
Genes

Adversarial deconfounding autoencoder for learning

robust gene expression embeddings

Ayse B. Dincer1, Joseph D. Janizek1,2 and Su-In Lee1,*

1Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA and 2Medical Scientist

Training Program, University of Washington, Seattle, WA 98195, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Increasing number of gene expression profiles has enabled the use of complex models, such as deep
unsupervised neural networks, to extract a latent space from these profiles. However, expression profiles, especially
when collected in large numbers, inherently contain variations introduced by technical artifacts (e.g. batch effects)
and uninteresting biological variables (e.g. age) in addition to the true signals of interest. These sources of variations,
called confounders, produce embeddings that fail to transfer to different domains, i.e. an embedding learned from one
dataset with a specific confounder distribution does not generalize to different distributions. To remedy this problem, we
attempt to disentangle confounders from true signals to generate biologically informative embeddings.

Results: In this article, we introduce the Adversarial Deconfounding AutoEncoder (AD-AE) approach to deconfound-
ing gene expression latent spaces. The AD-AE model consists of two neural networks: (i) an autoencoder to generate
an embedding that can reconstruct original measurements, and (ii) an adversary trained to predict the confounder
from that embedding. We jointly train the networks to generate embeddings that can encode as much information
as possible without encoding any confounding signal. By applying AD-AE to two distinct gene expression datasets,
we show that our model can (i) generate embeddings that do not encode confounder information, (ii) conserve the
biological signals present in the original space and (iii) generalize successfully across different confounder domains.
We demonstrate that AD-AE outperforms standard autoencoder and other deconfounding approaches.

Availability and implementation: Our code and data are available at https://gitlab.cs.washington.edu/abdincer/ad-ae.

Contact: suinlee@cs.washington.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression profiles provide a snapshot of cellular activity, which
allows researchers to examine the associations among expression, dis-
ease and environmental factors. This rich information source has been
explored by many studies, ranging from those that predict complex
traits (Geeleher et al., 2014; Golub et al., 1999; Shedden et al., 2008)
to those that learn expression modules (Segal et al., 2005; Tang et al.,
2001; Teschendorff et al., 2007). Advances in profiling technologies
are rapidly increasing the availability of expression datasets. This has
enabled the application of the complex non-linear models, such as
neural networks, to various biological problems to identify signals not
detectable using simple linear models (Chaudhary et al., 2018; Lyu
and Haque, 2018; Preuer et al., 2018).

Unsupervised deep learning has enormous potential to extract
important biological signals from the vast amount of expression pro-
files, as explored by recent studies (Dincer et al., 2018; Du et al.,
2019; Tan et al., 2016). Two features of unsupervised learning
make it well suited to gene expression analysis. (i) The ability to
train informative models without supervision, critical because it is
challenging to obtain a high number of expression samples with co-
herent labels. Although many new expression profiles are released

daily, the portion of the datasets with labels of interest is often too
small. Moreover, different studies may collect information on differ-
ent traits and even measure the same traits using different metrics
(Haibe-Kains et al., 2013). (ii) The ability to extract patterns from
the data without imposed directions or restrictions. Without focus-
ing on a specific phenotype prediction, these models enable us to
learn patterns unconstrained by the limited phenotype labels we
have. This aspect can be key to unlocking biological mechanisms yet
unknown to the scientific community. Using unsupervised models to
learn biologically meaningful representations would make it possible
to map new samples to the learned space and adapt our model to
any downstream task.

It is not straightforward to use promising unsupervised models on
gene expression data because expression measurements often contain
out-of-interest sources of variation in addition to the signal we seek.
When training an unsupervised model, we want the model to capture
the true signal and learn latent dimensions corresponding to biological
variables of interest. Especially, when collected from a large cohort or
multiple cohorts, expression profiles have, in addition to the true sig-
nal, variations in expression measures across samples as a result of (i)
technical artifacts that are not relevant to biology, such as batch
effects, (ii) out-of-interest biological variables, such as sex, age,
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medications and (iii) random noise. (See Fig. 1.) We call these bio-
logical or non-biological artifacts that systematically affect expression
values confounders. Unfortunately, in many datasets, confounder-
based variations often mask true signals, which hinders learning bio-
logically meaningful representations.

As a motivating example, Figure 2a shows how confounder sig-
nals might dominate true signals in gene expression data. We con-
sider the KMPlot breast cancer expression dataset (Györffy et al.,
2010), which combines multiple microarray studies from The Gene
Expression Omnibus (GEO) (Edgar et al., 2002). We take the two
GEO datasets with the highest number of samples and plot the first
two principal components (PCs) (Wold et al., 1987) to examine the
strongest sources of variation. Figure 2a shows that the two datasets
are clearly separated, exemplifying how confounder-based varia-
tions affect expression measurements.

