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A unified drug-target interaction prediction
framework based on knowledge graph and
recommendation system

Qing Ye® "23%, Chang-Yu Hsieh*®, Ziyi Yang?, Yu Kang® !, Jiming Chen® 2, Dongsheng Cao® °*,
Shibo He® 2™ & Tingjun Hou® 3™

Prediction of drug-target interactions (DTI) plays a vital role in drug development in various
areas, such as virtual screening, drug repurposing and identification of potential drug side
effects. Despite extensive efforts have been invested in perfecting DTI prediction, existing
methods still suffer from the high sparsity of DTI datasets and the cold start problem. Here,
we develop KGE_NFM, a unified framework for DTI prediction by combining knowledge graph
(KG) and recommendation system. This framework firstly learns a low-dimensional repre-
sentation for various entities in the KG, and then integrates the multimodal information via
neural factorization machine (NFM). KGE_NFM is evaluated under three realistic scenarios,
and achieves accurate and robust predictions on four benchmark datasets, especially in the
scenario of the cold start for proteins. Our results indicate that KGE_NFM provides valuable
insight to integrate KG and recommendation system-based techniques into a unified fra-
mework for novel DTI discovery.
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dentification of drug-target interactions (DTI) plays a vital

role in various applications of drug development, such as lead

discovery, drug repurposing, and elucidation of possible off-
target or side effects!=. However, traditional biological experi-
ments for DTI detection are normally costly and time-
consuming®’. In the past decades, many computational approa-
ches for DTI identification have been developed to narrow
down the search space of drug and protein candidates for redu-
cing cost and accelerating efficiency of drug discovery and
development®-10, Generally, the approaches for in silico DTI
prediction can be classified into three categories: structure-based
approaches, ligand-based approaches, and hybrid approaches!!.
The structure-based approaches are not applicable when the
three-dimensional (3D) structures of target proteins are unknown
and the ligand-based approaches have limited predictive power
when there are insufficient bioactivity data for the ligands
towards specific targets. The hybrid methods are believed to be
more promising to overcome the limitations stated above and to
cope with more complex systems by utilizing the information on
both drugs and proteins with/without structures. Generally, the
hybrid methods can be classified into two subcategories: proteo-
chemometrics (PCM) and network-based methods. PCM covers a
range of computational approaches developed based on the
information of drugs and proteins represented by feature vectors
and usually formulate DTI prediction to binary classification!13.
This type of approaches allows not only to extrapolate the pre-
diction to discover new compounds toward known targets, but
also to extrapolate the prediction to detect new targets toward
known compounds. Different machine learning (ML) techniques
have been introduced to PCM. Firstly, traditional ML methods,
such as support vector machine (SVM) and random forest (RF),
have been widely used in this area based on molecular finger-
prints and protein descriptors derived from protein
sequences!3-18, Recently, several end-to-end methods based on
deep learning (DL), such as DeepDTI and GraphDTA, have been
developed for large-scale DTT predictions!9-2L,

In addition, network-based methods have been developed by
incorporating multiple data sources, such as drug-target inter-
actions, drug-drug interactions, and protein—protein interactions,
into one framework for DTI prediction. In these networks, nodes
can be drugs or proteins and edges are the indicators for the
interactions or similarities between the connected nodes??~26. In
this way, omics data (also called heterogeneous data), such as
side-effects, drug-disease associations, and genomics data, have
been employed to strengthen DTI prediction. For example,
DTINet?” proposed by Luo et al. applied an unsupervised method
to learn low-dimensional feature representations of drugs and
target proteins from heterogenous data and predicted DTI using
inductive matrix completion. Wan et al. developed an end-to-end
method, called NeoDTI, to integrate diverse information from
heterogeneous network data and automatically learn topology-
preserving representations of drugs and targets to further facil-
itate DTT prediction?3. Thafar et al. combined graph embedding
and similarity-based techniques for DTI prediction?’. Recently,
ML models built upon knowledge graph (KG) have been devel-
oped rapidly, and quite a few encouraging studies based on KG
have been successfully applied to solve many real-world chal-
lenges in the development of biomedicine3-32. These methods
extract the fine-grained multi-modal knowledge elements from
omics data and formulate the problem as the link prediction in
KG. For example, Mohamed et al. proposed a specific knowledge
graph embedding (KGE) model, TriModel, to learn the vector
representations for all drugs and proteins and then, consequently,
infer new DTI based on the scores computed by the model33. For
more information about the KG applications in the area of bio-
medicine, we refer to the survey article by Zhu et al. that provides

a comprehensive review of existing KG-based methods3%.
Another successfully employed technique in DTI prediction is
recommendation systems that have become popular and widely
applied in various fields, such as e-commerce in the form of web-
based software3>30, A recommendation system consists of users
and objects. Each user collects some objects, for which he/she can
also express a degree of preference. The purpose of the algorithm
is to infer a user’s preferences and provide scores to objects not
yet owned, so that the ones, which most likely will appeal to the
user, will be rated higher than the others. For the DTI prediction
that utilize recommendation systems, the users can be modeled as
drugs while the items can be modeled as targets. A mainstream
method for recommendations called collaborative filtering has
already been integrated with the network-based methods such as
dual regularized one-class collaborative filtering®’.

