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Abstract
Motivation: The task of predicting drug–target interactions (DTIs) plays a significant role in facilitating the development of novel drug discovery.
Compared with laboratory-based approaches, computational methods proposed for DTI prediction are preferred due to their high-efficiency and
low-cost advantages. Recently, much attention has been attracted to apply different graph neural network (GNN) models to discover underlying
DTIs from heterogeneous biological information network (HBIN). Although GNN-based prediction methods achieve better performance, they are
prone to encounter the over-smoothing simulation when learning the latent representations of drugs and targets with their rich neighborhood
information in HBIN, and thereby reduce the discriminative ability in DTI prediction.

Results: In this work, an improved graph representation learning method, namely iGRLDTI, is proposed to address the above issue by better
capturing more discriminative representations of drugs and targets in a latent feature space. Specifically, iGRLDTI first constructs an HBIN by
integrating the biological knowledge of drugs and targets with their interactions. After that, it adopts a node-dependent local smoothing strategy
to adaptively decide the propagation depth of each biomolecule in HBIN, thus significantly alleviating over-smoothing by enhancing the discrimi-
native ability of feature representations of drugs and targets. Finally, a Gradient Boosting Decision Tree classifier is used by iGRLDTI to predict
novel DTIs. Experimental results demonstrate that iGRLDTI yields better performance that several state-of-the-art computational methods on the
benchmark dataset. Besides, our case study indicates that iGRLDTI can successfully identify novel DTIs with more distinguishable features of
drugs and targets.

Availability and implementation: Python codes and dataset are available at https://github.com/stevejobws/iGRLDTI/.

1 Introduction

A critical step in drug development is to validate the safety
and efficacy of new drugs by discovering the active compound
molecule interacting with target proteins before marketing
(D’Souza et al. 2020). Hence, the identification of unknown
drug–target interactions (DTIs) is of great significance for
novel drug discovery and development. As an alternative to
in vitro laboratory-based approaches, in silico computational
methods proposed for DTI prediction have attracted increas-
ing attention in recent years, as they enjoy the high-efficiency
and low-cost advantages (Phatak et al. 2009). Generally
speaking, existing computational methods can be broadly
classified into either molecular docking simulation (MDS)-
based or machine learning (ML)-based methods (Peska et al.
2017).

MDS-based methods aim to simulate the binding process of
drugs to their target proteins by predicting the structures of

receptor–ligand complexes, where receptors and ligands are
target proteins and small drug molecules, respectively.
However, their performance in predicting DTIs is subject to
the availability of the structure information of targets (Hauser
et al. 2017). Taking the G-protein-coupled receptors (GPCRs)
as an example, few of them can be crystallized as orphan
GPCRs, and thereby make it difficult to implement MDS for
screening potential interaction sites on the receptor surface to
match drug molecules (Ballesteros and Palczewski 2001). To
overcome this issue, a variety of ML-based methods have thus
been proposed in the light of chemo-genomics, which allows
them to identify unknown DTIs through the similarity in the
biological information of drugs and targets (Yamanishi et al.
2008, Bagherian et al. 2021).

Taking advantage of advanced ML techniques, ML-based
methods have been widely and successfully applied to DTIs
prediction (Wang et al. 2014, Luo et al. 2017, Wan et al.
2019, Bagherian et al. 2021). For instance, Wang et al. (2014)
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propose a heterogeneous network-based model, termed TL-
HGBI, for DTI prediction. TL-HGBI uses two types of rela-
tionships, i.e. drug–disease associations and DTIs, to capture
the characteristics of drugs and targets, and an iterative
updating algorithm is developed to infer new DTIs. Luo et al.
(2017) present a novel model with a network integration pipe-
line, called DTINet, by integrating multiple information to
construct a heterogeneous network, and then a compact fea-
ture learning method is applied to learn the low-dimensional
representation vectors with the topological properties of
drugs and targets. Wan et al. (2019) develop a nonlinear end-
to-end learning model, namely NeoDTI, to learn the network
representations of drugs and targets for DTI prediction.
NeoDTI first integrates neighborhood information of nodes
with information passing, and then a network topology-
preserving learning procedure is utilized to extract the repre-
sentations of drugs and targets. However, ML-based methods
typically fail to present satisfactory prediction performance,
mainly due to the fact that they rely heavily on the features of
given data, which may confuse the classifiers to make correct
prediction.

Recently, graph neural network (GNN)-based methods have
been widely used in bioinformatics due to better learning of
more representative features by considering biological knowl-
edge and topology structure simultaneously (Peng et al. 2021,
Zhou et al. 2021, Li et al. 2022). As a representative work in
this category, IMCHGAN (Li et al. 2022) first adopts a graph
attention network to learn the representations for drugs and
targets by a specific meta-path, and then employs an attention-
based learning algorithm to integrate different meta-path repre-
sentations as the final features of drugs and targets. MultiDTI
(Zhou et al. 2021) learns the representations of drugs and tar-
gets by multi-modal representation learning, including the region
embedding, deep down-sampling residual and the joint presenta-
tion modules, on heterogeneous networks. EEG-DTI (Peng et al.
2021) incorporates a three-layer graph convolutional network
to respectively generate representations of drug and target on
the heterogeneous network for DTIs prediction.