We then apply an autoencoder (Hinton and Salakhutdinov,
2006) to this dataset, i.e. an unsupervised neural network that can
learn a latent space that maps M genes to D nodes (M � D) such
that the biological signals present in the original expression space
can be preserved in D-dimensional space. The autoencoder tries to
capture the strongest sources of variation to reconstruct the original
input successfully. In our example, unfortunately, it is encoding vari-
ation introduced by confounders rather than interesting signals.
Figure 2b depicts the PC plot of the autoencoder embedding. It
shows that the dataset difference is encoded as the strongest source
of variation. When we measure the Pearson’s correlation coefficient
(Lin, 1989) between each node value and the binary dataset label,
we observe that 78% of the embedding nodes are significantly corre-
lated with the dataset label (P-value<0.01). This means that most
latent nodes are contaminated, making it difficult to disentangle bio-
logical signals from confounding ones.

Confounders also prevent our learning a robust, transferable
model to generate generalizable embeddings that capture biological
signals conserved across different domains. For instance, if we learn
a model from one expression dataset that detects a disease signal,
we want this signal to be valid for similar datasets. To simulate this
problem, we use a separate set of samples from a different GEO
study from the KMPlot data. We train the autoencoder using only
the first two datasets, and we then encode the ‘external’ samples
from the third GEO study using the trained model. The PC plot in
Figure 2c highlights the distinct separation between the external
dataset and the two training datasets. This simple example shows
how confounder effects can prevent us from learning transferable la-
tent models.

In this article, we address the entanglement of confounders and
true biological signals to show the power of deep unsupervised mod-
els to unlock biological mechanisms. Our goal is to generate bio-
logically informative expression embeddings that are both robust to
confounders and generalizable. To achieve this goal, we propose a

deep learning approach to learning deconfounded expression
embeddings, which we call Adversarial Deconfounding
AutoEncoder (AD-AE).

AD-AE consists of two neural networks trained simultaneously:
(i) an autoencoder network optimized to generate an embedding
that can reconstruct the data as successfully as possible, and (ii) an
adversary network optimized to predict the confounder from the
generated embedding. These two networks compete against each
other to learn the optimal embedding that encodes important signals
without encoding the variation introduced by the selected con-
founder variable. To demonstrate the performance of AD-AE, we
used two expression datasets—breast cancer microarray and brain
cancer RNA-Seq—with a variety of confounder variables, such as
dataset label and age. We showed that AD-AE can generate unsuper-
vised embeddings that preserve biological information while remain-
ing invariant to selected confounder variables. We also conducted
transfer experiments to demonstrate that AD-AE embeddings are
generalizable across domains.

2 Materials and methods

2.1 Standard autoencoder
We used a standard autoencoder as the baseline for our experiments,
which takes as input an expression vector x of M genes. The autoen-
coder consists of (i) an encoder network, defined as f/ : X7!Z,
which maps from the input space X 2 RM to latent embedding
Z 2 RD, and (ii) a decoder network, gw : Z7!X, that maps the
embedding Z back to the input space. Our encoder/decoder net-
works are fully or densely connected neural networks with rectified
linear unit (ReLU) activation between layers; thus, Z is in effect the
network’s information bottleneck. We then optimize over encoder
and decoder networks as follows:

min/;wEjjx� gwðf/ðxÞÞjj22; (1)

where / and w are the parameters of our encoder and decoder neur-
al networks, respectively. The expectation is taken over the training
data, and the loss is the squared 2-norm distance between the input
x and the reconstructed input.

2.2 Our approach: AD-AE
We propose the AD-AE to generate biologically informative gene ex-
pression embeddings robust to confounders (Fig. 3). AD-AE consists
of two networks. The first is an autoencoder model l (defined in
Section 2.1) that is optimized to generate an embedding that can re-
construct the original input. The second is an adversary model h
that takes the embedding generated by the autoencoder as input and
tries to predict the confounder C. We note that C is not limited to
being a single confounder and could be a vector of them.