While much effort has been devoted to extracting functional
information from heterogeneous data and reducing the noise in
heterogeneous networks via matrix decomposition and neural
network to further improve prediction performance, there still
exists two shortcomings in the above methods: (1) these hybrid
methods are highly similarity-dependent and therefore inevitably
suffer from activity cliff, which implies that small structural
changes can cause large differences in activity>8. Besides, it is hard
to provide a universal definition of similarity for all kinds of
omics data collected from various sources, e.g., KEGG Pathway,
protein domain and protein binding site. In addition, it is time-
consuming to calculate the pairwise similarities for large-scale
datasets. (2) Most recent methods are not specifically evaluated in
real-world scenarios in which one needs to make DTI prediction
when new protein targets are identified for a complicated disease
and elucidate molecular mechanisms of drugs with known ther-
apeutic effects?®. This problem, similar to the cold start problem
for recommendation systems, is a severe limiting factor for the
practical application of DTI prediction methods. As explicated in
the subsequent sections, our proposed method performs out-
standingly against existing methods in this scenario.

Due to the inevitable noises in the biomedicine data and
existing problems stated above, several works such as PharmKG,
BioKG, and Hetionet have provided compilations of curated
relational data in a unified format, which enables the utilization of
multi-omics resources?0-42, The approaches of utilizing knowl-
edge graph could be classified into two types: (1) end-to-end
methods based on a comprehensive KG (e.g., DistMult) or a
specifically crafted KG focusing on particular downstream tasks
(e.g., the work of Zheng et al.*? designed for drug repurposing
and target identification); (2) integration of a pre-trained KGE
model and a prediction model toward a specific downstream task.
Considering the increasing number and more complex types of
biomedical data involved in the knowledge graph, developing a
framework that utilizes knowledge graph embeddings in an effi-
cient and flexible way is necessary for accurate DTI predictions.
Besides, it is also necessary to integrate heterogeneous informa-
tion and structural information via multiple approaches and thus
enable higher accuracy and broader applications for DTI pre-
diction. In this study, we proposed a unified framework called
KGE_NFM (Fig. 1) by incorporating KGE and recommendation
system techniques for DTI prediction that are applicable to var-
ious scenarios of drug discovery, especially when encountering
new proteins. KGE_NFM, which could be viewed as a pre-trained
model based on knowledge graph and is integrated with a
recommendation system tailored for a specific downstream task,
captures the latent information from heterogeneous networks
using KGE without any similarity matrix and then applies neural
factorization machine (NFM) based on recommendation system
to enforce the feature representation for a specific downstream
task, which is the DTI prediction in this work. The results for the
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Fig. 1 The schematic workflow of KGE_NFM. The pipeline mainly consists of two parts. (1) The construction of KG and embeddings extraction. The original
input contains the DTI data and related omics data, and the embeddings of entities and relations are extracted by DistMult. (2) The integration of
multimodal information by NFM. The extracted KGEs represent the heterogeneous information, and the molecular fingerprints and protein descriptors
represent the structural information. The two types of information are combined and optimized via the Bi-Interaction layer and a feed-forward neural

network (FFNN) is used to capture the inherent correlations between DTI.

three common and more realistic evaluation settings toward
practical DTT prediction have demonstrated that our method
outperformed other baseline methods including feature-based
methods, end-to-end ML methods and other network-based
methods. Moreover, we have explored the impact of different
kinds of KGs on DTI prediction and investigated the effective
strategies to make more accurate inferences with KG. All of these
results indicate that KGE_NFM is a powerful and robust fra-
mework with high extendibility for DTI prediction, which may
provide new insights into the novel drug target discovery.

Results

To evaluate the predictive performance of our method, we
compared our method with three types of DTI prediction
methods, i.e., feature-based methods, end-to-end methods, and
heterogeneous data driven methods. All results were obtained
with 10-fold cross-validations. The details of the benchmark
datasets (Supplementary Tables 1-4), training procedure, hyper-
parameter optimization (Supplementary Table 5) and evaluation
results of the four benchmark datasets (Supplementary
Tables 6-10) can be found in the Supplementary Materials. KGE
and NFM are two main components in our proposed framework,
in which KGE is responsible for heterogeneous information
integration and NFM is responsible for information extraction
that benefits DTI prediction. In the following sections, we present

the performance evaluation on the Yamanishi 08’s and BioKG
datasets for analyzing the impact of datasets with different size
but similar components of KG, and then discuss the approaches
that contribute to our extensible framework for the performance
improvements of DTI prediction.

