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Abstract

Motivation: Identifying drug–target interactions is a crucial step for drug discovery and design. Traditional biochem-
ical experiments are credible to accurately validate drug–target interactions. However, they are also extremely
laborious, time-consuming and expensive. With the collection of more validated biomedical data and the advance-
ment of computing technology, the computational methods based on chemogenomics gradually attract more
attention, which guide the experimental verifications.

Results: In this study, we propose an end-to-end deep learning-based method named IIFDTI to predict drug–target
interactions (DTIs) based on independent features of drug–target pairs and interactive features of their substruc-
tures. First, the interactive features of substructures between drugs and targets are extracted by the bidirectional
encoder–decoder architecture. The independent features of drugs and targets are extracted by the graph neural net-
works and convolutional neural networks, respectively. Then, all extracted features are fused and inputted into fully
connected dense layers in downstream tasks for predicting DTIs. IIFDTI takes into account the independent features
of drugs/targets and simulates the interactive features of the substructures from the biological perspective. Multiple
experiments show that IIFDTI outperforms the state-of-the-art methods in terms of the area under the receiver
operating characteristics curve (AUC), the area under the precision-recall curve (AUPR), precision, and recall on
benchmark datasets. In addition, the mapped visualizations of attention weights indicate that IIFDTI has learned the
biological knowledge insights, and two case studies illustrate the capabilities of IIFDTI in practical applications.

Availability and implementation: The data and codes underlying this article are available in Github at https://github.
com/czjczj/IIFDTI.

Contact: jxwang@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying potential drug–target interactions (DTIs) plays an import-
ant role in drug discovery and drug reposition (Ezzat et al., 2019).
Although traditional biological experiments are trustworthy, they are
typically costly and laborious. With massive biomedical data and
knowledge being applicable, these methods based on chemogenomic
begin to receive attention from researchers. Chemogenomic-based
approaches use information from both the drug and target sides simul-
taneously to perform predictions. Therefore, many machine learning-
based methods have been proposed since then (Bleakley and
Yamanishi, 2009; Cheng et al., 2012; Mohamed et al., 2020; Olayan
et al., 2018; Wang and Zeng, 2013; Wang et al., 2011; Yuan et al.,

2016; Zong et al., 2017). Combining the advantages of the feature-
based and similarity-based methods, Yuan et al. (2016) propose an
ensemble-based method (called DrugE-Rank) to improve the prediction
performance. Based on DTI heterogeneous graph, Olayan et al. (2018)
develop a machine learning-based method (named DDR) which applies
the non-linear similarity fusion method to combine different types of
similarities. Formulating the problems as link predictions in knowledge
graphs, Mohamed et al. (2020) propose a model called TriModel based
on the knowledge graph embedding. Then, the embedding vectors are
consequently used to infer candidate DTIs based on their scores.

With the rapid development of deep learning, many end-to-end
deep learning-based methods have been applied for predicting DTIs
(Chen et al., 2020; Gao et al., 2018; Huang et al., 2021; Karimi
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et al., 2019; Lee et al., 2019; Nguyen et al., 2021; Öztürk et al.,
2018; Rifaioglu et al., 2021; Tsubaki et al., 2019; Wan et al., 2019;
Zheng et al., 2020). According to the different ways of extracting
features of drugs and targets, these methods can be divided into two
types: one is based on independent features of drug–target pairs, and
the other is based on the interaction information of local substruc-
tures. As shown in Figure 1, methods based on independent features
regard drugs and targets as two independent parts. They extract the
feature vectors of drugs and targets using independent feature
extractors. Then, the feature vectors are fused and inputted into the
downstream tasks. Gao et al. (2018) propose an interpretable archi-
tecture to predict DTIs from low-level representations, in which the
characteristics of drugs and targets are extracted by long short-term
memory (LSTM) and graph convolutional network, respectively.
Öztürk et al. (2018) propose a model named DeepDTA which uses
only sequence information to predict drug–target binding affinities.
DeepDTA models both the characterizations of drugs and targets
with convolutional neural network (CNN). By using a variety of
graph-based models, Nguyen et al. (2021) propose the model named
GraphDTA to improve the predictive ability of DTA by capturing
the structural information of drugs. Following the visual question
answering mode, Zheng et al. (2020) propose the model named
drugVQA to predict DTIs. DrugVQA separately extracts the fea-
tures of variable-length distance maps and linear notations by CNN
and self-attention Bi-LSTM, respectively.

