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ABSTRACT

Pretrained protein sequence language models have been shown to improve the per-
formance of many functional and structural prediction tasks, and are now routinely
integrated into bioinformatics tools. However, these models largely rely on the
Transformer architecture, which scales quadratically with sequence length in both
run-time and memory. As a result, even state-of-the-art models have limitations
on maximum sequence length, limiting what protein sequences can be analyzed
with protein language models. To address this limitation, we investigated if more
efficient convolutional neural network (CNN) architectures, which scale linearly
with sequence length, could be equally as effective as pretrained protein language
models. We show that with the masked language model pretraining task, CNNs
are competitive to and occasionally superior to Transformers across an extensive
set of downstream applications, including structure prediction, zero-shot mutation
effect prediction, and out-of-domain generalization. We also demonstrate strong
performance on sequences longer than those allowed in the current state-of-the-art
Transformer models. Our work has important implications for applications built on
protein language models, suggesting that computational efficiency can be improved
without sacrificing performance simply by using a CNN architecture instead of a
Transformer, and emphasizes the importance of disentangling pretraining task and
model architecture in future work studying these models.

1 INTRODUCTION

Large pretrained protein language models have advanced the ability of machine learning models
to predict protein structure and function from sequence. These models address the limitation that
effective deep learning models generally require an abundance of labeled data to train. Since high-
quality labels are only available for a limited number of sequences in most applications, protein
language models first expose models to a large quantity of unlabeled sequences in a pretraining phase
(Figure 1a), with the goal of imparting the model with a general foundation of knowledge about
protein sequences so that they can be rapidly specialized to downstream tasks of interest with less
training data than training from scratch (Figure 1b).

While extensive effort has gone into validating protein language models for downstream applications,
relatively little attention has been paid to the architecture of these models. Most works use a
Transformer architecture, because these are the architectures employed in analogous work in natural
language processing. However, Transformers have numerous drawbacks. First, the compute and
memory requirements of these models scale quadratically with input sequence length. In principle,
this is more of an issue in pretraining since back-propagating gradients requires additional memory,
so longer sequences could be used during evaluation than during pretraining. However, a second
limitation of Transformers is that because attention modules (Figure 1c) in these models are invariant
to position, the position of each amino acid in a sequence must be encoded as part of the input. In
most formulations, this position encoding is difficult to extend past the maximum length seen during
training, and as a result, most popular pretrained language models limit the input length of sequences
during both pretraining and inference. For example, ESM-1b and ESM-1v have a maximum length
of 1022 residues. Unfortunately, this excludes many proteins of interest: of the 42 million cluster
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Figure 1: a) Pretraining phase. Models are pretrained with masked language modeling: amino acids
in unlabeled protein sequences are randomly masked and mutated to other amino acids, and the model
is trained to recover the original sequence. b) After pretraining, models are specialized to downstream
tasks. The weights of the pretrained model are transferred to the new task (dotted lines). For some
zero-shot tasks like predicting the impact of mutations, the masked language modeling decoder
is also useful and can be transferred. Otherwise, the decoder is replaced with a prediction head
trained to output a prediction useful for the downstream task. c) Visual explanation of architecture
options. Transformers parse sequences through self-attention modules (top), which are L×L matrices
(requiring quadratic time and memory). CARP instead uses convolutions (bottom), which parse
sequences with sliding window blocks, scaling linearly with sequence length L. d) Test loss on
masked language pretraining task against number of parameters in model for CARP (blue) versus
the state-of-the-art Transformer models (ESM - orange). The green asterisk shows the previously
reported training loss of ESM-1b on their test dataset (which we did not retrain on our own dataset).
e) Test loss on the masked language pretraining task for CARP-640 (blue) and ESM-1b against
length of protein sequences. ESB-1b accepts a maximum of 1022-length sequences. CARP-640M is
trained on a maximum of 2048 length sequences (vertical grey line), but can extend to arbitrarily long
sequences during test time (we test up to length 4096). f) Runtime and memory for forward passes
with different input sequence lengths for the CARP-640M (blue) and ESM-1b (orange) architectures,
as measured using PyTorch (Paszke et al., 2019) automatic mixed precision on a 48GB Nvidia A100
GPU.

representatives in the March 2020 release of UniRef50 (Suzek et al., 2015), 1.1 million, or 2.6%,
are longer than 1022 residues, including the SARS-Cov-2 spike glycoprotein and the Streptococcus
pyogenes CRISPR-associated endonuclease Cas9.

