maintaining SE(3)-invariance of
scalar features and SE(3)-equivariance of vector features.
The scalar features at the last layer of each node are utilized
for property prediction to keep SE(3)-invariance.
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Figure 1: Three different ways to fuse sequence and structure representations. (a) Serial fusion, where sequence representations
are used as residue features in structure encoders. (b) Parallel fusion, involving the concatenation of sequence and structure
representations. (c) Cross fusion, where sequence and structure representations are combined via multi-head self-attention.

CDConv (Fan et al. 2023) CDConv adopts GearNet’s
concept of multi-type message passing to capture sequential
and spatial interactions among residues. Instead of using
distinct kernel matrices for varied edge types, CDConv
employs an MLP to parameterize kernel matrices, relying
on relative spatial and sequential information between two
residues. With the same initialization as GearNet, the
message passing procedure is written as

! - (-
ul(.):ug 1)+0'(Zj€N(i)W(CCj—wi,]—Z) ug D),

where W (-,-) represents an MLP that takes relative
positions in Euclidean space and sequences as input,
producing the kernel matrix as output. The edge set is the
intersection of sequential and spatial edges £ = £0¢9 N
& (radius) yith dseq = 11. To reduce node counts and expand
reception field, a half pooling approach is employed every
two CDConv layers, merging adjacent nodes. For the i-th
CDConv layer, the radius is set to [i/2 + 1|dagius, and the
output dimension is set to [i/2 + 1]d, where dpgius = 4A
and d denote the initial radius and initial hidden dimensions,
respectively. Due to the pooling scheme, CDConv cannot
yield residue-level representations.

Fusing Sequence and Structure Representations

While protein language models implicitly capture structural
contact information, explicitly incorporating detailed
structures can effectively model spatial interactions among
residues. Huge-scale pre-training of PLMs also significantly
bolsters relatively small protein structure encoders. In this
subsection, we propose fusing representations from protein
language models and protein structure encoders, presenting
three fusion strategies illustrated in Figure 1:

1. Serial fusion. Rather than initializing structure encoder
input node features with residue type embeddings, we
initialize them with PLM outputs, denoted as u(®) =
h(L), and utilize the structure encoder’s output as the
final protein representations, z = w’. This approach

provides more powerful residue type representations
incorporating sequential context.

2. Parallel fusion. We concatenate outputs of sequence
encoders and structure encoders for final representations,
yielding z = [h("), w(P)]. This fusion method combines
both representations while keeping the structure encoder
from affecting pre-trained sequence representations.

3. Cross fusion. To enhance interaction, we introduce
a cross-attention layer over sequence and structure

representations as z; = SelfAttn([hEL)7u§L)]). The

attention layer’s output is averaged over the protein to
produce final representations z.

Ultimately, the resulting representation is employed for
residue-level or protein-level predictions.

Reduced learning rate of PLMs Given that structure
encoders start from random initialization while PLMs are
pre-trained, we’ve observed practical benefits in utilizing
a lower learning rate for PLMs to prevent catastrophic
forgetting. In our experiments, we maintain a learning
rate ratio of 0.1, a strategy we find crucial for the robust
generalization of our proposed fusion approaches.

Joint Pre-Training on Unlabeled Proteins

The current joint encoder effectively utilizes knowledge
acquired from extensive unlabeled protein sequences.
Recent strides in accurate protein structure prediction,
have provided access to a substantial collection of precise
protein structures, such as AlphaFold Database (Varadi et al.
2021). Several structure-based pre-training techniques have
emerged, including self-prediction (Zhang et al. 2022b),
multiview contrast (Chen et al. 2023b), and denoising
objectives (Zhang et al. 2023b). Taking a step further, we
next discuss how to apply these pre-training algorithms
upon the joint encoder, as illustrated in Figure 2. During
pre-training, ESM remains fixed while only the structure
encoder is tuned, preserving sequence representations.
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Figure 2: Pre-training ESM-GearNet on AlphaFold Database with six different methods: residue type prediction, angle
prediction, distance prediction, dihedral prediction, multiview contrastive learning and SiamDiff.