Although methods based on independent features of drugs and
targets have achieved good performance, the drug–target interac-
tions include the interactions of local substructures of the drug–tar-
get pairs in high-dimensional spaces (Schenone et al., 2013).
Therefore, it is meaningful to combine interactive information about
drug–target pairs for predictions. Methods based on the interactive
information of local substructures take into account of the real bio-
logical DTI processes and simulate them. During the processes of
feature extractions, drugs and targets are no longer considered as in-
dependent parts. These methods can model the interactive features
of local substructures of drug–target pairs as input for the down-
stream tasks. Chen et al. (2020) propose a novel transformer-based
neural network named TransformerCPI. TranformerCPI reduces
some specific pitfalls for sequence-based DTI models. By developing
knowledge inspired sub-structural pattern mining algorithm and
interaction modeling module, Huang et al. (2021) propose an inter-
pretable model called MolTrans. MolTrans is capable of explaining
the prediction results from reasonable cues.

Although it is reasonable to focus on the interactive information be-
tween drugs and targets, drug–target interaction is a complex process
involving the knowledge of biology and chemistry. Extracting inde-
pendent features for drug–target pairs may also provide more discrim-
inative information for predictions. We cannot simply separate
independent features from interactive features, but systematically ex-
tract effective features from them. To address the above issues, in this
study, we propose a novel deep learning-based model named IIFDTI. It
fuses the interactive and independent features between drugs and tar-
gets to predict DTIs. More specifically, we simulate the actual hypoth-
esis from biological inspirations and extract the interactive features of
local substructures for drug–target pairs. For this process, the bidirec-
tional encoder–decoder structure is chosen as the extractor, which has
rich semantic extraction capabilities. Simultaneously, we model the in-
dependent features of drugs and targets, which are fused with inter-
active features for classifications downstream. Among them, the graph
attention network (GAT) is used to extract the independent features of
drugs, and it can capture the topological information between atoms.

Similarly, the convolutional structures with different kernel scales are
used to extract independent features of targets. Finally, four feature
vectors are fused and inputted into fully connected dense layers for pre-
dicting DTIs. Multiple experimental results show that IIFDTI outper-
forms four state-of-the-art methods on five different datasets in terms
of AUC, AUPR, precision and recall. To summarize, the main contribu-
tions of our works are listed as follows:

• We propose a novel model named IIFDTI for predicting DTIs.

To our knowledge, it is the first to consider interactive features

of local substructures of drug–target pairs and independent fea-

tures for both drugs and targets.
• We design rich ablation experiments to verify the significance of

the combination of independent feature extraction and inter-

active feature extraction for DTIs prediction.
• Our comprehensive experimental results demonstrate the pro-

posed method outperforms four state-of-the-art methods on five

benchmark datasets. Simultaneously, the visualizations of atten-

tion weights and case studies indicate that the proposed model

can provide biological insights.