We reasoned that exploring alternative architectures could improve the computational efficiency
of protein language models while allowing for a greater range of (longer) sequences to be studied.
In this paper, we study if convolutional neural networks (CNNs) can be effective as pretrained
protein language models. Unlike Transformers, CNNs scale linearly with input sequence size.
Moreover, CNNs inherently incorporate relative positional information, since sequences are modeled
as sliding windows of amino acids (rather than amino acids being treated as independent tokens in
the Transformer framework) (Figure 1c). While no previous works have employed CNNs as large
pretrained protein language models, prior studies have shown that CNNs are effective at predicting
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variant fitness for single protein families (Shin et al., 2021), annotating protein function Bileschi et al.
(2022), and in smaller-scale methods design studies (Lu et al., 2020), supporting our hypothesis that
CNNs are effective for protein sequences.

We trained protein sequence CNN masked language models, which we refer to as CARP
(Convolutional Autoencoding Representations of Proteins). We show that CARP models are compet-
itive with the current state-of-the-art Transformer model ESM (Rives et al., 2021; Meier et al., 2021)
on a variety of downstream prediction tasks, including structure prediction, zero-shot mutation effect
prediction, and out-of-domain generalization on biologically-relevant protein engineering datasets.
Because CARP scales linearly in computation with the input sequence and does not rely on an input
positional embedding, it is straightforward to apply it to sequences longer than the longest sequences
in training, which we demonstrate with zero-shot predictions of mutation effects in CRISPR-Cas9.
Overall, the result that CNN models can perform as well as Transformers on downstream tasks
has profound implications as these models are increasingly adopted for bioinformatics applications:
our results suggest that tools built on large language models can improve their computational effi-
ciency without sacrificing performance, simply by using a model with our CNN architecture over a
Transformer. To faciliate these uses, we open-source and release weights and code for our CARP
models.

2 RESULTS

2.1 CARP ACHIEVES SIMILAR PERFORMANCE ON THE PRETRAINING TASK TO ESM

We trained a series of 7 CARP models with increasing numbers of parameters on nearly 42 million
sequences from UniRef50 (see Supplementary Table S1 for details on parameters and architecture).
Our largest CARP, CARP-640M, contains approximately 640M learnable parameters, comparable
with the popular Transformer model ESM-1b’s 650 million parameters.

First, we sought to understand if our CARP architectures could solve masked language modeling as
well as Transformer architectures. In this set-up, we are not yet assessing the effectiveness of these
models on downstream function or structure prediction tasks, only how well the models can solve
the pretraining task of predicting randomly masked or mutated amino acids in unseen sequences.
There is no guarantee that performing well on the pretraining task necessarily translates to better
performance on all downstream tasks of interest, as this requires that features that these models learn
to extract from protein sequences to solve the pretraining task also be features useful to downstream
tasks. However, at minimum, performing well on the pretraining task suggests that the models are
learning effectively from the pretraining task. For example, if CNNs underperform Transformers on
the pretraining task, this would suggest that CNNs are less effective at learning features from masked
language modeling - we sought to rule out that this was the case.

We compared the loss of our CARP models against ESM Transformer models with similar numbers
of parameters (Figure 1d) on our held-out test dataset. We note that ESM-1b trained and tested
models on an earlier version of UniRef50 with with different train/test splits than our work. To
produce a more fair comparison, we re-trained some ESM models using our dataset (orange line in
Figure 1d), but because reproducing their largest model is too computationally expensive, we simply
report results from ESM-1b on its test dataset (green asterisk in Figure 1d).

Overall, we observe that CARP’s performance on the pretraining task is comparable to ESM’s across
several orders of magnitude of variation in the number of parameters when using the same pretraining
dataset. Our largest model, CARP-640M, has a test loss of 2.02, comparable to ESM-1b’s loss of
1.96 on its test set.

Next, we asked how performance on the pretraining task interacts with sequence length. In principle,
one advantage of CNNs is that they can scale to arbitrarily long sequences (including sequences longer
than those seen during training), but for this advantage to be practical, the model must generalize to
longer sequences. Figure 1e shows the masked language modeling loss by length for CARP-640M
and ESM-1b on their respective test sets, smoothed with a window of 30 in the length dimension.
For both models, the pretraining loss improves quickly until the sequence length reaches about 500
(shorter sequences are generally more challenging because they provide less context to reconstruct
masked tokens), and then slowly thereafter. The maximum input length for ESM-1b during training
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is 1022, and this cannot be extended during test time. In contrast, for CARP-640M the maximum
input length during training is 2048, but we calculate test losses for sequences with up to 4096
residues. Our results indicate that sequences with a length greater than 2048 have a comparable loss
to sequences between 500-2048 length, suggesting that CARP-640M generalizes the pretraining task
to sequences longer than those seen during training.

2.2 CARP’S RUN-TIME AND MEMORY SCALE LINEARLY WITH SEQUENCE LENGTH

Next, to confirm that our CARP models are more computationally efficient, we compared the run-time
and memory requirements of the CARP-640M architecture against ESM-1b’s architecture at different
sequence lengths (Figure 1f). Because the original ESM-1b model caps sequence lengths at 1022
residues, we randomly initialize a new ESM-1b model with a longer positional embedding (4096
residues). Although this new model is not expected to encode useful information for transfer to
downstream tasks because it has not been pretrained, it serves as a good estimate of computational
performance since run-time and memory is generally determined by the number of parameters and
architecture, not the specific values of the parameters.