Method Loss function

Residue Type Prediction CE(fres(2i),7:)

Distance Prediction (fais(2iy 25) — |l@s — zj]|2)?
Angle Prediction CE( fung(2i, 25, 21), bin(ZLijk))
Dihedral Prediction CE(fain(2:, 2j, 2k, 2¢), bin(ZLijkt))

Table 1: Self-prediction methods. We use 1i,j,k,t to
denote sampled residue indices. Tasks are associated with
respective MLP heads: fres, fais, fang, and fain. CE() is the
cross entropy loss, and angles are discretized with bin(-).

Self-prediction methods (Zhang et al. 2022b). Based
on the recent progress of self-prediction methods in natural
language processing (Devlin et al. 2019; Brown et al.
2020), these methods aim to predict one part of the protein
given the remaining context. Four self-supervised tasks are
introduced, guided by geometric attributes. These methods
perform masked prediction on individual residues, residue
pairs, triplets, and quadruples, subsequently predicting
residue types, distances, angles, and dihedrals, respectively.
The corresponding loss functions are summarized in Table 1.

Multiview contrastive learning (Zhang et al. 2022b).
The frameworks aim to maintain similarity between
correlated protein subcomponents after mapping to a
lower-dimensional latent space. For a protein graph G,
we utilize subsequence cropping to randomly select
consecutive subsequences. This scheme captures protein
domains—recurring consecutive subsequences in different
proteins that signify functions (Ponting and Russell 2002).
After subsequence sampling, following common self-
supervised learning practice (Chen et al. 2020), we employ
a noise function for diverse views, specifically random edge

masking that hides 15% of edges in the protein graph.
We align their representations in the latent space with
an InfoNCE loss (Chen et al. 2020). Let x,y represent
subcomponent graphs from the same protein, and &k from
other proteins within the same batch, with corresponding
representations 2z, 2, 2. The loss function is written as

exp(sim(g(z.), 9(2,))/7)
22 Uz exp(sim(g(zy), g(21))/7)

Ly, =—log

where ¢(-) denotes an MLP applied to latent representations,
B, 7 denote batch size and temperature, and 1[k # z] €
{0, 1} acts as an indicator function that equals 1 iff k # .
Diffusion-based pre-training (Zhang et al. 2023b).
These methods are inspired by the success of diffusion
models in capturing the joint distribution of sequences and
structures. During pre-training, noise levels ¢t € {1,..,T}
are sampled and applied to structures and sequences,
where higher levels indicate larger noise. The encoder’s
representations are used for denoising with loss functions:

Luet = ]Etw{l,..,T}EewN’(O,I) [”5 - fnoise(z(t)v -’B(t))H%],
L:seq = ]Etw{l,..,T} Zl CE (Tia fres(zi(t)))v
with fioise, fres @s denoising networks. SiamDiff enhances
this diffusion-based pre-training by generating correlated

conformers via torsional perturbation and performing
mutual denoising between two diffusion trajectories.

Experiments
Setup

In this section, we evaluate the effectiveness of our proposed
methods on function annotation and structure property



Table 2: Evaluation results on EC, GO, PSR and MSP under various fusion schemes and structure encoders. "PLM” and
”Struct. Info.” indicate the usage of protein language models and structural information in the model, respectively. We employ
underlining to highlight the best outcomes within each block and use bold symbols to highlight the best results for each task.

Method PLM slmflct. EC GO-BP GO-MF GO-CC PSR MSP
mo. g . Funax Fonax Funax Global p AUROC
ProtBERT-BFD! v X 0838 0.279 0.456 0.408 - -
ESM-2-650M! v X 0880 0.460 0.661 0.445 - -
GearNet X v 0730 0.356 0.503 0.414 0.708 0.549
ESM-GearNet
- w/ serial fusion 0.890 0.488 0.681 0.464 0.829 0.685
- w/ parallel fusion 0.792 0.384 0.573 0.407 0.760 0.644
- w/ cross fusion 0.884 0.470 0.660 0.462 0.747 0.408
GVP 0.489 0.326 0.426 0.420 0.726 0.664
ESM-GVP
- w/ serial fusion 0.881 0.473 0.668 0.485 0.866 0.617
- w/ parallel fusion v v 0.872 0.446 0.657 0.455 0.702 0.592
- w/ cross fusion 0.880 0.465 0.664 0.469 0.764 0.583
CDConv X v 0820 0.453 0.654 0.479 0.786 0.529
ESM-CDConv?
- w/ serial fusion % s 0880 0.465 0.658 0.475 0.851 0.566
- w/ parallel fusion 0.879 0.448 0.662 0.455 0.803 0.602

' Protein language models do not take structures as input and thus cannot handle structure-related tasks like PSR and MSP.