Fig. 1. A simplified graphical model of measured expression shown as a mix of true

signal, confounders of biological and non-biological origin and random noise. Note

that this model shows neither possible connections between a true signal and con-

founders nor connections among confounders

Fig. 2. An example of confounder effects. The plot of top two PCs colored by data-

set labels generated for (a) the expression matrix, and (b) autoencoder embedding of

the expression. (c) PC plot of the embeddings for training and external samples gen-

erated by the autoencoder trained from only the two datasets and transferred to the

third external dataset
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Our goal is to learn an embedding Z that encodes as much infor-
mation as possible while not encoding any confounding signal. To
achieve this, we train models l and h simultaneously. Model l tries to
reconstruct the data while also preventing the adversary from accur-
ately predicting the confounder. At the same time, adversarial pre-
dictor h tries to update its weights to accurately predict the
confounder from the generated embedding. As shown by Louppe
et al. (2017), assuming the existence of an optimal model and suffi-
cient statistical power, models l and h will converge and reach an
equilibrium after a certain number of epochs, where l will generate
an embedding Z that is optimally successful at reconstruction and h
will only randomly predict a confounder variable from this embed-
ding. In other words, the autoencoder will converge to generating an
embedding that contains no information about the confounder, and
the adversary will converge to a random prediction performance.

We train our model in three steps:
Step 1: The autoencoder model l is defined per Section 2.1. We

pretrain the autoencoder to optimize Equation 1 and generate an
embedding Z.

Step 2: We define the adversary model ht : Z7!C, mapping the
embedding Z to confounder C. We again use fully connected multi-
layer perceptron networks with ReLU activation for the adversary,
which is optimized with the following objective:

mintE½LððhtðxÞ; cÞ�: (2)

Here, we define a general loss function L that can be any differ-
entiable function appropriate for the confounder variable (e.g. mean
squared error for continuous confounders, cross-entropy for cat-
egorical confounders). We pretrain our adversary model accordingly
to predict the confounder as successfully as possible.

Step 3: After separately pretraining both networks, we begin
joint adversarial training by optimizing over the two networks.
When optimizing the joint model, we first freeze the weights of the
adversary model and train the autoencoder model for one epoch on
a randomly selected minibatch of the data using stochastic gradient
descent to optimize the following objective:

min/;w;tE½jjx� gwðf/ðxÞÞjj22 � kLðhtðxÞ; cÞ�: (3)

This corresponds to updating the weights of the autoencoder to
minimize Equation 1 while maximizing Equation 2 (minimizing the
negative of the objective). We then freeze the autoencoder model
and train the adversary for an entire epoch to minimize Equation 2.
We continue this alternating training process until both models are
optimized. If no model is simultaneously optimal at reconstructing

the input expression without encoding confounding signals, the k
variable determines the ratio of weight the model gives to recon-
struction or deconfounding. Increasing the k value would learn a
more deconfounded embedding while sacrificing reconstruction suc-
cess; decreasing it would improve reconstruction at the expense of
potential confounder involvement. For our experiments, we set
k¼1 since we believe this value maintains a reasonable balance be-
tween reconstruction and deconfounding.

3 Related work

Though more general in scope, our article is relevant to batch effect
correction techniques. In high-throughput data, we often experience
systematic variations in measurements caused by technical artifacts
unrelated to biological variables, called batch effects. Many techni-
ques have been developed to eliminate batch effects and correct
high-throughput measurement matrices. Our work differs from
batch correction approaches in two ways. First, we do not focus
only on batch effects; rather we aim to build a model generalizable
to any biological or non-biological confounder. Second, we do not
concentrate on correcting the data, i.e. trying to eliminate
confounder-sourced variations from the expression and outputting a
corrected version of the expression matrix. Instead, our major ob-
jective is learning a confounder-free representation. We seek to re-
duce the dimension of an expression matrix to learn meaningful
biological patterns that do not include confounders.

While keeping these differences in mind, we can compare our ap-
proach to batch correction techniques to highlight the advantages of
our adversarial confounder-removal framework. In their review,
Lazar et al. (2013), categorize batch correction techniques into two
groups. (i) Location-scale methods, which match the distribution of
different batches by adjusting the mean and standard deviation of
the genes. Examples include mean-centering (Sims et al., 2008),
gene-standardization (Li and Wong, 2001), ratio-based correction
(Luo et al., 2010), distance-weighted discrimination (Benito et al.,
2004) and probably the most popular of these techniques, the
Empirical Bayes method (i.e. ComBat) (Johnson et al., 2007). (ii)
Matrix factorization techniques, which factorize the expression ma-
trix to identify factors associated with batch effects and then recon-
struct the data to eliminate batch-affected components. Examples
include surrogate variable analysis (Leek and Storey, 2007) and vari-
ous extensions of it (Parker et al., 2014; Teschendorff et al., 2011).