In general, we observe that while for smaller sequences, CARP-640M and ESM-1b have similar
run-time (up to 1024 residues) and memory (up to 512 residues) requirements, ESM-1b scales both
quadratically while CARP-640M scales linearly. As a result, due to memory limitations in our GPU,
we are only able to evaluate sequences around 2048 residues with ESM-1b before an OOM (out of
memory) error, while sequences of 4096 residues (and longer) are still possible on our GPU set-up
with CARP-640M.

2.3 CARP ACHIEVES COMPARABLE PERFORMANCE ON DOWNSTREAM TASKS TO ESM

A key goal of protein language models is to encode information that can be rapidly transferred to
improve performance on downstream prediction tasks (Figure 1b). Depending on the task, different
methods for adapting protein language models are appropriate. Zero-shot methods do not require
access to labels for further training, simply interacting with the pretrained model as is, and are
well-suited for tasks where labels are too scarce to train a new model. Alternatively, if labels for a
training dataset are available, a small neural network (a "prediction head") can be built on top of
representations from the pretrained model and trained to predict these labels. When training the
prediction head, the pretrained model can be frozen, meaning that its parameters are not allowed
to change and only the prediction head is trained, or fine-tuned, meaning the pretrained model’s
parameters are trained jointly with the prediction head’s. Often, the decision of whether to freeze
or fine-tune the pretrained model depends on how much training data is available: because more
parameters are trainable when fine-tuning, there is a greater risk of overfitting.

To assess if CARP is capable of improving performance on downstream tasks, we curated a wide
range of benchmarks, including predicting structure, the impact of mutations on fitness, and functional
properties such as fluorescence, stability, or melting temperature. When training with downstream
labels, we evaluate both freezing ("pt-fr") and fine-tuning ("pt-ft") our pretrained model, and compare
against ESM Transformer models. Finally, to confirm that downstream performance is improved by
the masked language modeling task, we provide a variety of baselines that do not use pretraining,
including randomly-initialized weights ("na-fr" and "na-ft" in our tables), and linear ridge regression
and a small CNN built on one-hot amino acid encodings of the protein sequences.

2.3.1 PROTEIN STRUCTURE

One of the most striking successes of protein language models is their ability to encode structural
information without access to structural labels during pretraining. We evaluate CARP-640M’s ability
to encode structural information through 3 tasks:

1. Remote contact prediction asks a model to predict whether the Cβ atoms of two residues
separated by at least 24 residues in the primary structure are within 8 Angstroms of other in
the three-dimensional structure. We train on the trRosetta (Yang et al., 2020) training set
and evaluate the precision of the top L predictions on the CAMEO hard (Haas et al., 2018)
and CASP13-FM (Shrestha et al., 2019) test sets. For contact prediction, we downsample
CARP embeddings to 128 dimensions, perform an outer product to produce 2-dimensional
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embeddings, and then pass that to a 24-layer dilated residual CNN based on the trRosetta
architecture. This is the same as the procedure used by ESM-1b.

2. Remote homology detection asks a model to detect structural similarity across distantly-
related sequences. We evaluate accuracy on the fold-level holdout set from TAPE.

3. 3-class secondary structure prediction asks a model to predict whether each residue in
a protein is part of a helix, strand, or other. We use the training and validation sets from
TAPE and evaluate accuracy on the CB513 test set. For this task, we train a neural network
consisting of two CNN layers, an LSTM, and a linear head on top of the pretrained model,
as described in Rives et al. (2021).

Since the structural tasks are computationally expensive, we do not fine-tune pretrained models for
these tasks (and only train on top of frozen models), and only provide metrics for ESM-1b previously
available in literature.

As shown in Table 1, pretraining improves performance for structure prediction tasks, and CARP-
640M is competitive with ESM-1b. These results show that pretrained convolutions learn structural
information from single sequences, just as pretrained transformers do.

Table 1: Structure prediction tasks. Values for ESM-1b on CASP-13 and CAMEO are taken
from Rives et al. (2021). Uncertainties are standard deviations on 3 replicates with different weight
initializations.

Task

Method Model CASP-13 FM CAMEO remote homology secondary structure

pt-fr CARP-640M 23.7 42.0 0.24±0.008 0.83±0.001
ESM-1b 28.2 44.4 0.22±0.02 0.81±0.007

pt-ft CARP-640M - - 0.28±0.008 0.83±0.001
ESM-1b - - 0.27±0.006 0.81±0.002

na-fr CARP-640M 9.7 12.6 0.09±0.02 0.65±0.02
ESM-1b - - 0.09±0.009 0.64±0.002

na-ft CARP-640M - - 0.09 ± 0.02 0.71±0.0005
ESM-1b - - 0.08±0.006 0.70±0.002

2.3.2 ZERO-SHOT MUTATION EFFECT PREDICTION

Pretrained protein language models can predict experimental measurements of protein function with-
out further training on sequence-fitness measurements or sets of evolutionarily-related sequences Hie
et al. (2022); Meier et al. (2021). Following Meier et al. (2021), we score CARP-640M on 41 deep
mutational scanning datasets originally compiled by Riesselman et al. (2018). These datasets measure
the effects of thousands of mutations or combinations of mutations to a parent sequence. Details are
described in Section 4.4.