Performance evaluation on the Yamanishi_08’s dataset in three
sample scenarios. We compared KGE_NFM with seven baseline
methods on the Yamanishi_08’s dataset, including MPNN_CNN,
DeepDTI, RF, NFM, DTiGEMS+-, DistMult and TriModel (Fig. 2,
more in Supplementary Table 8).

In the scenario of the warm start, we observed that the
heterogeneous data driven methods, DTiGEMS+, TriModel and
KGE_NFM, achieved high and robust predictive performance
under different ratios between the positive and negative samples
(ie., balanced and unbalanced). Specifically, when the dataset is
balanced, the feature-based methods, RF (AUPR = 0.901) and NFM
(AUPR =0.922), and the heterogeneous data driven methods,
DTiGEMS + (AUPR = 0.957), TriModel (AUPR=0.946) and
KGE_NFM (AUPR=0.961), achieve relatively high predictive
performance. While for the end-to-end methods, MPNN_CNN
(AUPR = 0.788) and DeepDTI (AUPR = 0.820) do not perform as
well due to the limited volume of the training set. When the dataset
is imbalanced, the AUPR values for the feature-based methods and
heterogeneous data driven methods get reduced by different
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Fig. 2 Evaluation performance on the Yamanishi_08's dataset in three sample scenarios. All results were obtained by 10-fold cross-validation. The
predictive performance in the scenario of the warm start (Fig. 2a, b) was evaluated with two different ratios between positive and negative samples, in
which the ‘balanced’ means positive:negative~1:1 and the ‘unbalanced’ means positive:negativex1:10. The predictive performance in the scenario of cold
start (Fig. 2c-f) was evaluated in the unbalanced situation. N =10 independent experiments. Box plots show the median as the center lines, upper and
lower quartiles as box limits, whiskers as maximum and minimum values, and dots represent outliers.

degrees, in which the former decreases over 10% and the later
behaves more stably with about 5% decrease. These results indicate
that the feature-based methods are prone to be influenced when
applying to an unbalanced dataset, while the heterogeneous data
driven methods can partly overcome this limitation. As for the end-
to-end methods, due to the increased volume of the dataset, their
predictive performances increase greatly (about 10% in terms of
AUROC and 9% in terms of AUPR) compared to that of the
balanced situation. This phenomenon indicates that the end-to-end
approaches are limited by the volume of available data; thus, they
are more suitable for large-scale DTI predictions.

In the scenario of the cold start for drugs, we observed that
KGE_NFM (AUROC = 0.853, AUPR = 0.521) performed best in
terms of AUROC, while RF (AUROC = 0.832, AUPR = 0.561)
performed the best in terms of AUPR. In comparison between RF
and NFM, it seems that the tree-based algorithm is more
appropriate than DL models when the structural characterization
of drugs (i.e., Morgan Fingerprints) plays the dominant role. In
the scenario of the cold start for proteins, KGE_NFM significantly
outperformed all the other baselines with a significant leading

margin of 19% in terms of AUPR when compared to the second
best performed method TriModel. In comparison between RF
and NFM, NFM greatly improves the predictive performance
(about 30% in terms of both AUROC and AUPR). This result
highlights NFM’s potential capability to capture the inherent
association in the interactions between drugs and proteins, which
provides a huge advantage for NFM in the situation of the cold
start for proteins. Then, KGE_NFM, which integrates hetero-
geneous information with traditional characterization, further
improves the predictive performance, 13.5% in terms of AUROC
and 21% in terms of AUPR, suggesting that the heterogenous
information extracted by KGE is effective for DTI prediction in
the scenario of the cold start for proteins. Moreover, it is found
that the end-to-end methods did not perform well in the
scenarios of the cold start for both drugs and proteins probably
due to the extremely different data distributions between the
training and test sets. Additionally, we observed similar
phenomenon on the four benchmark datasets that KGE_NFM
and other heterogeneous data driven methods (DTINet, DTi-
GEMS+, DistMult, and TriModel) always performed better in the
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Fig. 3 Evaluation performance on the BioKG dataset in three sample scenarios. All the results were obtained by 10-fold cross-validations. The ratio
between the positive and negative samples is about 1:10. N =10 independent experiments. Box plots show the median as the center lines, upper and lower
quartiles as box limits, whiskers as maximum and minimum values, and dots represent outliers.

scenario of the cold start for proteins rather than the cold start for
drugs when comparing with the traditional feature-based method
REF. This could probably be attributed to the components of the
heterogeneous data, where the protein-related information is
more sufficient than drug-related information. For example, there
are 83% information is protein-related while only 17% is drug-
related in the Yamanishi_08’s dataset (Supplementary Table 3).
Naturally, KGE will pay more attention on the relationships of
proteins in the training process. This finding suggests that the
performance of KG-oriented tasks is closely dependent on the
components of KG.

Performance evaluation on the BioKG dataset in three sample
scenarios. We compared KGE_NFM with six baseline methods
on the BioKG dataset, including MPNN_CNN, DeepDTI, RF,
NEM, DistMult, and TriModel (Fig. 3, more details in Supple-
mentary Table 9).