When applied to predict DTIs from a given heterogeneous
biological information network (HBIN), existing GNN-based
models suffer from two disadvantages. First, though they
have demonstrated their superior performance in the task of
DTI prediction, there is still room for further improvement, as
they fall short of adaptively controlling how much informa-
tion should be aggregated to avoid over-smoothing when
learning the feature representations of drugs and targets from
HBIN. Second, only a few neural network layers are con-
structed during aggregation due to the over-smoothing con-
straint of GNNs, and hence the representative ability of
GNN-based computational methods is weakened, thus lead-
ing to their unsatisfactory performance for the task of DTI
prediction. In particular, the propagation depth, denoted as k,
allows GNN-based methods to aggregate the information
from biomolecules as far as k-hop away. However, consider-
ing the sparsity of HBIN, it is improper to assign a constant
value to k for biomolecules located in different regions of
HBIN. For example, a larger value of k would possibly aggre-
gate excessive information for biomolecules in the dense re-
gion, thus leading to over-smoothing. On the other hand, one
major advantage of deriving distinguishable feature represen-
tations of drugs and targets is to enhance the discriminative
ability, which could potentially produce better performance
of DTI prediction.

Regarding the solutions proposed to address the over-
smoothing issue in the previous studies, they also contain cer-
tain limitations. For example, Fast-GCN (Chen et al. 2018a)
selects a fixed number of graph nodes at each layer to learn
their representations. VR-GCN (Chen et al. 2018b) considers
to reduce the variance on graph node sampling, which can re-
duce the size of samples, and generate an additional memory
cost. Although effective, these methods are not applicable to
make an accurate prediction of novel DTIs, as they come at
the cost of increased training complexity, and are difficult to
generalize in other domain such DTI prediction.

In this work, an improved graph representation learning
method, namely iGRLDTI, is proposed to derive high-quality
feature representations of drugs and targets over HBIN by
addressing the above issue, and thereby achieves promising
accuracy for DTI prediction. To this end, iGRLDTI first con-
structs a complicated HBIN by integrating the molecular
structure information of drugs, the sequence information of
protein targets, and DTIs. To do so, it is possible for
iGRLDTI to collect evidence from different perspectives to
support or against the verification of DTIs. After that, it cal-
culates a node-specific propagation depth for each biomole-
cule in HBIN with a node-dependent local smoothing (NDLS)
strategy (Zhang et al. 2021). Distinguishable feature represen-
tations of drugs and targets can thus be learned with en-
hanced discriminative power, and they are then incorporated
into a Gradient Boosting Decision Tree (GBDT) classifier
adopted by iGRLDTI to predict novel DTIs. For the purpose
of performance evaluation, a series of extensive experiments
have been conducted by comparing iGRLDTI with several
state-of-the-art computational methods on the benchmark
dataset. Experimental results demonstrate the superior perfor-
mance of iGRLDTI in terms of several independent evaluation
metrics. Besides, our case study also indicates that iGRLDTI
considerably alleviates over-smoothing to derive more dis-
criminative feature representations of drugs and targets, and
it also provides new insight into the identification of novel
DTIs with these distinguishable features.

2 Materials and methods

iGRLDTI is composed of three steps, including HBIN con-
struction, representation learning, and DTI prediction. In par-
ticular, the purpose of HBIN construction is to integrate DTIs
and the biological knowledge of drugs and targets, such that
these different sources of information can be learned in a sin-
gle context. Given the HBIN, a representation learning pro-
cess is then performed by iGRLDTI with an NDLS strategy,
which allows it to adaptively specify the propagation depth
for each biomolecule in HBIN during the learning process.
After that, iGRLDTI trains a GBDT classifier with distin-
guishable feature representations of drugs and targets to com-
plete the prediction task. The overall workflow of iGRLDTI
is presented in Fig. 1. Before presenting the details of
iGRLDTI, we first introduce the mathematical preliminaries
as below.

2.1 Mathematical preliminaries

A HBIN is defined as a three-element tuple, i.e. G ¼ fV;C;Eg,
where V ¼ fVd;Vtg denotes a total of jVj biomolecules includ-
ing drugs (Vd) and targets (Vt), C is a matrix representing the bi-
ological knowledge of drugs and targets, and E ¼ feijg is
composed of all jEj DTIs. Moreover, the number of drugs is
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jVdj and that of targets is jVtj. Hence, we have
jVdj þ jVtj ¼ jVj.

Regarding the biological knowledge of drugs and targets of
interest, we employ the molecular structure information of drugs
and the sequence information of protein targets to compose C.
Assuming that Cd 2 R

n�d and Ct 2 R
m�d are the respective fea-

ture matrices of drugs and targets obtained from their biological
knowledge, we have C ¼ ½Cd; Ct�T 2 R

ðnþmÞ�d. Given V and E,
a jVj � jVj adjacency matrix of G can be constructed as
A ¼ ½aij�, where the value of aij is 1 if eij 2 E and 0 otherwise.
For a jVj � jVj adjacency matrix A, aij is 0 if both i and j are
drug nodes, and its value will not be changed in the following
procedure.

In addition to the above symbols, a jVj � jVj matrix Q ¼
½qij� is defined to indicate the mutual influence between nodes
in given a HBIN when we decide the propagation depth, i.e.
k, for an arbitrary biomolecule in G during graph representa-
tion learning.