One limitation that applies to previously listed methods is that
they model batch effects linearly. AD-AE, on the other hand, can

Fig. 3. AD-AE architecture. The model consists of an autoencoder and an adversary network. We jointly optimize the two models to minimize the joint loss, defined as the

combination of reconstruction error and adversary loss
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eliminate non-linear confounder effects as well. Several recent stud-
ies accounted for non-linear batch effects and tried modeling them
with neural networks. These studies used either (i) maximum mean
discrepancy (Borgwardt et al., 2006) to match the distributions of
two batches present in the data, such as Shaham et al. (2017) and
Amodio et al. (2019), or (ii) an adversarial approach for batch re-
moval, such as training an autoencoder with two separate decoder
networks that correspond to two different batches along with an ad-
versarial discriminator to differentiate the batches (Shaham, 2018)
or generative adversarial networks trained to match distributions of
samples from different batches (Upadhyay and Jain, 2019) or to
align different manifolds (Amodio and Krishnaswamy, 2018). These
methods all handle non-linear batch effects. However, their applica-
tion domain is limited since they can correct only for binary batch
labels. AD-AE is a general model that can be used with any categor-
ical or continuous valued confounder. To our knowledge, only
Dayton (2019) used an adversarial model to remove categorical
batch effects, extending the approaches limited to binary labels. Our
approach is significantly different since we focus on removing con-
founders from the latent space to learn deconfounded embeddings
instead of trying to deconfound the reconstructed expression.
Another unique aspect of our article is that we concentrate on learn-
ing generalizable embeddings for which we carry transfer experi-
ments for various expression domains and offer these domain
transfer experiments as a new way of measuring the robustness of
expression embeddings.

Our work takes its inspiration from research in fair machine
learning, where the goal is to prevent models from unintentionally
encoding information about sensitive variables, such as sex, race or
age. Multiple studies aimed to generate fair representations that try
to learn as much as possible from the data without learning the
membership of a sample to sensitive categories (Louizos et al., 2015;
Zemel et al., 2013). Two studies with high relevance to our ap-
proach are Ganin et al. (2016) and Louppe et al. (2017), which use
adversarial training to eliminate confounders. Ganin et al. (2016)
applied this idea to an autoencoder network to predict a class label
of interest while avoiding encoding the confounder variable. Louppe
et al. (2017) also used an adversarial training approach by fitting an
adversary model on the outcome of a classifier network to decon-
found the predictor model. One advantage of Louppe’s model over
the others is that it can work with any confounder variable, includ-
ing continuous valued confounders. Janizek et al. (2020) applied
this approach to predict pneumonia from chest radiographs, show-
ing that the model performs successfully without being confounded
by selected variables.

Inspired by this work, we adopt a similar adversarial training ap-
proach for expression data, which is highly prone to confounders.
Unlike prior work, AD-AE fits an adversary model on the embed-
ding space to generate robust, confounder-free embeddings.

4 Experiments and datasets

4.1 Datasets and use cases
We demonstrate the broad applicability of our model using it on
two different expression datasets and experimenting with three dif-
ferent cases of confounders. Our method aims to both remove con-
founders from the embedding and encode as much biological signal
as possible. Accordingly, we evaluate our model using two metrics:
(i) how successfully the embedding can predict the confounder,
where we expect a prediction performance close to random, and (ii)
the quality of prediction of biologically relevant variables, where a
better model is expected to lead to more accurate predictions.

Our first dataset was KMPlot (Györffy et al., 2010), which offers
a collection of breast cancer expression datasets from GEO micro-
array studies (Edgar et al., 2002). We selected five GEO datasets
with the highest number of samples from KMPlot, yielding a total of
1139 samples and 13 018 genes (GEO accession numbers:
GSE2034, GSE3494, GSE12276, GSE11121 and GSE7390). The
confounder variable, the dataset label that was a categorical vari-
able, indicated which of the five datasets each subset came from. For

this dataset, we chose estrogen receptor (ER) and cancer grade as
the biological variables of interest, since both are informative cancer
traits. ER is a binary label that denotes the existence of ERs in can-
cer cells, an important phenotype for determining treatment (Knight
et al., 1977). Similarly, cancer grade can take values 1, 2 or 3 for in-
vasive breast cancer, an indicator of the differentiation and growth
speed of a tumor (Rakha et al., 2010).

Our second dataset was brain cancer (glioma) RNA-Seq expres-
sion profiles obtained from TCGA, which contained lower grade gli-
oma (LGG) and glioblastoma multiforme (GBM) samples (Brat
et al., 2015; Brennan et al., 2013; McLendon et al., 2008). We had a
total of 672 samples and 20 502 genes. For this dataset, we used
two different confounder variables as two separate use cases: sex as
a binary confounder, and age as a continuous-valued one. For the
biological trait, we used cancer subtype label, a binary variable indi-
cating whether a patient had LGG or GBM, the latter a particularly
aggressive subtype of glioma.