With a larger size of KG and DTI pairs, the evaluation
performance of the baselines under three sample scenarios
behaves slightly differently, especially for the end-to-end
methods. For the scenario of the warm start, DeepDTI
(AUROC=0.988, AUPR=0.907) performed the best and
KGE_NFM (AUROC =0.987, AUPR =0.898) performed the
second best. In the scenario of the cold start for drugs, the
traditional method RF (AUROC = 0.971, AUPR = 0.891) based
on molecular fingerprints and protein descriptors outperformed
all the other methods. This phenomenon is also consistent with
the other two benchmarks (Tables S6 and S7). This result
indicates that it may be enough to use simple feature-based
methods like RF in this scenario (more specifically, large-scale
virtual screening). In the scenario of the cold start for proteins,
KGE_NFM (AUROC=0.899, AUPR=0.549) outperformed
another heterogeneous data-driven method TriModel with a
15.7% improvement in terms of AUPR. An interesting finding is
that the performance of the end-to-end methods greatly improves
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Fig. 4 Impact of each component in the KGE_NFM framework on predictive performance in the scenario of the warm start in the unbalanced situation.
a and b represent the ROC and PR curves on the Yamanishi_08's dataset, respectively. b and d represent the ROC and PR curves on the BioKG dataset,
respectively. Specifically, KGE_NFM_nodes means that the KGE_NFM framework does not incorporate the information of traditional characterization.

in the BioKG dataset compared with the Yamanishi_08’s dataset.
For example, in the scenario of the cold start for drugs,
MPNN_CNN (AUPR =0.194) did not perform well compared
with RF (AUPR = 0.561) in the Yamanishi_08’s dataset. While in
the BioKG dataset, MPNN_CNN achieved an AUPR of 0.871,
which is only 2% less than that of RF (AUPR = 0.891). Similarly,
in the scenario of the cold start for proteins, DeepDTI (AUPR =
0.099) performed as poorly as RF (AUPR=0.117) on the
Yamanishi_08’s dataset but achieved an AUPR of 0.341 far better
than that of RF (AUPR =0.132) on the BioKG dataset. These
findings manifest the influence of the size of datasets on the end-
to-end methods, and a large number of drugs and proteins
involved in the training set enable the automatically learned
features derived from end-to-end methods to behave not badly or
even achieve better predictive performance than the handcrafted
features (i.e., molecular fingerprints and protein descriptors used
in RF) in DTI prediction.

Impact of each component in the framework on predictive
performance. As Fig. 4 shows that a straightforward application
of KGE on DTI prediction (i.e., formulating link prediction
problems in a heterogenous graph) does not manifest advantages
compared with the feature-based method NFM. In fact, there is a
15% and 4% drop in terms of AUPR on the Yamanishi_08
dataset and BioKG, respectively, when comparing KGE with
NEM because of the noises derived from a huge number of het-
erogeneous information. In this study, we introduced several
techniques to overcome this problem and improve the predictive
performance. The first one is to apply NFM to infer potential

interactions between drugs and proteins from heterogeneous
embeddings. It can be seen from Fig. 4b, d that the predictive
performance improves by 21% and 14% in terms of AUPR on the
Yamanishi_08” dataset and BioKG, respectively. Besides, we also
found that the implementation of traditional characterization of
drugs and proteins (KGE_NFM in Fig. 4) also contributes to the
predictive performance gain 6% and 2% improvement in terms of
AUPR on the Yamanishi_08’ dataset and BioKG and makes the
prediction more robust (decreased approximately 50% of the
standard deviations of both AUROC and AUPR, more details in
Supplementary Table 10). These results indicate that our frame-
work is able to efficiently integrate and utilize the information
from the structures of biomolecules and omics data for DTI
prediction.

The heterogeneous information extracted from KG contribute
to DTI prediction via integrating with other classifiers.
KGE_NFM proposed in this article is an efficient strategy to
leverage heterogeneous data for DTI prediction. In fact, KG has
tremendous potential for many downstream tasks by incor-
porating other algorithms in an appropriate way. For instance,
we found that the integration of KGE and RF could improve
DTI prediction performance compared with RF under three
sample scenarios on the Yamanishi_08’s dataset. As shown in
Fig. 5, both of the AUROC and AUPR of KGE_RF improve
compared with those of RF, especially for the scenario of the
cold start for proteins, with an increase of 29.2% and 28.2%,
respectively.
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Fig. 5 KGE enables RF to improve predictive performance on the Yamanishi_08's dataset under three sample scenarios. KGE_RF uses KGE and drug
fingerprints and protein descriptors as the input features and uses RF to build the classifiers. N =10 independent experiments. Box plots show the median
as the center lines, upper and lower quartiles as box limits, whiskers as maximum and minimum values, and dots represent outliers.