2.2 HBIN construction

Given all DTIs used to construct G, it is not difficult for us to
explicitly compose V and E, where V is composed of 549
kinds of drugs Vd and 424 kinds of targets Vt. Furthermore,
all drugs and targets in the DTI data are collected from the
DrugBankV3.0 database (Knox et al. 2011) and HPRD2009
databases (Keshava Prasad et al. 2009), respectively.
Regarding their interactions, Luo et al. (2017) extract them
from the DrugBankV3.0 database, and there are a total of
1923 DTIs. Hence, the only element to be determined in G is
C, which is calculated as below.

Regarding Cd, we first collect the Simplified Molecular Input
Line Entry System (SMILES) (Weininger 1988) from the
DrugBank database (Wishart et al. 2018), and then process it
with the RDKit tool (Landrum 2013) to obtain cd, which is con-
sidered as the feature vector of each drug, denoted as vd 2 Vd.
Due to cd is high-dimensional, thus, we adopt a reducing auto-
encoder strategy (Vincent et al. 2008) to obtain a more compact
form of cd 2 R

1�d, here, d is set to 64. Given all cd, we are able
to obtain Cd ¼ ½cd1; cd2; � � � ; cdjVd j�

T. In the field of deep learn-
ing, it is quite common to apply dimension reduction for achiev-
ing a more compact form of embedding vectors. The reducing
auto-encoder strategy is adopted to deal with high-dimensional
features of drugs and targets in this work, whereas other com-
pared methods make use of different dimension reduction tech-
niques for the same purpose. For example, MultiDTI (Zhou
et al. 2021) reduces the feature dimensions of targets and drugs
adjusting the size of convolution kernel in a deep convolutional
neural network. One should note that the reducing auto-encoder

strategy could induce information loss when disposing of
redundant information (Mohamed et al. 2022).

Although there are various sources of biological information
used to describe proteins, such as genomic information, protein
structures, protein sequences, and Gene Ontology (GO)
(Bagherian et al. 2021, Pan et al. 2022), we simple use the se-
quence information of protein targets to construct Ct, as only
using protein sequences could yield a more universal perfor-
mance than other kinds of information about proteins (Guo
et al. 2008). For each target vt 2 Vt, we first collect its sequence
from the STRING database (Szklarczyk et al. 2019). Since a pro-
tein sequence is a polymer chain composed of 20 different amino
acids, the dimension of feature vectors of 3-mers could be as
large as 8000 (203), thus consuming more computational
resources for further processing. Hence, for the purpose of di-
mension reduction, a popular way to deal with amino acids is to
group them into four categories according to their chemical
properties (Shen et al. 2007). In particular, these four categories
are non-polar amino acids (Glycine, Alanine, Valine, Leucine,
Isoleucine, Phenylalanine, Proline), polar and neutral amino
acids (Tryptophan, Serine, Tyrosine, Cystine, Methionine,
Asparagine, Glutarnine, Threonine), acidic amino acids
(Asparagine, Glutamicacid), and basic amino acids (Lysine,
Arginine, Histidine). After conversion, the dimension of feature
vectors of 3-mers is reduced to 64 (43). One should note that
specific amino acids are over-represented only if they are more
frequently found in protein sequences. Given all ct, we are able
to obtain Ct ¼ ½ct1; ct2; � � � ; ctjVt j�

T. One should note that ct is
also a 64-dimensional vector, as there are a total of 64
(4� 4� 4) possible combinations of 3-mers.

Thus far, we are able to compose C with Cd and Ct, and
thereby construct G for learning the distinguishable represen-
tations of drugs and targets.

2.3 Representation learning

For DTI prediction, existing GNN-based computational
methods generally learn the feature representations of drugs
and targets by simultaneously considering network topology
and biological knowledge available in G (Hu et al. 2020), and
different GNN models are then adopted to achieve this pur-
pose, such as graph attention network (Veli�ckovi�c et al. 2018)
used by IMCHGAN (Li et al. 2022), and graph convolutional
network (Kipf and Welling 2017) used by EEG-DTI (Peng
et al. 2021). However, as the propagation depth, i.e. k, of
these GNN-based methods increases, the mixture of neighbor-
hood features gathered from biomolecules as far as k-hop
away drives the output of an GNN model toward a space
with less informative features of drugs and targets, resulting
in the over-smoothing issue (Huang et al. 2020). According to

Figure 1. The schematic diagram of iGRLDTI
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the classical GNN model, the feature representations of drugs
and targets at the k-th layer, denoted as XðkÞ, can be obtained
by the feed forward propagation a recursive manner. This
propagation process can be described as:

XðkÞ ¼ rðAXðk�1ÞWðk�1ÞÞ; (1)

A ¼ Dr�1AD�r; (2)

where D ¼ ½dij� is the diagonal node degree matrix of G; r 2
½0;1� is the convolutional coefficient, W is the trainable weight
matrix at the k-th layer, and rð�Þ is an activation function. As
has been pointed out by Wu et al. (2019) and Li et al. (2018),
the over-smoothing issue is mainly caused by the multiplica-
tion of A and X in Equation (1). To facilitate the derivation of
XðkÞ, we simply let rð�Þ and W be an identity function and an
identity matrix respectively, and then Equation (1) can be re-
written as below.