We preprocessed both datasets by applying standard gene expres-
sion preprocessing steps: mapping probe ids to gene names, log trans-
forming the values and making each gene zero-mean univariate. We
also applied k-meansþþ clustering (Arthur and Vassilvitskii, 2006)
on the expression data before training autoencoder models to reduce
the number of features and decrease model complexity (e.g.
13 082 068 trainable parameters for the all genes model compared to
1 052 050 trainable parameters for the 1000 cluster centers model for
KMPlot expression). We observed improvement in autoencoder per-
formance when we applied clustering first and passed cluster centers
to the model (e.g. KMPlot expression validation reconstruction error
of 0.624 for the all genes model compared to 0.522 for the 1000 clus-
ter centers model). All alternative approaches are trained on the same
k-meansþþ clustered expression measurements passed to AD-AE
model to ensure fair comparison. We further investigated the effect of
the number of clusters on the AD-AE embedding and showed that
AD-AE can learn biologically informative embeddings independent of
the number of clusters we train the model on (Supplementary Section
S1 and Supplementary Fig. S1).

4.2 Deep learning architecture
For each dataset, we applied 5-fold cross-validation to select the hyper-
parameters of autoencoder models. When training the model, we left
out 20% of the samples for validation and determined the optimal
number of epochs based on validation loss. We used the same autoen-
coder architecture for the AD-AE as well. The optimal number of la-
tent nodes might differ based on the dataset and the specific tasks the
embeddings will be used on; we tried to select a reasonable latent
embedding size with respect to the number of samples and features we
had such that we reduce the dimension of the input features by 10%.
To demonstrate that our model is invariant to the embedding size, we
experimented with various sizes ranging from 10 to 150 and observed
that independent of the number of latent nodes, AD-AE can learn
deconfounded biologically meaningful embeddings (Supplementary
Section S2 and Supplementary Fig. S2). In terms of how to determine
the number of latent nodes for new datasets and analyses, we refer to
the review by Way et al. (2020), which investigated the effect of the
number of latent dimensions using multiple metrics on a variety of
dimensionality reduction techniques.

For the breast cancer data, we extracted 1000 k-means cluster cen-
ters since the number of samples was slightly above 1000. The latent
space size was set to 100. Our selected model had one hidden layer in
both encoder and decoder networks, with 500 hidden nodes and a
dropout rate of 0.1. The minibatch size was 128, and we trained with
Adam optimizer (Kingma and Ba, 2014) using a learning rate of
0.001. ReLU activation was applied to all layers of the encoder and
decoder except the last layer, where we applied linear activation. For
the adversarial model, we used a fully connected neural network that
had 2 hidden layers with 100 hidden nodes in each layer, and we used
ReLU activation. The last layer had five hidden nodes corresponding
to the number of confounder classes and softmax activation. The ad-
versarial model was trained with categorical cross entropy loss.

The architecture selected for brain cancer expression was very
similar, with 500 k-means cluster centers, 50 latent nodes, one
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hidden layer with 500 nodes in both networks with no dropout, and
ReLU activation at all layers except the last layers of the networks;
the remaining parameters were the same as those for the breast can-
cer network. The adversarial model was also the same except for 50
hidden nodes in each layer. For the sex confounder, the last layer
had one hidden node with sigmoid activation, trained with binary
cross entropy loss; for the age confounder, the last layer used linear
activation, trained with mean squared loss.

We implemented AD-AE using Keras with Tensorflow background.

4.3 Alternative approaches to deconfounding
When evaluating our model, the most straightforward competitor
was a standard autoencoder, which allowed us to directly observe
the effects of confounder removal. We also compared against other
commonly used approaches to confounder removal. For all these
different techniques, we first applied the correction method and
then trained an autoencoder model to generate an embedding from
the corrected data. We could not compare against non-linear batch
effect correction techniques (Section 3) since they were applicable
only on binary confounder variables.

Batch mean-centering: (Sims et al., 2008) subtracts the average
expression of all samples from the same confounder class (e.g.
batch) from the expression measurements.

Gene standardization: (Li and Wong, 2001) transforms each
gene measurement to have zero mean and one standard deviation
within a confounder class.

Empirical Bayes method (ComBat): (Johnson et al., 2007)
matches distributions of different batches by mean and deviation ad-
justment. To estimate the mean and standard deviation for each con-
founder class, the model adopts a parametric or a non-parametric
approach to gather information about confounder effects from
groups of genes with similar expression patterns.