2 Materials and methods

2.1 Benchmark datasets
We mainly construct the dataset of experiments from DrugBank data-
base(version 5.1.5) (Wishart et al., 2006). After processing the dataset,
the DrugBank dataset which contains 6645 drugs, 4254 targets and
17511 known drug–protein interactions are obtained. Following some
common practice (Huang et al., 2021), these negative samples of the
DrugBank dataset are randomly sampled from unknown drug–protein
pairs and kept the same number as positive samples. Moreover, we
also apply our model on some previous benchmark datasets including
Human dataset (Liu et al., 2015), Caenorhabditis elegans dataset (Liu
et al., 2015), BindingDB dataset (Gao et al., 2018), GPCR dataset
(Chen et al., 2020). Different from randomly selecting negative sam-
ples, Human and C.elegans datasets are constructed based on the high-
ly credible negative DTI samples using a systematic screening
framework (Liu et al., 2015). As shown in Table 1, the Human dataset
contains 3369 positive interactions between 1052 drugs and 852 tar-
gets; C.elegans dataset contains 4000 positive interactions between
1434 drugs and 2504 targets. BindingDB dataset is constructed from
(Gilson et al., 2016), and the training, validation and test sets of it are
well-designed. It contains 33772 positive interactions and 27486 nega-
tive interactions, whose detailed dataset division is listed in
Supplementary Section S1. GPCR dataset is constructed from GLASS
database (Chan et al., 2015), which is originally used for predicting
drug–target affinity (DTA). Divided into positive samples and negative
samples by thresholds of 6.0, GPCR dataset contains 15343 interac-
tions between 5359 drugs and 356 targets. The training and test sets of
GPCR dataset are well-designed, and the detailed dataset information
is listed in Supplementary Section S1.

2.2 Methods
In this study, we propose a novel approach named IIFDTI to predict
DTIs. We first give a brief description of the approach, and then
focus on the different modules of the approach.

Fig. 1. An overview of the methods based on only independent features

Table 1. Summary of the benchmark datasets

Datasets Targets Drugs Interactions Positive Negative

DrugBank 4254 6645 35 022 17 511 17 511

Human 852 1052 6738 3369 3369

C.elegans 2504 1434 8000 4000 4000

BingDingDB 812 49 745 61 258 33 772 27 486

GPCR 356 5359 15 343 7989 7354
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Figure 2 shows the network architecture of IIFDTI. It is mainly
composed of independent feature extraction module, interactive fea-
ture extraction module and prediction module. For the independent
feature extraction module, the GAT and multi-scale one-dimension-
al convolution are used to capture the independent features of drugs
and targets, respectively. For the interactive feature extraction mod-
ule, the bidirectional encoder–decoder is designed to extract the
interactive features of drug–target pairs. Finally, the extracted
independent and interactive features are inputted into the prediction
module to obtain the prediction results.

2.2.1 Interactive features of local substructures

of drug–target pairs

With the rapid development of natural language processing, many
powerful models and neural network structures have been well pro-
posed, such as BERT (Devlin et al., 2019), Transformer-XL (Dai
et al., 2019) and Longformer (Beltagy et al., 2020). They are all
designed and improved based on transformer (Vaswani et al., 2017),
which has an encoder–decoder-based structure. In the decoder of
transformer structure, the interactive features of two sequences are
captured. It is natural to extract the interactive features of drug–tar-
get pairs. (Chen et al., 2020) proposes a unidirectional interactive
feature-based model for predicting drug–target interactions based
on transformer structure. However, the inputs of drug–target inter-
action tasks contain two different substances (e.g. drugs and tar-
gets), the unidirectional interactive feature is insufficient for feature
extractions. Inspired by this, we construct the bidirectional encoder–
decoder structure to extract interactive features, which is shown in
Figure 2b and takes drugs and targets as inputs.

For the raw data of amino acid sequences and SMILES strings,
the sequences are embedded into real-valued vectors by word2vec
(Mikolov et al., 2013), which preserves the semantic relationships
among symbol levels. For an amino acid sequence, it can split into
overlapping 3-g sequences. Similarly, each character in the SMILES
string is split to represent as a word. From the pre-trained embed-
ding dictionaries [Smi2Vec (Quan et al., 2018) and Prot2Vec
(Asgari and Mofrad, 2015)], each amino acid sequence and each
SMILES string can be transformed to the matrix P 2 Rlp�hp and
D 2 Rld�hd , respectively. lp and ld are the length of target sequences
and drug sequences, respectively. hp and hd are the dimensions of
feature vectors for targets and drugs, respectively. The bidirectional
encoder–decoder block takes P and D as inputs and it contains two
directions (i.e. drug and target direction). For the target direction,
the drug feature matrix D and the target feature matrix P are input-
ted to the encoder and decoder, respectively. For the drug direction,
D and P are inputted to the decoder and encoder, respectively.