XðkÞ ¼ A
ðkÞ

Xð0Þ; (3)

where Xð0Þ is the initial representation matrix equivalent to C.
After smoothing XðkÞ through a propagation process with infi-
nite depth (k!1), the final representations of drugs and tar-
gets can be obtained as:

Xð1Þ ¼ A
ð1Þ

Xð0Þ; (4)

a
ð1Þ
ij ¼ ðdii þ 1Þrðdjj þ 1Þ1�r

2jEj þ jVj ; (5)

where A
ð1Þ ¼ ½að1Þij � is the final adjacency matrix of G, and ac-

cordingly a
ð1Þ
ij indicates the weight between vi and vj

(vi; vj 2 V).
Assuming that Xi is the representation vector of vi and it is

also the i-th row of X, we are interested in measuring the

what extent a change in X
ð0Þ
j affects X

ðkÞ
i when computing Q.

The value of q
ðkÞ
ij can thus be determined with Equation (6).

q
ðkÞ
ij ¼

@Xi
ðkÞ

@Xj
ð0Þ : (6)

Obviously, Q
ðkÞ
i denoted as the i-th row of QðkÞ, indicates

the distribution of influence made by other nodes to vi at the
k-th layer. Following Zhang et al. (2021), we adopt the
NDLS strategy to determine the node-specific minimal value
of k with a distance parameter e, which is an arbitrary small
constant to control the smoothing effect. Hence, the definition
of NDLS is given as:

NDLSðvi; eÞ ¼ minfk : kQð1Þi �Q
ðkÞ
i k2 < eg; (7)

where k � k2 is the two-norm and NDLSðvdr
i ; eÞ > 0. Once we

decide the minimal value of k for learning Xi, an average
operation is applied to aggregate sufficient neighborhood
information within k-hops from vi, and thereby we have the
following update rule for Xi.

Xi ¼
1

NDLSðvi; eÞ þ 1

XNDLSðvi;eÞ

k¼0

X
ðkÞ
i : (8)

With Equation (8), we are able to obtain the representation
vector for each of nodes in G, and X can thus be determined.
Regarding the matrix Q, each of its elements, say qij, indicates
the mutual influence between nodes i and j. Even when both i
and j are drug nodes, we also could obtain the value of qij

with Equation (6).
In particular, iGRLDTI can extract distinguishable representa-

tion features by confirming the optimal propagation depth for
each node, and further avoiding the over-smoothing phenome-
non. Furthermore, the features within k hops are aggregated,
and then averaged to better capture effectively neighborhood in-
formation. In doing so, iGRLDTI pursues higher-order neighbor
information while preserving local feature information.

2.4 DTI prediction

With the above steps, iGRLDTI is able to extract distinguish-
able feature representations X of drugs and targets. After that,
the GBDT classifier (Friedman 2001) is adopted to complete
the prediction task with X. Specifically, the task of DTI predic-
tion is regarded as a binary classification task under supervised
learning. Hence, we prepare a training dataset, denoted as
Etrain, to build the GBDT classifier based on the representations
of drugs and targets. Assuming that Etest is the testing dataset
composed by N drug–target pairs with unknown interactions.
For an arbitrary drug–target pair, i.e. < vi 2 Vd; vj 2 Vt > in
Etest, we concatenate Xi and Xj to compose its feature vector
h ¼ ½Xi;Xj�. Moreover, we define r ¼ ½r� as a result vector of
length N, and use it to store the prediction score of each drug–
target pair in Etest. One should note that the range of each ele-
ment in r is within ½0;1�. Obviously, vi and vj are more likely to
interact if the value of corresponding r is larger. The complete
procedure of iGRLDTI is described in Algorithm 1.

3 Results and discussion
3.1 Evaluation criteria

To better demonstrate the performance of iGRLDTI, we con-
duct extensive experiments on the benchmark dataset composed
of 549 drugs, 424 targets, and 1923 DTIs (Luo et al. 2017).
Regarding performance evaluation, AUC and AUPR are used as
standardized indicators. In particular, AUC is an area under the
receiver operating characteristic (ROC) curve, and AUPR is an
area under the precision–recall (PR) curve. Besides, we also
adopt the F1 score that is a harmonic mean of Precision and
Recall. The calculation of F1 score is given as:

Precision ¼ TP

TPþ FP
; (9)

Recall ¼ TP

TPþ FN
; (10)

F1� score ¼ 2 � Precision � Recall

Precisionþ Recall
; (11)

where TP and TN are the respective numbers of positive and
negative samples predicted to be true, FP and FN are the
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respective numbers of positive and negative samples predicted
to be false. In the experiment, the performance of iGRLDTI is
evaluated under a 10-fold cross-validation (CV) scheme.
More specifically, we randomly divide the benchmark dataset
into 10 folds with equal size. Each fold is alternately selected
as the testing data, while the rest are used as the training data.
Regarding the generation of negative samples, we randomly
pair up drugs and targets whose interactions are not found in
the benchmark dataset, and the number of negative samples is
equal to that of positive ones.

3.2 Performance comparison

Regarding the performance of iGRLDTI, we have compared
it with five state-of-the-art algorithms proposed for DTI pre-
diction, i.e. DTINet (Luo et al. 2017), EEG-DTI (Peng et al.
2021), NeoDTI (Wan et al. 2019), IMCHGAN (Li et al.
2022), and MultiDTI (Zhou et al. 2021). Experiment results
of 10-fold CV are presented in Table 1, and we have compiled
the source codes of these methods downloaded from their re-
positories, and re-evaluated their performances in the same
experimental environment for ensuring a fair comparison.
Regarding parameter values, we explicitly adopt the default
settings recommended in their original work during the train-
ing process. We note that iGRLDTI achieves the best perfor-
mance among all comparing algorithms in terms of AUC and
AUPR. On average, iGRLDTI performs better by 3.85%,
0.75%, 1.50%, 3.55%, and 1.20% than DTINet, EEG-DTI,
NeoDTI, IMCHGAN, and MultiDTI, respectively. This could
be a strong indicator that the proposed representation learn-
ing process considerably improves the accuracy of DTI

prediction, and iGRLDTI can be a promising tool to identify
novel DTIs.