5 Results

5.1 AD-AE learns biologically meaningful

deconfounded embeddings
Our first experiment aimed to demonstrate that AD-AE could suc-
cessfully encode the biological signals we wanted while not detecting

the selected confounders. We used the KMPlot breast cancer expres-
sion dataset and trained standard autoencoder and AD-AE to create
embeddings, and generated UMAP plots (McInnes et al., 2018) to
visualize the embeddings (Fig. 4). Observe that the standard autoen-
coder embedding clearly separates datasets, indicating that the
learned embedding was highly confounded (Fig. 4ai). On the other
hand, the UMAP plot for AD-AE embedding shows that data points
from different datasets are fused (Fig. 4bi). This is expected since we
trained our model until both networks converged, which means that
we obtained a random prediction performance on the validation set
for the adversarial network.

More interestingly, we colored the UMAP plots by biological
variables of interest: ER status and cancer grade. Observe that for
the autoencoder embedding, the samples are not differentiated by
phenotype labels (Fig. 4aii, iii). This shows that when we learn an
embedding with a standard autoencoder model, confounders
might dominate the embedding, preventing it from learning clear
biological patterns. On the other hand, the UMAP plot of the AD-
AE embedding clearly distinguishes samples by ER label as well as
cancer grade (Fig. 4bii, iii), showing the effects of deconfounding.
We further investigate these results in Section 5.3 by fitting pre-
diction models on the embeddings to quantitatively evaluate the
models.

5.2 AD-AE can learn embeddings generalizable to

different domains
AD-AE generates embeddings that are robust to confounders and
generalizable to different domains. The most common applications
for this model are learning an embedding from a dataset and trans-
ferring it to a separate dataset. To simulate this problem with
breast cancer samples, we left one dataset out for testing and
trained the standard autoencoder on the remaining four datasets.
We then generated two embeddings for the internal and external
datasets: (i) one for samples from the four datasets used for train-
ing, and (ii) another for the left out samples from the fifth dataset.
Note that we trained the model using samples in the four datasets
only, and we then used the already trained model to encode the
fifth dataset samples. We then repeated the same training and
encoding procedure for AD-AE to compare the generalizability of
both models.

Fig. 4. UMAP plots of embeddings generated by (a) standard autoencoder, and (b) AD-AE. Subplots are colored by (i) dataset, (ii) ER status and (iii) cancer grade. The gray

dots denote samples with missing labels
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In Figure 5, the circle and diamond markers denote the UMAP
representation of the embedding generated for training and left-out
dataset samples, respectively. In Figure 5ai, we colored all samples
by their ER labels. First of all, we draw attention to the external set
data points that are clustered entirely separately from the training
samples. This shows that the standard embedding does not precisely
generalize to left-out samples. More importantly, we do not see a
general direction of separation for the ER labels that is valid for
both the training and left-out samples (ERþ samples are clustered
on the right for training samples and mainly on the left for external
samples). This clustering indicates that the manifold learned for the
training samples does not transfer to the external dataset. We
observed the same scenario when we colored the same plots by can-
cer grade (Fig. 5aii).

To examine whether the AD-AE can better generalize to a separ-
ate dataset, we created UMAP plots (as in Fig. 5a) for the AD-AE
embedding (Fig. 5b). We emphasize that it is not possible to

distinguish training from external samples because the circle and
diamond markers overlap one another. But the critical point is the

separation of samples by ER label (Fig. 5bi). Observe that ER- sam-
ples from the training set are concentrated on the upper left of the

plot, while ERþ samples dominate the right. The same direction of
separation applies to the samples from the external dataset. This
plot concisely demonstrates that when we remove confounders from

the embedding, we can learn generalizable biological patterns other-
wise overshadowed by confounder effects. We applied the same ana-

lysis using the cancer grade labels and again observed the same
pattern (Fig. 5bii).

5.3 AD-AE can successfully predict biological

phenotypes
To show that AD-AE preserves the true biological signals present in
the expression data, we predicted cancer phenotypes from the

Fig. 5. UMAP plots of embeddings generated by (a) standard autoencoder, and (b) AD-AE. Plots are colored by (i) ER labels, and (ii) cancer grade labels. The circle and dia-

mond markers denote training and external dataset samples, respectively. The gray dots denote samples with missing labels. For clarity, the subplots for the training and exter-

nal samples are provided below the joined plots
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learned embeddings. In Sections 5.1 and 5.2, we visualized our
embeddings to demonstrate how our approach removes confounder
effects and learns meaningful biological representations.
Nonetheless, we wanted to offer a quantitative analysis as well to
thoroughly compare our model to a standard baseline and to alter-
native deconfounding approaches. After generating embeddings
with AD-AE and competitor models, we fit prediction models to the
embeddings to predict biological phenotypes of interest. We also
applied the prediction test on different domains to examine how
well the learned embeddings generalized to external test sets and
measure the generalization gap for each model as a metric of
robustness.