Constructing KG in a proper organization could further
improve DTI predictive performance. A systematic integration
of biomedical knowledge can enable precise information extrac-
tion from heterogeneous data and thus benefit the downstream
tasks*!. Here, to explore how knowledge graph affects DTI pre-
diction, we analyzed the network consisting of DTI data and all
other heterogeneous data and harnessed betweenness centrality to
measure the centrality of the node in KG (Fig. 6a). Betweenness
centrality is equal to the number of shortest paths from all ver-
tices to the others that pass through that node and is often used to
identify the nodes that serve as a bridge from one part of a graph
to another®3. Specifically, the betweenness centrality C,(n) of a
node 7 is computed as follows:

Cn) = X (04(n)/0y) (1)

where s and ¢ are the nodes in the network different from n, o,
denotes the number of the shortest paths from s to t, and o,(n) is
the number of the shortest paths from s to ¢ that n lies on.

In the whole network, there are 25,487 unique nodes and most
of them own the betweenness centrality values ranging from
0.00-0.02. Only a few nodes have a high value of betweenness
centrality, including node identifier (i.e., KEGG_GENE, KEGG_-
Drug), KEGG Pathway that represents the knowledge of the
molecular interaction, reaction and relation networks (i.e.,
pathways in cancer), and brite hierarchies (also called KEGG
BRITE) that capture the functional hierarchies of various
biological objects (i.e., enzymes). These high-centrality nodes
that provide generalized type description of related nodes may
probably bring useless noises rather than benefits. For example, in
the scenario of the cold start for proteins, we chose a test set in
10-fold cross-validation for further exploration and selected one
pair of drug-target interaction (D00964-interact-hsa:1553)
labeled as a positive in the test set but was predicted as a
negative with the prediction probability of 0.14. To figure out the
impact of KG on DTI prediction, we picked up the corresponding
KG related with the selected DTI. More specifically, we selected
the heterogeneous information (called the fist-order KG) related
with D00964 and hsa:1553. However, we found that almost no
selected node is able to be served as the bridge between D00964
and hsa:1553. Thus, we further selected the heterogeneous
information (called the second-order KG) related with the fist-
order KG. Then, we analyzed the selected network consisting of
the fist-order KG and second-order KG. We observed that the
supporting KG did act as a bridge between drugs and proteins but
we also found that the selected network seemed to bring in a lot

of noises (Fig. 6b). In the betweenness centrality distribution, we
found that the target nodes have low degree of centrality and the
betweenness centrality values for D00964 and hsa:1553 are 0.02
and 0.001, respectively. But the nodes like KEGG_GENE and
KEGG_Drug, which connect with all genes and drugs, respec-
tively, for node type description, play a dominant role in the
selected network and bring in nodes and edges (edges are colored
red and shown in the red botted boxes). To overcome this issue,
we removed the nodes for identifier including KEGG_GENE,
KEGG_Drug and KEGG_PATHWAY, and retrained the
KGE_NFM model based on the selected training set. The results
show that the prediction performance of the selected DTI pair is
improved and the prediction probability reaches 0.95. Similarly,
the centrality of the target nodes also improves and the ranking of
the betweenness centrality changes from 20 to 8 and 240 to 43 for
D00964 and hsa:1553, respectively. Surprisingly, we also found
the predictive performance on the whole test set also improved
(the value of AUROC holds steady on 0.93 and the value of
AUPR changes from 0.69 to 0.73).

Discussion

In this study, we developed a unified framework, called
KGE_NEFM, to integrate diverse information from different
sources to predict novel DTI. KGE_NFM extracts the hetero-
geneous information from multi-omics data by KGE and then
integrates this information with traditional characterization of
drugs and proteins by NFM to yield accurate and robust pre-
diction of DTI. The powerful predictive ability of KGE_NFM has
been extensively validated on two benchmark datasets and
compared with five state-of-the-art methods under three realistic
evaluation settings, especially for the scenario of the cold start for
proteins. More importantly, unlike previous methods?’-2%,
KGE_NFM doesn’t rely on similarity networks of drugs and
proteins, thus simplifying the integration of multiple types of
data. Besides, KGE_NFM can utilize fine-grained heterogeneous
information from omics data (e.g, KEGG pathway, protein
binding domain). This allows unprecedented applicability of the
method to recommend novel DTI within prior knowledge of
drugs and proteins. Moreover, we summarized three effective
techniques for further improving predictive performance and
explained how they impact the prediction in detail. KGE_NFM
was shown to be a successful pipeline for DTI prediction by
leveraging KG and recommendation system. The analysis
demonstrates that NFM, a content-based recommendation sys-
tem, can efficiently utilize the low-dimensional characterization
from KGE and thus significantly improve the prediction
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performance. In addition, KGE_NFM is a highly scalable fra-
mework and enables the prediction more robust by integrating
multi-modal data (i.e., structural information of biomolecules and
association information from biochemical networks). Overall,
KGE_NFM is a highly competitive approach for DTI prediction

and is promising to facilitate protein target discovery for com-
plicated diseases and molecular mechanisms elucidation, which is
a broad and rarely tapped space in computational drug discovery.