The reasons accountable for the promising performance of
iGRLDTI are 2-fold. On the one hand, it employs the biologi-
cal knowledge of drugs and proteins to enrich the content of
HBIN, and then learns their feature vectors from biological
knowledge as the initial representations. On the other hand, it
adopts the NDLS strategy to decide the node-specific propa-
gation depth during representation learning, thus alleviating
the impact of the over-smoothing issue. But for the other com-
paring algorithms, they are difficult to adjust the depth of
neighbor information aggregation for each node, and accord-
ingly, the representations of drugs and targets learned by their
GNN models are less discriminative.

Another point worth to note is that some comparing algo-
rithms exhibit different behaviors for their performance in
terms of AUC and AUPR. After an in-depth analysis, we find
that the main reason for that phenomenon is ascribed to the
introduction of the more heterogeneous information. Taking
NeoDTI as an example, its AUC performance ranks as the
third-best. iGRLDTI only makes use of chemical structures of
drugs, protein sequences of targets, and their interactions to
compose a HBIN as its input while NeoDTI integrates the
structural similarity network of drugs, the sequence similarity
network of targets, and different kinds of associations, such
as drug–drug interactions, protein–protein interactions, and
drug–disease associations, to construct a heterogeneous
network as its input. Hence, the main difference lying in the
input between iGRLDTI and NeoDTI is that only DTIs are
considered by iGRLDTI. Moreover, iGRLDTI still outper-
forms NeoDTI at 0.8% of AUC, 2.2% of AUPR, and 8.9%
of F1-score, suggesting that it may not be necessary to include
so many kinds of associations, as the heterogeneous informa-
tion given by them could degrade the performance by confus-
ing the classifiers to a certain extent. Consequently, we have
reason to believe that rather than incorporating more kinds of
associations, our work provides an alternative view to
improve the accuracy of DTI prediction by alleviating the
over-smoothing issue.

Moreover, the DTI prediction problem is more reasonable
to be formulated as an imbalanced classification problem in
the real case. It is for this reason that additional experiments
have been conducted to evaluate the performance of
iGRLDTI on the imbalanced dataset, where the ratio between
positive and negative samples is set to be 1:10 by following
(Wan et al. 2019). The experimental results of 10-fold CV are
presented in Table 2. Regarding iGRLDTI, we note that it
yields the best performance in terms of AUC and AUPR. Its
F1-score is ranked as the second best and is only slightly
worse by 0.7% than MultiDTI. However, among all evalua-
tion metrics, particular attention should be paid to AUPR,
which is a promising indicator in case of imbalanced datasets
(Johnson et al. 2012). In terms of AUPR, iGRLDTI performs
better by 14.1%, 25.5%, 5.9%, 3.8%, and 1.0% than
DTINet, EEG-DTI, NeoDTI, IMCHGAN, and MultiDTI,

Algorithm 1. The complete procedure of iGRLDTI

Input: graph G ¼ fV ;C ;Eg; representation sizes: d; the number

of regression trees: T

Output: the predicted results matrix R

1: Initialization: R

2: Extract drug biological features Cd

3: Extract protein biological features Ct

4: C ¼ Cd

Ct

� �

5: XðkÞ ¼ A
ðkÞ

C

6: q
ðkÞ
ij ¼

@Xi
ðkÞ

@Xj
ð0Þ ; QðkÞ ¼ q

ðkÞ
ij

n o
7: for vi 2 V do

8: NDLSðvi ; eÞ ¼ minfk : kQð1Þi �Q
ðkÞ
i k2 < eg

9: Xi ¼ 1
NDLSðvi ;eÞþ1

XNDLSðvi ;eÞ

k¼0
X
ðkÞ
i

10: end for

11: for < vi ; vj > in Etrain do

12: h ¼ ½Xi ;Xj �
13: Train the GBDT classifier with h and T as input

14: end for

15: //Predict novel DTIs

16: for < vi ; vj > in Etest do

17: h ¼ ½Xi ;Xj �
18: r ¼ GBDTðhÞ
19: end for

20: Return r ¼ ½r �

Table 1. Comparison with state-of-the-art models on the benchmark

dataset.

Metrics DTINet EEG-DTI NeoDTI IMCHGAN MultiDTI iGRLDTI

AUC 0.916 0.953 0.957 0.957 0.961 0.965
AUPR 0.939 0.964 0.945 0.904 0.947 0.967
F1-score 0.091 0.828 0.810 0.892 0.868 0.899
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respectively. Hence, we have reason to believe that iGRLDTI
is preferred as a promising DTI prediction tool when applied
to the imbalance datasets in the real case.

3.3 Ablation study

To study the impacts of biological knowledge and the over-
smoothing issue on the performance of iGRLDTI, we also de-
velop another two variants of iGRLDTI, i.e. iGRLDTI-A and
iGRLDTI-G. Specifically, iGRLDTI-A only takes into account
the biological knowledge of drugs and targets, i.e. drug mole-
cule structures and protein sequences, while iGRLDTI-G
learns the feature representations of drugs and targets based
on a classical GNN model as described by Equation (1).
Moreover, these two variants also use the GBDT classifier
with the same hyper-parameter setting to predict novel DTIs.
Experiment results of 10-fold CV are presented in Fig. 2A,
and the ROC and PR curves of iGRLDTI-A, iGRLDTI-G,
and iGRLDTI are presented in Fig. 2B and C, where several
things can be noted.