In Figure 6a, we show the ER prediction performance of our
model compared to all other baselines. To predict ER status, we
used an elastic net classifier, tuning the regularization and l1 ratio
parameters with 5-fold cross validation. We recorded the area under
precision-recall curves (PR-AUC) since the labels were unbalanced.

We separately selected the optimal model for each embedding gener-
ated by AD-AE and each competitor. To measure each method’s
consistency, we repeated the embedding generation process 10 times
with 10 independent random trainings of the models, and we ran
prediction tasks for each of the 10 embeddings for each model. We
used linear models for the prediction for two reasons. First, the sam-
ple size was small due to the missingness of phenotype labels for
some samples and the splitting of samples across domains, which
made it difficult to fit complex models. Second, reducing the expres-
sion matrix dimension size let us reduce complexity and fit simpler
models to capture patterns.

We trained AD-AE and the competitors using only four datasets,
leaving the fifth dataset out. To train the linear prediction model, we
left out 20% of the samples from the four datasets for testing, trained
the model using the rest of the samples, then predicted on the left-out
internal samples to measure PR-AUC. To measure prediction per-
formance of the external dataset, we used the exact same training

Fig. 6. (a) ER prediction plots for (i) internal test set and (ii) external test set. (b) Cancer grade prediction plots
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samples obtained from the four datasets and then predicted for the ex-
ternal dataset samples. In Figure 6ai, observe that for the internal
dataset, our model barely outperforms other baselines and the uncor-
rected model. This is expected: when the domain is the same, we
might not see the advantage of confounder removal. However,
Figure 6aii shows that when predicting for the left-out dataset, AD-
AE clearly outperforms all other models. This result shows that AD-
AE much more successfully generalizes to other domains.

We repeated the same experiments, this time to predict cancer
grade, for which we fit an elastic net regressor tuned with 5-fold
cross validation, measuring the mean squared error. Figure 6b shows
that for the internal prediction, our model is not as successful as
other models; however, it outperforms all baselines in terms of ex-
ternal test set performance. This result indicates that a modest de-
crease in internal test set performance could significantly improve
our model’s external test set performance. We further investigated
the effect of the embedding size on the internal and external test set
prediction performances and showed that AD-AE can successfully
predict biological phenotypes of interest for a wide range of embed-
ding sizes (Supplementary Section S2 and Supplementary Fig. S3).

Moreover, we showed that the generalization gap of AD-AE is
much smaller than the baselines we compare against (Fig. 6). We cal-
culated the generalization gap as the distance between internal and ex-
ternal test set prediction scores. A high generalization gap means that
model performance declines sharply when transferred to another do-
main; a small generalization gap indicates a model can transfer across
domains with minimal performance decline. Therefore, AD-AE suc-
cessfully learns manifolds that are valid across different domains, as
we demonstrated for both ER and cancer grade predictions.

5.4 AD-AE embeddings can be successfully transferred

across domains
We next extend our experiments to the TCGA brain cancer dataset to
further evaluate AD-AE. We trained our model and the baselines with
the same procedure we applied to the breast cancer dataset and again
fitted prediction models. We first trained an elastic net classifier to
predict cancer subtype (LGG versus GBM) from the embeddings. We
trained the predictor model using only female samples and predicted
for male samples. We then repeated this transfer process, this time
training from male samples and predicting on females. Note that the
autoencoder was trained from all samples (male and female), and

prediction models were trained from one class of samples (e.g. males)
and transferred to another class (e.g. females). This experiment was
intended to evaluate how accurate an embedding would be at predict-
ing biological variables of interest when the confounder domain is
changed. Figure 7 shows that AD-AE easily outperforms the standard
baseline and all competitors for both transfer directions.

We find this result extremely promising since we offer confounder
domain transfer prediction as a metric for evaluating the robustness
of an expression embedding. Researchers want to generate inform-
ative embeddings that encode biological signals without being con-
founded by out-of-interest variables (e.g. sex). We note that the
confounder variable is data and domain dependent, and sex can be a
crucial biological variable of interest for certain diseases or datasets.
In this experiment, we wanted to learn about cancer subtypes and se-
verity independent of a patient’s sex. We succeed at this task of accur-
ately predicting complex phenotypes regardless of the distribution of
the confounder variable. We also highlight that our model can solve
the problem of class imbalance that commonly occurs in domain shift
(Hsu et al., 2015). Figure 7c shows that the distribution of cancer sub-
types differs for male and female domains. This might lead to discrep-
ancies when transferring from one domain to another; however, AD-
AE embeddings could be successfully transferred independent of the
distribution of labels, a highly desirable property of a robust expres-
sion embedding. We also subsampled from the subtype classes to
carry the transfer experiments on the simulated balanced dataset and
demonstrated that AD-AE could successfully transfer across domains
in both cases of balanced and imbalanced class distributions
(Supplementary Section S3 and Supplementary Fig. S4).