Figure 2 compares zero-shot performance for CARP-640M, ESM-1b, ESM-1v, position-specific
scoring matrices (PSSM), and ProtBert-BFD. ESM-1v results are for an ensemble of five transformers
pretrained on UniRef90. Averaged across the 41 datasets, CARP-640M has a Spearman correlation of
0.49, compared to 0.46 for ESM-1b, 0.51 for ESM-1v, 0.46 for PSSM, and 0.43 for ProtBERT-BFD.
CARP-640M outperforms ESM-1b on 22 out of 41 datasets, ESM-1v on 18 out of 41 datasets, PSSM
on 26 out of 41 datasets, and ProtBERT-BFD on 25 out of 41 datasets.

Meier et al. (2021) found that using the full UniProt sequences instead of only the sequence of
the mutated domain results in better zero-shot predictions. However, this is not always possible
with ESM-1x, as some UniProt sequences for these proteins are longer than 1022 residues. As a
further proof of concept, we made zero-shot predictions for the effects of mutations in Cas9 from
Streptococcus pyogenes (Spencer and Zhang, 2017), which is 1368 residues long, and obtain a
Spearman correlation of 0.26. These results show that pretrained convolutions can make zero-shot
predictions of protein mutation effects on fitness, including on sequences longer than allowed by
ESM-1x.
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Figure 2: Zero-shot protein fitness prediction. Comparison across 41 deep mutational scanning
datasets from DeepSequence. Points are Spearman correlation on each dataset. Horizontal lines show
the average Spearman correlation across the datasets for each model. Values for ESM-1b, ESM-1v,
PSSM, and ProtBERT-BFD are taken from Meier et al. (2021).

2.3.3 OUT-OF-DOMAIN FITNESS PREDICTION

Another motivation for pretrained protein language models is that because they build on a general
foundation of knowledge about proteins learned in the pretraining phase, they may be able to better
extrapolate from limited training data. For example, a protein engineer may want to train a model on
single mutants and make predictions for sequences with multiple mutations, or train a model that is
accurate for sequences with fitness greater than what is seen in the training set. To test these kinds of
out-of-domain prediction schemes, we evaluate CARP-640M on tasks from the following landscapes
from FLIP (Dallago et al., 2021).

1. AAV (Table 2): Adeno-associated virus (AAV) capsid proteins are responsible for helping
the virus integrate a DNA payload into a target cell (Vandenberghe et al., 2009), and there is
great interest in engineering versions of these proteins for gene therapy (Büning et al., 2015;
Barnes et al., 2019). Bryant et al. (2021) measure a rich mutational screening landscape of
different VP-1 AAV proteins.

2. GB1 (Table 3): GB1 is the binding domain of protein G, an immunoglobulin binding protein
found in Streptococcal bacteria. In their original study, Wu et al. (2016) measured the fitness
of 149,361 out of 160,000 possible combinations of mutations at 4 positions.

For each landscape, we evaluate several data splits where test sequences differ from training se-
quences:

• x-vs-many: Train on sequences with up to x mutations and test on the remainder of the
landscape.

• mut-des: Train on sequences sampled from mutagenesis libraries and test on sequences
designed by machine-learning models (AAV only).

• low-vs-high: Train on sequences with fitnesses below the wild-type and test on sequences
with fitnesses above the wild-type.
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Table 2: Performance on the FLIP AAV tasks. Values for models other than CARP-640M are taken
from Dallago et al. (2021). Uncertainties for ESM-1b and CNN are standard deviations over 10
random seeds. Uncertainties for CARP-640M are standard deviations over 3 random seeds. Dallago
et al. (2021) do not provide uncertainties for the mut-des task because of the computational cost.