First, iGRLDTI-A achieves the worst performance when com-
pared with iGRLDTI-G and iGRLDTI. In this regard, only con-
sidering the biological knowledge of drugs and targets is difficult
to build an accurate prediction model for discovering novel
DTIs. Second, iGRLDTI-G presents a better performance
against iGRLDTI-A. Under 10-fold CV, iGRLDTI-G achieves
an average 9.3% relative gain in AUC and 8.4% in AUPR on
the benchmark dataset when compared with iGRLDTI-A.
Hence, the aggregation of neighborhood information through
the topological structure of HBIN enhances the expressiveness
of X, which is the representation matrix of drugs and targets.
Last, it is noted from Fig. 2A that iGRLDTI outperforms
iGRLDTI-G by 3.4%, 3.1%, and 4.6% in terms of AUC,
AUPR, and F1-score, and a further improvement is observed
from iGRLDTI by addressing the over-smoothing issue.
Accordingly, the resulting representations of drugs and targets
are more distinguishable than those learned by iGRLDTI-A and
iGRLDTI-G.

To investigate the impact of such information loss, a new
variant of iGRLDTI, i.e. iGRLDTI-D, is implemented. The
only difference between iGRLDTI and iGRLDTI-D is that

iGRLDTI-D simply use the one-hot encoding of amino acids,
rather than their categories, to compose the feature vectors of
3-mers. The performance of iGRLDTI-D is presented in
Fig. 2B and C, and we note that iGRLDTI yields a relative im-
provement of 1.7% and 1.3% in terms of AUC and AUPR,
respectively when compared with iGRLDTI-D. Obviously,
the use of amino acid categories allows iGRLDTI to compose
the feature vectors of 3-mers in a more compact manner with-
out much redundant information, and accordingly, iGRLDTI
performs better than iGRLDTI-D.

3.4 Over-smoothing analysis

In the context of deep learning, smoothness is normally used
to indicate the similarity across the embedding vectors of
nodes. Obviously, less discriminative features of nodes are
extracted if their embedding vectors are more similar. When
the number of GNN layers increases, node representations be-
come more similar, thus leading to the over-smoothness issue.
With no exception in an HBIN, the over-smoothing issue
could degrade the performance of DTI prediction. To quanti-
tatively measure the over-smoothing degree, we additionally
adopt a frequently used evaluation metric, i.e. Mean Absolute
Distance (MAD) (Chen et al. 2020), which is defined to com-
pute the average distance between node representations. It is
repeatable for the observation in Table 3, and we can now
measure the over-smoothing situation by MAD values in the
text above. One should note that MAD is proposed to calcu-
late the mean average distance among node representations,
and its value is within the range [0, 1]. A smaller MAD score
indicates that deep learning models encounter a more severe
over-smoothing issue, and thus higher MAD scores can indi-
cate the learned representations are more discriminative. It is
noted from Table 3 that the MAD score of iGRLDTI is signif-
icantly larger than that of iGRLDTI-G. This could be a strong
indicator that for drugs and targets, their representations
learned by iGRLDTI exhibit more discriminative features,
thus leading the observation in Fig. 3B frequently made across
all drug–target pairs. Since iGRLDTI is able to adaptively ad-
just the propagation depth for each node during

Figure 2. (A) Experimental results of iGRLDTI-A, iGRLDTI-G, and iGRLDTI. (B) The ROC curves are obtained by two variants of iGRLDTI over the

benchmark datasets in the ablation study. (C) The PR curves are obtained by two variants of iGRLDTI over the benchmark datasets in the ablation study

Table 2. Comparison with state-of-the-art models under imbalanced

samples.

Metrics DTINet EEG-DTI NeoDTI IMCHGAN MultiDTI iGRLDTI

AUC 0.916 0.953 0.946 0.929 0.967 0.986
AUPR 0.786 0.672 0.854 0.603 0.917 0.927
F1-score 0.093 0.813 0.772 0.754 0.828 0.821

Table 3. Comparison of MAD values between iGRLDTI and iGRLDTI-G

with different propagation depths.

iGRLDTI(10�2) iGRLDTI-G(10�2)

1 2 4 10 100 200

MAD 0.399 0.161 0.103 0.102 0.09 0.08 0.06

All numerical values in Table 4 are in the order of 10�2.
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representation learning, the impact of the over-smoothing is-
sue is substantially weakened, thus improving the accuracy of
DTI prediction.

Regarding the propagation depth k, we can observe that
the MAD values become smaller as k value increases, and
thus the over-smoothing phenomenon become serious. In
Table 3, we note that the MAD value of iGRLDTI is higher
when compared with the MAD value for iGRLDTI-G with
k¼ 1. In other words, node representations learned by
iGRLDTI-G with k¼ 1 are more smoothing than those
learned by iGRLDTI, which adopts the NDLS strategy to alle-
viate the over-smoothing issue. The smaller MAD value
obtained by iGRLDTI-G with k¼ 1 is caused by the insuffi-
cient information transfer during the message propagation.
Since iGRLDTI alleviates the over-smoothing issue by adap-
tively adjusting the propagation depth for each node during
representation learning. In doing so, iGRLDTI can excavate a
local-smoothing state of graph node features within HBIN,
and further efficiently improve the ability of the model in task
of DTI prediction.