While we explain how the removal of noisy nodes contributes
to the performance gain in a specific case, this strategy does not
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Fig. 6 Network analyzer and one case to illustrate how to improve DTI predictive performance. a Betweenness centrality distribution of the network
consisting of DTI data and all KG. Degree means the number of the edges linked to a node. The betweenness centrality of a node reflects the amount of the
control that this node exerts over the interactions of the other nodes in the network. b The visualization of the KG related to the selected DTI (D00964 and
has:1553), where the green points represent proteins, the blue points represent heterogeneous information and the red points represent drugs. ¢
Betweenness centrality distribution of the network for the KG related to the selected DTI (D00964 and has:1553). d The visualization of the selected DTI
(D00964 and has:1553) related knowledge graph with removing the nodes and related edges of KEGG_GENE, KEGG_Drug and KEGG_PATHWAY. e
Betweenness centrality distribution of the network consisting of the selected DTI (D0O0964 and has:1553) related KG with removing the nodes and related

edges of KEGG_GENE, KEGG_Drug and KEGG_PATHWAY.

guarantee substantial gains under all circumstances. As discussed
earlier, a systemic organization of biomedical knowledge is crucial
for the effective usages of multi-omics data and a more com-
prehensive investigation in this aspect is planned for a future
study. Besides, it should be noted that KGE_NEM is sensitive to
the parameter’s adjustment and should be treated more carefully
during the training procedure. We provided a more exhaustive
illustration of the training procedure in the Supplementary
Materials. In the future, we will pay more attention to KG con-
struction pipeline in our framework for further improvements of
the prediction ability for downstream tasks. We will also expand
the application scope of this KG-based recommendation frame-
work in the biomedical science.

Methods

Benchmark datasets. In this study, four benchmark datasets comprising different
kinds of heterogeneous data, namely, Luo’s dataset, Hetionet, Yamanishi_08’s
dataset and BioKG, were used to benchmark our method against other state-of-the-
art methods for DTI prediction22-27:40:41,

The Luo’s dataset is composed of four types of nodes (i.e., drugs, proteins,
diseases, and side-effects) and six types of edges (i.e., drug-target interaction,
drug-drug interactions, protein—protein interactions, drug-disease associations,
protein-disease associations, and drug-side-effect associations). In total, the
network contains 12015 nodes and 1895445 edges (more detailed information in
Supplementary Table 1).

Hetionet integrated the biomedical data from 29 publicly available resources
and finally obtained 47,031 nodes of 11 types and 2,250,197 relationships of 24
types. Specifically, the nodes consist of 1552 small molecule compounds and 20,945
genes, as well as diseases, anatomies, pathways, biological processes, molecular
functions, cellular components, perturbations, pharmacologic classes, drug side
effects, and disease symptoms (more detailed information in Supplementary
Table 2). It should be noted that the terms “genes” and “proteins” are considered as
equal in this study since the proteins are the translation products of genes and most
biomedical databases do not distinguish them specifically.

The Yamanishi_08’s dataset consists of four sub-datasets: namely, enzymes (E),
ion channels (IC), G-protein-coupled receptors (GPCR) and nuclear receptors
(NR) collected from various sources including KEGG BRITE, BRENDA,
SuperTarget, and DrugBank#4-47, In this study, we combined the four sub-datasets
and the KG was constructed based on the combined dataset. The related
heterogeneous data including the ATC codes of drugs, BRITE identifiers, associated
diseases and pathways was extracted from KEGG, DrugBank, InterPro, and
UniProt by Mohamed et al.33. In total, the network contains 25487 nodes and
95579 edges (more detailed information in Supplementary Table 3). The various
types of biological information make the biomedical heterogeneous network
robust, reusable, and extensible.

BioKG is a biological knowledge graph integrating biomedical data from 14
databases and is designed specifically for relational learning. The contents of BioKG
can be categorized into three categories: links, properties, and metadata. Links, e.g.,
protein—protein interactions and drug-protein interactions, represent the
connections between different biological entities. Properties represent the
annotations associated to entities and the metadata part contains the data about
biological entities, such as names, types, synonyms, etc. As suggested by the
original reference?’, not all three parts need to be used for training the KGE model.
We only focus on the link part in this study. Thus, KG contains 105524 unique
nodes and 2043846 edges (more detailed information in Supplementary Table 4).

The workflow of KGE_NFM. KGE_NFM consists of three main components: (1)
extraction of heterogeneous information via KGE; (2) automatic dimensional
reduction via principal component analysis (PCA); (3) information integration and
drug/protein collaborative recommendation via neural factorization
machine (NFM).