Task

Method Model 1-vs-many 2-vs-many 7-vs-many mut-des low-vs-high

pt-fr CARP-640M 0.31±0.18 0.51±0.18 0.58±0.14 0.75±0.08 0.25±0.09
ESM-1b 0.03±0.11 0.61±0.04 0.65±0.01 0.76 0.38±0.01

pt-ft CARP-640M 0.73±0.05 0.81±0.03 0.77±0.03 0.85±0.003 0.19±0.08

na-fr CARP-640M 0.48±0.07 0.50±0.05 0.60±0.05 0.76±0.02 0.21±0.02
ESM-1b 0.18±0.01 0.20±0.03 0.38±0.04 0.56 0.06±0.01

na-fr CARP-640M 0.04±0.12. 0.50±0.43 0.38±0.37 0.84±0.01 0.24±0.21

baseline ridge 0.22 0.03 0.65 0.68 0.12
CNN 0.35±0.11 0.58±0.09 0.73±0.004 0.71 0.28±0.02

In general, pretraining improves CARP-640M’s performance on these tasks, and fine-tuning the
entire model outperforms freezing the pretrained weights. Comparisons to the baselines show that
pretraining is most helpful when generalizing from single mutants to multiple. When not fine-tuning
all the way through, there is little benefit from pretraining, and on some tasks pretraining hurts
performance. CARP-640M outperforms ESM-1b on generalizing from few mutations to more, but
ESM-1b is better at generalizing from a low-fitness training to higher-fitness sequences. These results
show that pretrained convolutions help generalization to types of sequence variation not seen during
training. On GB1, finetuning ESM-1b end-to-end instead of freezing the pretrained weights hurts its
performance, while CARP-640M benefits from full finetuning. In addition, CARP-640M provides
better representations without pretraining than ESM-1b on all the AAV tasks and 2 of the 4 GB1
tasks, showing that the architecture alone also influences generalization.

Table 3: Performance (Spearman correlation) on the FLIP GB1 tasks. Values for models other than
CARP-640M and ESM-1b with full finetuning are taken from FLIP. Uncertainties for ESM-1b frozen
and CNN are standard deviations over 10 random seeds. Uncertainties for CARP-640M and ESM-1b
with full finetuning are standard deviations over 3 random seeds.

Task

Method Model 1-vs-many 2-vs-many 3-vs-many low-vs-high

pt-fr CARP-640M 0.15±0.18 0.18±0.23 0.62±0.06 0.12±0.03
ESM-1b 0.29±0.02 0.47±0.05 0.79±0.01 0.53±0.03

pt-ft CARP-640M 0.19±0.26 0.73±0.03 0.87±0.004 0.43±0.04
ESM-1b 0.11±0.11 0.67±0.07 0.66±0.18 0.42±0.09

na-fr CARP-640M 0.03±0.03 0.07±0.17 0.71±0.03 0.35±0.03
ESM-1b 0.12±0.01 0.21±0.01 0.52±0.01 0.32±0.03

na-ft CARP-640M 0.11±0.07 0.38±0.26 0.68±0.33 0.23±0.26
ESM-1b 0.05±0.28 0.14±0.13 0.10±0.13 -0.04±0.09

baseline ridge 0.28 0.59 0.76 0.34
CNN 0.15±0.09 0.39±0.04 0.81±0.004 0.47±0.01

2.3.4 IN-DOMAIN PROPERTY PREDICTION

Finally, we consider property and fitness prediction tasks that do not require difficult biological
generalization (Table 4). We evaluate on three sequence-fitness regression tasks:
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1. Fluorescence requires the model to predict the effect of one or more mutations on the
brightness of green fluorescent protein. The data was originally collected by Sarkisyan et al.
(2016). We use the data splits provided in TAPE.

2. Stability requires the model to predict a small protein’s resistance to protease degradation.
The data was originally collected by Rocklin et al. (2017). We use the data splits provided
in TAPE.

3. Meltome-mixed requires the model to predict the melting temperature of a variety of
proteins from across the domains of life. The data was originally collected by Jarzab et al.
(2020). We use the cluster representatives and data splits provided in FLIP.

In addition, we evaluate on two intrinsically disordered region (IDR) function classification tasks
taken from Zarin et al. (2021). For the IDR datasets, we use MMseqs2 (Steinegger and Söding, 2017)
to cluster sequences to 50% identity and then randomly assign clusters to training, validation, or
testing.

1. Cdc28 binding requires the model to predict whether an IDR is a target of Cdc28.

2. Mitochondria targeting requires the model to predict whether an IDR targets its protein
for transport into the mitochondria.

Table 4: Performance on in-domain tasks. For fluorescence, stability, and meltome, values reported
are Spearman correlation. For the IDR tasks, values reported are area under the reciever operating
curve. Values for ESM-1b on fluorescence and stability are taken from Rives et al. (2021). Values for
baselines on fluorescence and stability are taken from FLIP. Uncertainties for ESM-1b and CNN are
standard deviations over 10 random seeds except on the IDR tasks, where they are over 3 random
seeds. Uncertainties for CARP-640M are standard deviations over 3 random seeds. We do not
calculate uncertainties on meltome due to the computational cost.