3.5 Robustness analysis

To evaluate the robustness of iGRLDTI, we repeat 10-fold
CV for 100 rounds and presented the average results of AUC,
AUPR, and F1-score obtained by iGRLDTI in Table 1, where
iGRLDTI still yields the best performance on the benchmark
dataset. Moreover, we also draw the box plots in Fig. 3A to
show both the summary statistics and the distributions of
AUC, AUPR, and F1-score after 100 rounds. Since the varian-
ces of AUC, AUPR, and F1-score are 3.72E�06, 4.84E�06,
and 2.15E�05, respectively, iGRLDTI also demonstrates its
promising performance in terms of robustness.

Moreover, we conduct statistical hypothesis tests to demon-
strate the significant difference in the comparison of AUC,
AUPR, and F1-score. In particular, we perform the Paired
Wilcoxon test by comparing iGRLDTI with other prediction
models in terms of AUC, AUPR, and F1-score, and present
the results in Table 4. Obviously, iGRLDTI significantly out-
performs other prediction models at a confidence level of
95% (P-value < .05). This again indicates the superior advan-
tage of iGRLDTI in DTI prediction.

3.6 Case study

The purpose of our case study is to assess the practical ability
of iGRLDTI in terms of identifying unknown DTIs. In the
case study, all known DTIs in the benchmark dataset are first
taken as positive samples to compose the training dataset, and
they are collected from DrugBank V3.0. Regarding the nega-
tive samples, we randomly pair up drugs and targets whose
interactions are not found in the positive samples. Moreover,
in the training dataset, the number of negative samples is the
same as that of positive samples. After that, all drug–target
pairs that are not found in the training dataset constitute the
testing dataset. The cutoff is set as 0.5 to claim predicted
DTIs. In other words, a drug–target pair is predicted to be
interacted with each other if its prediction score is greater
than 0.5. In terms of prediction scores, top 20 pairs in the test-
ing dataset are selected for further validation, and each of
them is verified with the latest version of DrugBank, i.e. V5.0.
In other words, these verified drug–target pairs are not existed
in DrugBank V3.0, but later added into DrugBank V5.0 due
to the update of this database (Wishart et al. 2018).
Following the same procedure as iGRLDTI, top-20 drug–tar-
get pairs predicted by each compared model are selected for
further investigation in our case study. The top 20 pairs of
drugs and targets with the largest prediction scores are pre-
sented in Table 5. It is worth noting that the top-20 DTIs
pairs can be verified by the latest version DrugBank database
(Wishart et al. 2018), which means the drug–target pair are
not connected when training the iGRLDTI model, they can be
predicted by iGRLDTI as candidate DTI and verified by
DrugBank database. Consequently, iGRLDTI yields a better
performance when compared with other comparing algo-
rithms in discovering unknown DTIs. Taking MultiDTI as an
example, only three out of the top 20 pairs have been verified
by the DrugBank database, and none of these three verified
pairs are ranked in top 5. Besides, we also analyze the

Table 4. Comparison of the Paired Wilcoxon test by comparing iGRLDTI

with other prediction models.

iGRLDTI DTINet EEG-DTI NeoDTI IMCHGAN MultiDTI

P-value 0.03662 0.02852 0.03125 0.01242 0.01618

P-value <.05 signifies that the results are statistically significant.

Figure 3. (A) The values of AUC, AUPR, and F1-score by iGRLDTI under 100 rounds of 10-fold cross-validation. (B) Distribution between DB01110 and

P54284 representation vectors learned from iGRLDTI and iGRLDTI-G
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performance of iGRLDTI and MultiDTI on the task of dis-
covering DTIs for Zonisamide (ID: DB00909), which is a rec-
ommended drug in treating partial seizures (Wilfong and
Willmore 2006). Regarding the prediction results, we find
that for iGRLDTI, all the five targets predicted to interact
with Zonisamide have been verified by the DrugBank data-
base. But for MultiDTI, there are a total of three predicted
targets, and none of them could be verified. Hence, this could
be a strong indicator that iGRLDTI has a promising perfor-
mance for discovering novel DTIs when compared with state-
of-the-art DTIs prediction algorithms.

Another case study is given to further analyze how
iGRLDTI avoids being over-smoothing by comparing its per-
formance with iGRLDTI-G. As mentioned in the section of
ablation study, iGRLDTI-G is a variant of iGRLDTI by using
a classical GNN model, and hence it is prone to encounter the
over-smoothing issue during representation learning. In par-
ticular, we note that the interaction between the drug
DB01110 and the target protein P54284 is successfully identi-
fied by iGRLDTI, but not by iGRLDTI-G, where DB01110 is
the drug ID of Miconazole in the DrugBank database, and
P54284 is the uniport ID of Voltage-dependent L-type cal-
cium channel subunit beta-3. Hence, we investigate the pre-
diction scores yielded by iGRLDTI and iGRLDTI-G for this
drug–target pair, and find that the prediction score of
iGRLDTI, i.e. 0.98, is much larger than that of IGRLDTI-G,
i.e. 0.39. In other words, iGRLDTI is more confident to indi-
cate the interaction between DB01110 and P54284, but
iGRLDTI-G fails to identify the interaction, as its prediction
score is below the cutoff, i.e. 0.5. To validate the solidly of the
observation in Fig. 3B, we additionally employed interquartile
ranges (IQRs) as a measure of dispersion within the vector
elements. A smaller IQR value corresponds to a shorter length
of the boxplot, indicating a higher level of similarity among
the vector elements, whereas a high boxplot with a larger
IQR value hints at the differentiation within the vector ele-
ments. Hence, we calculate the average IQR for the feature
representations learned from all unknown DTIs using
iGRLDTI and iGRLDTI-G, resulting in values of
1.11 6 0.015 and 0.93 6 0.019, respectively. Consequently,
the observation depicted in Fig. 3B is not an isolated incident
but rather a common occurrence.