% Since CDConv does not yield residue-level representations, we cannot use cross fusion for ESM-CDConv.

prediction tasks in Atom3D (Townshend et al. 2021). Four
key downstream tasks are considered:

1. Enzyme Commission (EC) Number Prediction:
This task involves predicting EC numbers that describe a
protein’s catalytic behavior in biochemical reactions. It’s
formulated as 538 binary classification problems based on
the third and fourth levels of the EC tree (Webb et al. 1992).
We use dataset splits from Gligorijevié et al. (2021) and test
on sequences with up to 95% identity cutoff.

2. Gene Ontology (GO) Term Prediction: This
benchmark includes three tasks: predicting a protein’s
biological process (BP), molecular function (MF), and
cellular component (CC). Each task is framed as
multiple binary classification problems based on GO term
annotations. We employ dataset splits from Gligorijevié
et al. (2021) with a 95% sequence identity cutoff.

3. Protein Structure Ranking (PSR): This task
involves predicting global distance test scores for structure
predictions submitted to the Critical Assessment of
Structure Prediction (CASP) (Kryshtafovych et al. 2019).
The dataset is partitioned by competition year.

4. Mutation Stability Prediction (MSP): The goal is to
predict if a mutation enhances a protein complex’s stability.
The dataset is divided based on a 30% sequence identity.

We employ the AlphaFold protein structure database
vl (Varadi et al. 2021) for pre-training, following (Zhang
et al. 2022b). This dataset encompasses 365K proteome-
wide predictions from AlphaFold2. For evaluation, we
report the protein-centric maximum F-score (Fy.x) for
EC and GO prediction—common metrics in CAFA
challenges (Radivojac et al. 2013). Additionally, we present
global Spearman correlation for PSR and AUROC for MSP.

Training. Considering the model capacity and
computational budget, we selected ESM-2-650M as
the base PLM. For structure encoders, we follow the
original paper’s default settings: 6 layers of GearNet with
512 hidden dimensions, 8 layers of CDConv with an
initial hidden dimension of 256, and 5 layers of GVP with
scalar features at 256 and vector features at 16 dimensions.
We perform 50 epochs of pre-training on the AlphaFold
Database, following the hyperparameters in (Zhang et al.
2022b). Pre-training employs a batch size of 256 and a
learning rate of 2e-4. For downstream evaluation, we utilize
Adam optimizer with a batch size of 2 and a learning rate of
le-4. These models are implemented using the TorchDrug
library (Zhu et al. 2022) and trained across 4 A100 GPUs.

Results

Evaluation of different fusion methods We evaluate our
methods across the four tasks, employing the fusion of three
structure encoders with ESM-2-650M using three distinct
fusion strategies. The results are presented in Table 2.
To provide context, we also include the outcomes of the
structure encoders, along with two protein language models:
ESM-2-650M and ProtBERT-BFD (Elnaggar et al. 2021b).
First, upon intra-block result comparisons, it is evident
that serial fusion, while simple in concept, is remarkably
effective, surpassing the other two fusion strategies in the
majority of tasks. The sole exceptions are ESM-CDConv
on GO-MF and MSP, where the CDConv features yield
marginal enhancements to PLMs for both fusion schemes.
Next, through inter-block result comparisons, we observe
that while the raw performance of vanilla GearNet lags
behind other encoders like CDConv, its integration with



Table 3: Results of ESM-GearNet (serial fusion) pre-trained with six algorithms. The second and third column mark whether
the pre-training methods include sequence and structure objectives, respectively. The best results are highlighted in bold.