Task

Method Model fluorescence stability meltome Cdc28 mito.

pt-fr CARP-640M 0.58±0.02 0.62±0.03 0.54 0.84±0.01 0.86±0.02
ESM-1b - - 0.67±0.01 0.91±0.004 0.90±0.01

pt-ft CARP-640M 0.68±0.002 0.72±0.01 0.53 0.88±0.02 0.89±0.004
ESM-1b 0.68 0.71 - 0.89±0.01 0.88±0.01

na-fr CARP-640M 0.62±0.01 0.52±0.17 0.29 0.84±0.01 0.86±0.01
ESM-1b - - 0.45±0.03 0.88±0.01 0.84±0.03

na-ft CARP-640M 0.58±0.07 0.65±0.05 0.30 0.79±0.03 0.87±0.01
ESM-1b - - - 0.83±0.02 0.85±0.02
ridge 0.68 0.48 0.17 0.52 0.53
CNN 0.67 0.51 0.34±0.01 0.84±0.02 0.87±0.02

In general, while pretraining improves CARP-640M’s performance on these tasks, neither of the
large pretrained models consistently out-perform the baseline models on these tasks. Almost all the
models perform very well on the IDR tasks, indicating that performance is saturating on these tasks.
Nevertheless, CARP-640M is generally comparable to ESM-1b, showing that once again pretrained
convolutions are comparable to pretrained attention.

2.4 EVALUATING PERFORMANCE AT CHECKPOINTS ILLUMINATES RELATIONSHIP BETWEEN
PRETRAINING AND DOWNSTREAM TASKS

While we showed that our CNN CARP models perform comparably to ESM models across protein
prediction tasks, not all downstream tasks benefit from pretraining with the masked language model
task, with simple regression baselines performing as well as both CARP and ESM models in some
tasks. One possibility is that for some tasks, the features learned to solve the masked language
modeling pretraining task may not overlap or contain any useful information for some downstream
tasks. We reasoned that one way to test this hypothesis would be to evaluate performance on

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2022.05.19.492714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492714
http://creativecommons.org/licenses/by/4.0/


downstream tasks at various checkpoints of our CARP models: if pretraining does learn features
useful for downstream tasks, we expect a relationship where better performance on the masked
language modeling task (which improves as models are pretrained for longer) has at least some
correlation with performance on the downstream tasks.

We finetuned pretraining checkpoints for CARP-600k, CARP-76M, and CARP-640M on secondary
structure, remote homology, and the FLIP GB1, AAV, and meltome tasks. Figures 3a and S2a show
that structure prediction improves smoothly as the model size increases and the model is pretrained
longer. This confirms that, as for transformers, pretraining imparts structural information to CNNs.
However, Figures 3b, S2b, and S2c shows that this relationship does not exist for the out-of-domain
FLIP tasks. In many cases, a small amount of pretraining is sufficient to outperform the naive baseline,
and further pretraining has an unpredictable and often negative effect on performance. Finally, for the
FLIP meltome task, Figure S2d shows that performance generally improves as CARP is pretrained,
but the pretraining effect saturates, and CARP-76M outperforms CARP-640M.

Figure 4a shows that the average zero-shot performance improves with both model size and pretraining
performance. However, this is not the case for every individual dataset within DeepSequence.
Figure 4b shows a case where zero-shot performance peaks and then declines as CARP is pretrained.
The Spearman correlation between the pretrain loss and zero-shot Spearman correlation range from 1
(monotonic increase in zero-shot performance with more pretraining) and -0.9, as shown in Figure S1.
The average over the DeepSequence datasets is 0.40 for CARP-640M, 0.48 for CARP-76M, and 0.23
for CARP-600k. Although CARP-640M has better overall zero-shot performance than CARP-76M,
CARP-76M more consistently improves with more pretraining than CARP-640M. The heterogeneity
in the relationship between pretraining performance and zero-shot performance suggests that many
but not all zero-shot tasks in DeepSequence are strongly determined by structural stability.

(a) Secondary structure (b) GB1

Figure 3: Effect of model size and checkpoint pretrain loss on downstream performance.

(a) DeepSequence-mean (b) DMS YAP1 human

Figure 4: Effect of model size and checkpoint pretrain loss on zero-shot performance.
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3 CONCLUSION AND DISCUSSION

We show that CNNs can be comparable to or superior to Transformers on the masked language
modeling pretraining task, and that pretraining helps CNNs achieve similar levels of performance
as Transformers when adapting these models to downstream protein property prediction tasks. Our
results challenge the tightly-held association between masked language modeling and Transformers,
and shows that the pretraining task itself, not the Transformer architecture, is the essential component
that makes pretraining effective. We believe that this insight is of practical utility to researchers work-
ing on proteins especially as protein language models are becoming a workhorse of bioinformatics
methods. Unlike Transformers, CNNs scale linearly with input sequence length, which becomes
important when modeling long protein sequences. Analogous work in natural language processing
has also shown that CNNs can require fewer FLOPs of compute than Transformers, even for short
sequences (Tay et al., 2021). In addition, while we use standard dilated convolutions, there are more
efficient convolution variants designed for sequence modeling (Wu et al., 2019) that may further im-
prove model speed. Together, our work suggests that CNNs can improve the computational efficiency
of prediction methods built on protein language models with no impact on performance, and further
advances in these architectures, which are relatively underexplored compared to Transformers, may
heighten this improvement.