Assuming that H and HG are the concatenated representa-
tion vectors of DB01110 and P54284 learned by iGRLDTI
and iGRLDTI-G, respectively, we present their boxplots in
Fig. 3B to visualize the difference between H and HG from the
distribution perspective. The height of a boxplot, to some ex-
tent, indicates the difference among the elements in the corre-
sponding vector. In particular, a short boxplot means that all
the elements in a vector are similar to each other, whereas a

tall boxplot hints at the differentiation within the vector ele-
ments. It is observed from Fig. 3B that the difference in the
elements of HG is much smaller than that of H. This could be
a strong indicator that the representation vectors learned by
iGRLDTI-G still suffer the over-smoothing issue, and it is for
this reason that iGRLDTI-G fails to predict the DTI between
DB01110 and P54284. Since iGRLDTI is able to learn more
distinguishable representations by alleviating the over-
smoothness from an alternative view, the accuracy of DTI
prediction can thus be improved.

In sum, these case studies again demonstrate the promising
performance of iGRLDTI in discovering new DTIs with more
distinguishable representations, and hence it is believed that
iGRLDTI could be a useful tool to identify novel DTIs.

4 Conclusion

In this article, an improved graph representation learning
method, namely iGRLDTI, is developed to discover novel
DTIs over HBIN. To this end, iGRLDTI first constructs an
HBIN by integrating the biological knowledge of drugs and
targets with their interactions. Then, iGRLDTI adopts an
NDLS strategy to adaptively decide the propagation depth
during representation learning, thus significantly enhancing
the discriminative ability of their representations by alleviat-
ing over-smoothness. Finally, iGRLDTI employs the GBDT
classifier to achieve the DTI prediction task. Experimental
results demonstrate that iGRLDTI yields a superior perfor-
mance under 10-fold CV when compared with several state-
of-the-art prediction algorithms, and furthermore, our case
studies indicate that iGRLDTI is able to learn more distin-
guishable representations of drugs and targets, and it is a use-
ful tool to identify novel DTIs.

There are two reasons contributing to the superior perfor-
mance of iGRLDTI. On the one hand, the construction of
HBIN allows iGRLDTI to learn the representations of drugs
and targets from multiple views. Due to the rich information
carried by HBIN, the task of DTI prediction can be achieved
by iGRLDTI in a more effective manner. On the other hand,
with the NDLS strategy, iGRLDTI is able to determine the
node-specific propagation depth for each biomolecule in
HBIN. Consequently, it adaptively controls how much neigh-
borhood information should be gathered to avoid over-
smoothness during representation learning.

Besides, we also note several limitations of iGRLDTI. On
the one hand, a simple weighted averaging method is applied
to update Xi, and it is difficult for us to differentiate the signif-

icance of X
ðkÞ
i at the k-th layer. One the other hand, not all

drugs and targets are able to provide necessary biological

Table 5. Top 20 predicted results by iGRLDTI.

Rank Drug ID Protein ID Evidence Rank Drug ID Protein ID Evidence

1 DB00909 O43570 DrugBank 11 DB01268 P17948 DrugBank
2 DB01110 Q14500 DrugBank 12 DB00909 P00918 DrugBank
3 DB00909 Q99250 DrugBank 13 DB00398 P17948 DrugBank
4 DB00594 P19634 DrugBank 14 DB01224 P28335 DrugBank
5 DB01159 P48051 DrugBank 15 DB01268 P09619 DrugBank
6 DB00661 O95180 DrugBank 16 DB00398 P15056 DrugBank
7 DB00594 P19801 DrugBank 17 DB01268 P36888 DrugBank
8 DB01159 O60391 DrugBank 18 DB00398 P04049 DrugBank
9 DB01159 P48549 DrugBank 19 DB01110 Q13936 DrugBank
10 DB00909 O43497 DrugBank 20 DB00909 P21397 DrugBank
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knowledge especially for those newly discovered, and hence
the prediction performance of iGRLDTI is weakened for
drugs and targets without sufficient biological knowledge.

Regarding the future work, we would like to unfold it from
four aspects. First, we intend to improve the performance of
iGRLDTI by proposing solutions to address its limitations.
Second, we are interested in evaluate the generalization ability
of iGRLDTI by applying it to other prediction problems, such
as protein–protein interactions prediction and drug–drug in-
teraction prediction. Third, we would like to investigate the
performance of iGRLDTI by integrating more kinds of associ-
ations, as it is a challenging task to fully exploit the heteroge-
neous information for improved performance of DTI
prediction. Last, we also would like to explore the interpret-
ability of iGRLDTI in order to provide interpretable predic-
tion results (Schulte-Sasse et al. 2021).
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