In the first step, all the related heterogeneous information from different omics
(e.g., genomics, proteomics, and metabolomics) were exploited to build a KG, in
which each type of biomedical concepts (i.e., drugs, proteins, diseases, and

biological pathways) is considered as a node type and each type of interactions/
associations (i.e., drug-protein interactions, drug-drug associations, and
protein—pathway associations) is considered as an edge type. The KG stores the
information in a triplet form where each triplet represents an interaction/
association between two unique entities (e.g., aspirin, drug-target interaction,
COXI1). After constructing the KG infrastructure, we used a KGE model called
DistMult® to learn the low-rank representations for all entities and relations. The
KGE models generally consist of three steps: (1) the entities and relations are
represented in a continuous vector space and initialized as random values; (2) the
distance of two entities relative to the relation type is measured via a model-
dependent scoring function f (h, t) on each triplet (h,r,t), where h,r,t represent
head entity, relation, and tail entity, respectively; (3) the output loss is passed to an
optimizer in order to update the initial embedding. The goal of the optimization
procedure is to assign higher scores to positive samples and lower scores to samples
unlikely to be true. DistMult is an extension of RESCAL*, a semantic matching
KGE model that associates each entity with a vector to capture its latent semantics.
The score of RESCAL is defined by a bilinear function:

d=1d=
£, =M= 5 S - 1 @

where hjt € RY (Rd represents both entities and relations as vectors in the same
dimension) are the vector representations of the entities and M, € R™? is a
matrix associated with the relation.

DistMult simplifies RESCAL by restricting M, to be a diagonal matrix and
introduces a vector embedding r € R that satisfies M, = diag(r) for each relation
r. And the score function of DistMult is hence defined as:

fr(ht) = thiag(r)t = lfg[r]i - [h]; - [t]; (3)

This score function captures the pairwise interactions between only the
components of hand t along the same dimension and thus reduces the
computational complexity.

The second step is dimensional reduction through PCA. It is sometimes
inappropriate to directly apply the KGE as the input features to the prediction
classifier due to the high noise and high dimension of the biological heterogeneous
data. To mitigate this potential error, we employ PCA, a popular and effective
technique that has been broadly applied in a variety of bio-network related
prediction tasks, to process only the relevant entities (e.g., drug and proteins) and
retain only the essential aspects of embeddings®->2. The introduction of PCA in
our framework aims to tune the effective embedding dimension more flexibly and
the size of the reduced PCA is considered as a hyper-parameter during the training
process of the NFM model.

The third step is to integrate the information from various data sources and
make classification via NFM. NFM is a novel extension to factorization machine
(FM), which is a popular solution for efficiently using the second-order feature
interactions. NFM combines the linearity of FM and the non-linearity of neural
network, thus overcoming the issue that FM is insufficient to capture the non-
linear and complex inherent structure of real-world data. The scoring function of
NEM is:

509 = wy+ 35w, + 0 @

where w;, is a global bias, w; weighs the contribution of the i-th feature to the target,
f(x) is a multi-layered feed-forward neural network (FFNN) for modeling more
complex patterns of feature interactions. Specifically, f(x) contains four parts: (1)
embedding layer, a fully connected layer that projects each feature to a dense vector
representation,

Vx: {xlvlv“'ﬁxnvn} (5)
where v; is the embedding vector for the i-th feature and x is the input feature
vector; (2) Bi-Interaction layer, a pooling layer that converts a set of embedding
vectors to one vector,

fu(Vo) = l; j:IZH xv; O x;v; ©)

where © denotes the element-wise product of two vectors, that is,
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(Vi © )k = v (3) hidden layers, a stack of fully connected layers, defined as
follows:

2y = 0y (W fg (V) +by)
z, = 0,(W,z, +b,) o

z, =0 (Wz,_ +by)

Classifier

MLP

MLP

RF

NFM

Inductive matrix
completion’2
MLP

/

NFM

where L denotes the number of hidden layers, and W, b;, and ¢, denote the weight
matrix, bias vector and activation function for the I-th layer, respectively; (4)
prediction layer, the output vector of the last hidden layer z; which is transformed
to the final prediction score:

f®=p"z ®)

where vector p denotes the neuron weights of the prediction layer.

Baselines. In this work, we evaluated our method against many state-of-the-art
methods as the baselines for DTI prediction!920:27:29:53:54 The baselines can be
classified into three categories based on their initial input: end-to-end methods use
the raw symbols (e.g., SMILES and FASTA sequences) of drugs and proteins as the
input, feature-based methods use the molecular fingerprints of drugs and the
descriptors of proteins as the input, and heterogeneous data driven methods use
the low-dimensional features extracted from heterogeneous data as the input. In
this work, we used the Morgan fingerprints calculated by RDKit as the handcrafted
featurization for drugs and the CTD descriptors that characterize the compositions,
transitions, and distributions of amino acids calculated by PyBioMed as the
handcrafted featurization for proteins®>-57.

A summary of the baselines is presented in Table 1. Specifically, the
MPNN_CNN and DeepDTI models were constructed with DeepPurpose®?, and the
RF model was taken from Scikit-learn®®. KGE_NFM consists of two parts, in which
KGE was constructed with AmpliGraph® while NFM was constructed with
DeepCTR®0. More details about the operation and hyperparameter optimization of
the baseline methods can be found in Supplementary Table 5.