The structure of the encoder is constituted by the multi-layer
combinations of one-dimensional convolutions and gated linear

units (Dauphin et al., 2017). It ensures that effective features can be
extracted while preventing the model from overfitting due to com-
plex structures. Then, we can get the feature matrices of drugs and
targets after the ith encoder of the encoder–decoder framework,
which is described as follows:

Dencoder
iþ1 ¼ dðDencoder

i �W1drug
i þ b1drug

i Þ
�ðDencoder

i �W2
drug
i þ b2

drug
i Þ

(1)

Pencoder
iþ1 ¼ dðPencoder

i �W1prot
i þ b1prot

i Þ
�ðPencoder

i �W2prot
i þ b2prot

i Þ (2)

where dðÞ is the sigmoid function. � is the one-dimensional convolu-
tion operation. � is the element-wise product operation.
W1drug

i ;W2drug
i 2 Rkd�m�m; b1drug

i ; b2drug
i 2 Rm; W1prot

i ;W2prot
i 2

Rkp�m�m and b1
prot
i ; b2

prot
i 2 Rm are the learnable parameters. kp

and kd are the filter sizes in encoders for target sequences and drug
sequences, respectively. m is the feature dimension of hidden layers.
Dencoder

i 2 Rld�m and Pencoder
i 2 Rlp�m are the inputs to the ith en-

coder. In particular, Dencoder
1 ¼ D �Wdrug

e and Pencoder
1 ¼ P �Wprot

e ,
and Wdrug

e 2 Rhd�m and Wprot
e 2 Rhp�m are the learnable parameters.

Dencoder
iþ1 and Pencoder

iþ1 are the outputs of the ith encoder in the en-
coder–decoder framework, where i 2 f1; . . . ;Lg and L is the num-
ber of encoder layers. Finally, we can get feature matrices of
substructures for drugs and targets (Dencoder

Lþ1 ; Pencoder
Lþ1 ) after convolu-

tions by multiple encoders.
As shown in Figure 2c, decoder is mainly composed of multi-

head attention, dropout, residual connection (He et al., 2016), and
position-wise feed-forward networks. The important operation of
multi-head attention is the function AttentionðQ;K;VÞ, whose
inputs are three feature matrices (Q 2 Rlq�dk ; K 2 Rlk�dk , and
V 2 Rlv�dv ), where lq; lk and lv are the dimension of the input length.
dk and dv indicate the transformed dimensions. Then, we can get the
output matrix as follows:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffi

d
p

k

 !
V: (3)

The multi-head attention contains h heads, where the ith head is
computed as follows:

headi ¼ AttentionðQi;Ki;ViÞ: (4)

The multi-head attention concatenates the results from h heads
as follows:

MultiHeadðQ1...h;K1...h;V1...hÞ ¼ Concatðhead1; . . . ; headhÞWO (5)

where WO 2 Rðh�dvÞ�m are learnable parameter matrices. h is the

(a)

(d)

(b) (c)

Fig. 2. The network architecture of IIFDTI. (a) The overview of the proposed prediction approach. (b) The detailed bidirectional encoder–decoder block structure in (a). (c)

The network structures of the decoder in (b). (d) The network structures of the encoder in (b)
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number of heads. The multi-head attention can make the model more
robust by combining information from different representation subspa-
ces. As shown in Figure 2c, the decoder contains two multi-head atten-
tion modules. For the bottom one, the Q, K and V are the mappings of
input of the decoder. For the top one, the K and V are the output from
the encoder, and the Q is from the processing stream of decoder. As
shown in the red-dashed box in Figure 2c, through the calculation pro-
cess for attention weights in multi-head attention, the decoder can dy-
namically capture the interactive information between the outputs of
the encoder and input of the decoder. The detailed example for extract-
ing interactive features between substructures of the drug–target pair is
listed in Supplementary Section S2, and the detailed inputs and outputs
of the bidirectional encoder–decoder block on both directions are listed
in Supplementary Section S3.