One limitation of our CNN architecture is that unlike Transformers, it does not use a cross- or
self-attention module. In at least some tasks, these modules can contribute towards interpretability.
For example, it is possible to extract structural contact maps from pretrained Transformer self-
attention matrices (Rao et al., 2020), and self-attention matrices contain information about binding
sites (Vig et al., 2020). Convolutions lack an obvious equivalent. In addition, attention-based
models naturally extend to predict protein-protein interaction sites, because they provide a ready
framework for pairwise interactions across amino acids between sequences. Finally, while we
highlighted issues with computational efficiency of Transformers, recent technical advances have
sought to address these challenges. For example, the challenge of quadratic dependence on sequence
length can be ameliorated with approximate attention methods (Child et al., 2019; Beltagy et al.,
2020; Kitaev et al., 2020; Tay et al., 2020a; Wang et al., 2020; Zaheer et al., 2020; Katharopoulos
et al., 2020; Choromanski et al., 2020a) (although we note the choice of approximation matters
for performance and the best method is not always clear a priori (Tay et al., 2020b)). On proteins,
Choromanski et al. (2020a) and Choromanski et al. (2020b) show that Performer approximate
attention can perform well for autoregressive and masked protein language models, respectively,
while ProteinBERT combines a fast global attention mechanism with masked language and functional
annotation prediction pretraining (Brandes et al., 2021).

However, we show that without pretraining, CNNs and Transformers perform differently on down-
stream tasks. This observation suggests that our CNNs may provide complementary inductive biases
to those found in Transformer models. Unfortunately, we also find that, while masked language model
pretraining is effective in imparting models with structural knowledge, the relationship between
model size, pretraining loss, and downstream performance is less stable for out-of-domain protein
engineering tasks, indicating that masked language modeling may not be effective for at least some
types of tasks and emphasizing a need for more effective pretraining tasks. While we evaluate the
effects of masked language model pretraining, numerous other pretraining tasks have been proposed
including autoregressive language model pretraining (Madani et al., 2020), pairwise masked language
modeling (He et al., 2021), and combining structural information (Mansoor et al., 2021; Zhang et al.,
2022; McPartlon et al., 2022; Hsu et al., 2022; Chen et al., 2022; Wang et al., 2022) or functional
annotations (Brandes et al., 2021). Together, our work demonstrates the importance of disentan-
gling pretraining task and architecture. We hope that this work is the first step in investigating the
independent and interacting effects of pretraining and architecture for protein sequence modeling.

DATA, CODE, AND MODEL AVAILABILITY

Model code is available at https://github.com/microsoft/
protein-sequence-models. Pretrained model weights and our train/validation/test
splits for the two IDR datasets and UniRef50 are available at https://doi.org/10.5281/
zenodo.6564798.
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4 METHODS

4.1 ARCHITECTURE

One limitation of CNNs is that they are locally connected, so neurons in the model may not see the
entire sequence at once, preventing the learning of distal interactions. To overcome this limitations,
ByteNet uses a dilated CNN architecture Kalchbrenner et al. (2016), which increases the CNN
perceptive field exponentially with the number of layers, allowing the model to obtain global context
for long input sequences.

softmax

output probabilities

up-embedding

down-embedding

layer norm

1 x 1 convolution

inputs

n ByteNet blocks

(L x 8)

(L x d)

(L x t)

(a) CARP

(L x d)

layer norm

1 x 5 dilated conv.

GeLU

GeLU

layer norm

1 x 1 convolution

layer norm

1 x 1 convolution

GeLU

(L x d) or (L x d/2)

(L x d)

+

(b) ByteNet block

Figure 5: Schematics of the CARP architecture.

CARP combines the ByteNet encoder with simple input embedding and output decoding layers, as
shown in Figure 5a. CARP begins with an embedding layer, which maps an input sequence of L
tokens x ∈ DL to an 8-dimensional intermediate embedding, followed by a linear mapping into the
model dimension d: e0 ∈ RL×d. This passes through a stack of n ByteNet dilated CNN blocks
Figure 5b with residual connections in between followed by a final layer norm to produce the encoder
representation en ∈ RL×d, and finally a linear decoder maps this to the L× t logits, where t is the
number of possible tokens. The 1× 5 convolution layer in every ByteNet block is dilated and padded
to preserve sequence length. The CNN dilation rate doubles every layer up to a maximum rate r (for
our experiments r = 128). This scheme is repeated multiple times in the network, always starting
from a dilation rate of 1.