Heterogeneous
information

Network embeddings
Graph embeddings
KGE

KGE

Protein
featurization
CNN

CNN

CTD descriptors
CTD descriptors
CTD descriptors

Evaluation protocols. In order to minimize the impact of data variability on the
results, 10-fold cross-validation was used to compare the predictive performances
of our method and other state-of-the-art methods. Here, we processed the whole
knowledge graph into two parts: the task dataset and the supporting knowledge
graph. In this work, the task dataset refers to the DTI dataset and the supporting
knowledge graph refers to the drug-related information such as drug-drug inter-
actions and protein-related information (e.g., protein—protein interactions). In the
training process, (1) the DTI dataset was firstly split into the training set and the
test set in each fold according to the scenarios (i.e., warm start, cold start for drugs
and cold start for proteins); (2) the supporting knowledge graph and DTIs in the
training set were used to train the KGE model; (3) the embedding vectors deprived
from the KGE model of the DTIs in the training set and the corresponding
descriptors were used to train the NFM model. Then, the model was evaluated on
each fold and trained on the other 9 splits. In each training procedure, the known
DTI are labeled as the positives while 10 times of the unlabeled DTT were randomly
selected to be the negative instances (Supplementary Fig. 1). In this study, we paid a
special attention to the differences of the performances for DTI prediction across
the following three experimental settings.

Setting I (warm start): Drug repurposing is the most common application for
DTI prediction. From the view of safety and development cost, it is a real benefit if
the drug that has successfully passed the FDA approval could be used for new
diseases>®1. Drug repurposing is built upon the hypothesis that drug molecules
often interact with multiple protein targets®2. In this situation, the training and test
sets share common drugs and targets.

Setting II (cold start for drugs): For the experimental setting of the cold start for
drugs, the test set contains the drugs that are unseen in the training set while all
proteins are present in both sets. This scenario is relevant if we need to identify the
potential targets that may interact with newly discovered chemical compounds
when the 3D structures of targets and the high-quality negative samples are
unavailable. For example, GPCRs are the largest super family with more than 800
membrane receptors and over 30% of the approved drugs target human GPCRs®3,
but only approximately 30 human GPCRs have solved 3D crystal structures, which
limits traditional structure-based drug discovery®*.

Setting III (cold start for proteins): As to the scenario related to the cold start for
proteins (discovering new protein targets and elucidation of molecular
mechanisms), the test set contains the proteins that are absent in the training set
while the drugs are present in both sets. This experimental setting corresponds to a
broad application scope, including discovering new protein targets for complicated
diseases, elucidating molecular mechanisms of drugs with known therapeutic
effects (e.g., active ingredients extracted from Chinese medicine, natural plants or
marine organisms), and identifying potential side effects>®5-68,

It should be noted that the drugs/proteins suffering from cold start problem
described in this study only refer to the drugs/proteins existed in the KG but
without any known DTI relations. That is to say, we only focus on the cold start
problem for drugs/proteins owning available heterogeneous information.

featurization
MPNN1

CNN
fingerprints

Drug
Morgan
fingerprints
Morgan
fingerprints
/

/

/

Morgan

DeepD_TI49

RF

(Yamanishi_08's dataset)

DTINet?” (Luo's dataset)
TriModel

Model
MPNN_CNN
NFM7T
DTiGEMS+29
KGE_NFM

Table 1 Summary of the baseline methods.

End-to-end methods
Feature-based methods
Heterogeneous data
driven methods

Category
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Evaluation metrics. In this study, the performance of each method was evaluated
by the area under the receiver operating characteristics curve (AUROC) and the
area under the precision-recall curve (AUPR). The receiver operating character-
istics (ROC) curve is an efficient indicator for visualizing and measuring the cost of
the true positive rate (TPR) against the false positive rate (FPR) at various
thresholds®®. The AUROC of a classifier is equivalent to the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance and is a general measure of the predictive performance for
a classifier. Precision-recall curve (PR) shows the tradeoff between precision and
recall for different thresholds and a high AUPR represents both high recall and
precision’’. Here, we used AUPR as the main metric for evaluating performance
and AUROC as the supplement, since ROC curves are insensitive to the changes in
class distribution and the two classes in our study are unbalanced.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The source data and data folds in the three sample scenarios used in this study are
provided on the Zenodo at https://zenodo.org/record/5500305. The source data of the
four benchmarks (the Luo’s dataset, Hetionet, the Yamanishi_08’s dataset and BioKG) is
available on the https://github.com/luoyunan/DTINet, https://het.io/about/, https://
drugtargets.insight-centre.org/, https://github.com/dsi-bdi/biokg, respectively. Source
data are provided with this paper.

Code availability
The source data and codes of KGE_NFM are available on the Zenodo at https://
zenodo.org/record/5500305.
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