Sequence Structure EC GO-BP GO-MF GO-CC PSR MSP
Method Objecti Obiecti
jective Jective Fonx Fonax Funax Global p AUROC
ESM-GearNet (serial fusion) - - 0.890 0.488 0.681 0.464 0.829 0.685
- w/ Residue Type Prediction v X 0.892 0.507 0.680 0.484 0.832 0.680
- w/ Distance Prediction X v 0.891 0.498 0.680 0.485 0.856 0.615
- w/ Angle Prediction X v 0.887 0.504 0.679 0.481 0.851 0.702
- w/ Dihedral Prediction X v 0.891 0.499 0.680 0.502 0.845 0.515
- w/ Multiview Contrast X X 0.896 0.514 0.683 0.497 0.853 0.599
- w/ SiamDiff v v 0.897 0.500 0.682 0.505 0.863 0.692
07 Table 4: Comparison between our methods with the state-of-
os the-art (SOTA) methods on benchmark tasks.
§ Method EC GO-BP GO-MF GO-CC PSR MSP
3 ro.5 Funax Funax Funax Funax Global p AUROC
g Loa SOTA 0.888 0.495 0.677 0.551 0.862 0.709
H ’ ESM-GearNet 0.890 0.488 0.681 0.464 0.829 0.685
/ —— Ir ratio=1 u_E —— Ir ratio=1 los w/ pre-training  0.897 0.514 0.683 0.505 0.863 0.702
0.65 4 Ir:ratio=0.1 Ir:ratio=0.1
0.60 L — rratomo ‘ — Lratom0 jo2 excels in capturing structural intricacies for the GO-CC and
0 20 40 0 20 40 PSR tasks. SiamDiff’s superiority can be attributed to its
Epoch Epoch

Figure 3: ESM-GearNet (serial fusion) results on EC and
GO-MF with different learning rate ratios.

PLMs yields better outcomes, particularly for tasks like
EC, GO-BP, and GO-MF. This underscores the efficacy of
augmenting protein language representations onto structure
encoders. Notably, ESM-GVP’s enhanced performance in
PSR highlights the importance of model capcity in capturing
structural details for such tasks.

Furthermore, upon comparing ESM-GearNet with ESM-
2-650M, we observe substantial enhancements attributed
to the incorporation of structural representations. This also
enables it to effectively address structure-related tasks.

Effects of diminished learning rate To investigate the
impact of reduced learning rates on representation fusion,
we conducted experiments on EC and GO-MF using ESM-
GearNet (serial fusion). We set different learning rate ratios
for structure encoders relative to PLMs: 1, 0.1, and O (fixed).
As illustrated in Figure 3, the results consistently show that
keeping PLMs fixed leads to inferior performance compared
to fine-tuning them. When using equal learning rates for
both PLMs and structure encoders, a notable performance
drop occurs during GO-MF training, indicating significant
deterioration of the PLM representations. This underscores
the significance of employing reduced learning rates for
PLMs to safeguard their representations from degradation.

Evaluation of different pre-training methods We
choose the best-performing model, ESM-GearNet (serial
fusion), and pre-train it with the introduced six algorithms.
The results are shown in Table 4. Notably, the top two
pre-training methods are Multiview Contrast and SiamDiff.
The former significantly enhances function annotation
tasks such as EC, GO-BP, and GO-MF, while the latter

incorporation of both sequential and structural pre-training
objectives. In contrast to methods that directly use either
sequential or structural objectives, Multiview Contrast
offers a more comprehensive consideration of sequence and
structure dependencies. By aligning representations from
subsequences derived from the same protein, Multiview
Contrast captures co-occurring sequences and structural
motif dependencies. This utilization of ESM-2 and GearNet
representations proves advantageous for function prediction.

Comparison with state-of-the-art To showcase the
robust performance of our proposed approaches, we
compare them with previously established state-of-the-art
methods, namely PromptProtein (Wang et al. 2022b) for
EC and GO, and GVP (Jing et al. 2021) for PSR and
MSP tasks. Our method demonstrates superior performance
across most function annotation tasks, with the exception of
GO-CC. This outcome could be attributed to the fact that
GO-CC pertains to predicting the cellular component of a
protein’s function, which may be less directly related to
the protein’s primary function. Additionally, our approach
yields competitive results in the PSR and MSP tasks,
aligning with the previous state-of-the-art performance.

Conclusions

This study presents a comprehensive exploration of joint
protein representation learning, effectively fusing protein
language models (PLMs) and structure encoders to harness
the strengths of both domains. The integration of ESM-2
with diverse structure encoders, alongside the introduction
of innovative fusion strategies, has yielded valuable insights
into effective joint representation learning. Our findings
highlight the mutually beneficial relationship between
sequence and structure information during pre-training,
emphasizing the importance of a holistic approach. By



achieving new state-of-the-art results in tasks such as
Enzyme Commission number and Gene Ontology term
annotation, our work not only advances the adaptation
of PLMs and structure encoders but also holds broader
implications for protein representation learning.
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