We repeated the transfer experiments using age as the continuous-
valued confounder variable. Other models were not applicable for
continuous valued confounders; thus, we could compare only to the
standard baseline. For the prediction transfer experiments, we again
fit an elastic net classifier to predict cancer subtype and separated the
samples into two groups: samples with age within one standard devi-
ation (i.e. center of the distribution), and samples with age beyond
one standard deviation (i.e. edges of the distribution). Figure 8c shows
the age distribution of the brain cancer dataset, highlighting the sam-
ples in the center and on the edges. We trained the predictor on the
center samples and predicted for samples on the edge, and vice versa
(Fig. 8a and b). Our model substantially outperforms the standard
baseline in both transfer directions. Especially, when we trained on
samples within one standard deviation and predicted for remaining

Fig. 7. Glioma subtype prediction plots for (a) model trained on female samples transferred to male samples and (b) model trained on male samples transferred to female sam-

ples. (c) Subtype label distributions for male and female samples
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samples, we can see a huge increase in performance compared to the
standard baseline. This case simulates a substantial age distribution
shift. It is promising to see that disentangling confounders from ex-
pression embeddings can be the key to capturing signals generalizable
over different domains, such as different age distributions.

6 Discussion

Gene expression datasets contain valuable information central
to unlocking biological mechanisms and understanding the biol-
ogy of complex diseases. Unsupervised learning aims to encode
information present in vast amounts of unlabeled samples to an
informative latent space, helping researchers discover signals
without biasing the learning process.

Hindering the learning of meaningful representations is the fact
that gene expression measurements often contain unwanted sources
of variation, such as experimental artifacts and out-of-interest bio-
logical variables. Variations introduced by confounders can over-
shadow the true expression signal, preventing the model from
learning accurate patterns. Particularly when we combine multiple
expression datasets to increase statistical power, we can learn an
embedding that encodes dataset differences rather than biological
signals shared across multiple datasets.

We introduced the AD-AE to generate expression embeddings
robust to confounders. AD-AE trains two neural networks simultan-
eously, an autoencoder to generate an embedding that reconstructs
the original data successfully and an adversary model that predicts
the selected confounders from the generated embedding. We jointly
optimized the two models; the autoencoder tries to learn an embed-
ding free from the confounder variable, while the adversary tries to
predict the confounder accurately. On convergence, the encoder
learns a latent space where the confounder cannot be predicted even
using the optimally trained adversary network.

We evaluated our model based on (i) deconfounding of the learn-
ed latent space, (ii) preservation of biological signals and (iii) predic-
tion of biological variables of interest when the embedding is
transferred from one confounder domain to another. We experi-
mented with two datasets, KMPlot breast cancer expression, where
we used dataset labels as the confounder variable, and TCGA brain
cancer RNA-Seq expression, where we used both sex and age as

separate confounders. For these different use cases, we showed that
AD-AE generates deconfounded embeddings that successfully pre-
dict biological phenotypes of interest. Importantly, we showed the

advantage of our model over standard autoencoder and alternative
deconfounding approaches on transfer experiments, where our

model generalized much better to different domains.
A potential limitation of our approach is that we extend an

unregularized autoencoder model by incorporating an adversarial
component. We can improve our model by adopting a regularized
autoencoder such as denoising autoencoder (Vincent et al., 2008),

or variational autoencoder (Kingma and Welling, 2013). In this
way, we could prevent model overfitting and make our approach

more applicable to datasets with smaller sample sizes. Another limi-
tation is that although our model can train an adversary model to
predict a vector of confounders, we have not yet conducted experi-

ments to correct for multiple confounders simultaneously. We could
extend our model by incorporating multiple adversarial networks to
account for various confounders.

AD-AE is an adversarial approach for generating confounder-
free embeddings for gene expression that can be easily adapted for

any confounder variable. In this article, we tested our model on can-
cer expression datasets since cancer expression samples are available

in large numbers. However, we would like to extend testing to other
expression datasets as well, including samples from different dis-
eases and normal tissues. We also see as future work experimenting

on single cell RNA-Seq data to learn informative embeddings com-
bining multiple datasets.

Furthermore, investigating the deconfounded latent spaces and
reconstructed expression matrices learned by AD-AE using feature

attribution methods such as ‘expected gradients’ (Erion et al.,
2019; Sturmfels et al., 2020) would allow us to detect the biological
differences between the confounded and deconfounded spaces and

carry enrichment tests to understand the relevance to biological
pathways.
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