Throughout this paper, CARP refers to any ByteNet masked language model, while CARP-X refers
to the model with approximately X parameters.) For example, our largest model, CARP-640M,
has 640M parameters, comparable to the ESM-1b Transformer, which has 650 million parameters.
Hyperparameters for different-sized versions of CARP and ESM are found in Tables S1 and S2,
respectively.

4.2 DATASET AND MASKED LANGUAGE MODELING

We train CARP on the cluster representatives from the March 2020 release of UniRef50, with
approximately 83k sequences held out for validation and another 210k sequences held out for testing,
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leaving 41.5 million sequences for training. Models are pretrained using the masked language model
objective described in Rives et al. (2021). Each sequence is corrupted by changing some tokens to
a special mask token or another amino acid token, and the model is tasked with reconstructing the
original sequence. Specifically, 15% of tokens from each sequence are randomly selected. For those
15% of tokens, 80% are replaced by the mask token, 10% are replaced by a randomly-chosen amino
acid, and 10% remain unchanged. The model is trained to minimize the cross-entropy loss between
its predictions for the selected tokens and the true tokens at those locations.

4.3 TRAINING DETAILS

We varied the number of parameters in CARP from approximately 3000 to 640 million by setting
the model dimension d, setting the encoder hidden dimension he to either d or d

2 , and setting the
number of layers. All models are trained with the Adam optimizer, a maximum learning rate of 0.001,
a linear warmup for 16,000 steps, and dynamic batching to maximize GPU usage. The largest model,
CARP-640M, was trained on 128 32GB Nvidia V100 GPUs for 620,000 updates, or approximately
56 days.

To adapt CARP to downstream tasks, we use the output from the final layer norm in Figure 5a as
the output representation. Unless otherwise noted, the prediction head consists of a learned attention
that converts the output from L × d to d followed by a 2-layer neural network with hidden size d.
For tasks with labels, we evaluate both freezing and fine-tuning CARP and compare to ESM-1b or
ESM-1v. We finetune models with a maximum learning rate of 0.0001, a linear warmup over 1000
steps, and early stopping based on the validation set. Finetuning was performed on one 32 GB V100;
depending on the task, finetuning took between several minutes to 48 hours. Where relevant, we also
compare the CARP architecture with randomly-initialized weights, linear ridge regression, and the
small CNN described in Dallago et al. (2021) and Shanehsazzadeh et al. (2020). In our experiments
fine-tuning models across checkpoints, we initialize the prediction heads with the same weights
across all model checkpoints of the same size, to control for randomness between prediction heads.

4.4 ZERO-SHOT FITNESS PREDICTION

For one-shot mutation impact prediction, we score sequences by masking every mutated position and
computing the log odds ratio between the mutated and wild-type residues at each mutated position,
assuming an additive model when a sequence contains multiple mutations:

∑
p∈P

logp(xmt
P |xwt

\P )− logp(xwt
P |xwt

\P ) (1)

where P indicates the mutated positions.
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A SUPPLEMENTARY MATERIALS

A.1 HYPERPARAMETERS FOR PRETRAINED MODELS OF DIFFERENT SIZES

All models are trained for 2 weeks on 1-8 32GB V100 GPUs with dynamic batching. Table S1
summarizes the hyperparameters for CARP. Table S2 summarizes the hyperparameters for ESM.

Table S1: CARP model hyperparameters. Max tokens is the maximum number of tokens per GPU
per batch during training.

Model Parameters Layers d dMLP Max tokens GPUs

CARP-640M 643M 56 1280 1280 11000 128 × 32GB V100
CARP-76M 75.7M 32 1024 512 60000 16 × 32 GB V100
CARP-38M 37.9M 16 1024 512 40000 8 × 32 GB V100
CARP-24M 23.9M 16 256 128 400000 2 × 32 GB V100
CARP-600k 608k 16 128 64 600000 1 × 32 GB V100
CARP-40k 415k 16 32 16 600000 1 × 32 GB V100
CARP-4k 3670 16 8 4 600000 1 × 16 GB V100

Table S2: ESM model hyperparameters.

Parameters Layers Heads d dMLP GPUs

86.5M 12 12 768 3972 8 × 32 GB V100
44.0M 6 12 768 3072 8 × 32 GB V100
2.92M 6 8 192 768 2 × 32 GB V100

561k 4 6 96 384 1 × 32 GB V100
41.5k 4 4 24 96 1 × 32 GB V100
4890 2 4 4 16 1 × 32 GB V100

Figure S1: Spearman correlation between pretrained model checkpoint loss and zero-shot Spearman
correlation across 41 deep mutational scanning datasets from DeepSequence.

A.2 PRETRAIN PERFORMANCE VS DOWNSTREAM PERFORMANCE

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2022.05.19.492714doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492714
http://creativecommons.org/licenses/by/4.0/


(a) Structure

(b) GB1

(c) AAV

(d) Meltome

Figure S2: Downstream performance vs pretrain loss for secondary structure, remote homology, and
FLIP tasks.
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