For the target direction, we get the feature matrix fp1;p2;
. . . . . .; plpg and the target-side interactive feature Lprot is computed
as follows:

Lprot ¼
Xlp

i¼1
pi (6)

Similarly, for the drug direction, we get the feature matrix
fd1; d2; . . . . . .; dldg and the drug-side interactive feature Ldrug is com-
puted as follows:

Ldrug ¼
Xld

i¼1
di (7)

2.2.2 Independent features of drugs and targets

2.2.2.1 Representation learning for drugs. In this section, the topo-
logical information in the drug molecular graph is extracted as inde-
pendent features. It is complementary to the sequence representation of
drugs in Section 2.2.1. For each molecule structure, it is represented as
a graph GðV; EÞ from SMILES string by RDKit tools. In the graph
GðV; EÞ; V is the set of all atoms in a molecule, and each atom is repre-
sented as the f-dimensional feature vector xi 2 Rf ;8i 2 V, which
includes the physicochemical properties. The detailed features are listed
in Supplementary Section S4. f is 34 in the implementation. E is the set
of covalent chemical bonds. Then, the topological structure informa-
tion of drug molecules is extracted by T-layer GAT (Velickovic et al.,
2018), where T is the total number of layers for GAT. The detailed
pseudo-codes of applying GAT on drug molecules are listed in Section
S5. During the tth convolution, the ith atom of molecule graphs calcu-
lates the attention weight at

ij with its neighbor nodes j 2 NðiÞ. Then
the ith atom vector can be updated by gathering neighbor information
based on attention weights. Finally, each atom contains the T-radius
subgraph topological information after T convolutions. The aggregate
representation of a drug molecule is substituted as Gdrug.

Gdrug ¼
P

iZi; i 2 V (8)

where Zi is the feature vector of the ith vertex in the graph after T
convolutions.

2.2.2.2 Representation learning for targets. To extract the independ-
ent information of targets, the multi-scale one-dimensional convolution
is used to capture the features of targets. Different from the embedding
in the bidirectional encoder–decoder block, a corpus containing all
human protein sequences in Uniprot database is used to train word2vec
model (Chen et al., 2020; Mikolov et al., 2013). Finally, the pre-
trained word list with the word vector dimension of 100 is obtained to
initialize the CNN embedding. Then, we can get the feature matrix of
the target sequence Pcnn 2 Rlp�dp after embedding, where dp is the di-
mension of the embedding vector. Multiple filters with different convo-
lution kernels are used to extract the representative features of
semantic information, and the width of the sliding window for the ith
convolution kernel is ji.

Ci ¼ rðPcnn �Wcnn
i þ bcnn

i Þ (9)

where Wcnn
i 2 Rji�dp�m; i 2 f1; . . . ; ng; bcnn

i 2 Rm are the learnable
parameters, and m is the feature dimension of hidden layers. n is the

number of different convolution kernels. rðÞ is the non-linear
function. Furthermore, the most important feature ci

� ¼ maxfCig is
captured by max-pooling. During the training process, the
BatchNorm (Ioffe and Szegedy, 2015) is used to make the model
converge efficiently. Finally, we can get the independent features of
the target Gprot.

Gprot ¼MLP
�

Concatðc1
�
; . . . ; cn

� Þ
�

(10)

where MLPðÞ is the multi-layer nonlinear transformation function
(Huang et al., 2020).

2.3 Classifier
In this study, the drug–target prediction is modeled as the binary
task. All the independent and interactive features learned in previous
sections (Sections 2.2.1 and 2.2.2) are concatenated and fused to the
fully connected dense layers in the downstream.

Y
^
¼ dðWout½Gdrug; Ldrug; Lprot; Gprot� þ boutÞ (11)

where dðÞ is the sigmoid function, Wout and bout are the learnable

parameters, and Y
^

is the predicted label.
For the sets of drug–target pairs and their ground-truth labels in

the training datasets, the cross-entropy loss function is defined as
loss function for backpropagation.

lossðHÞ ¼ 1

N

X
i

�½yi � log ðyi
^ Þ þ ð1� yiÞ�

log ð1� yi
^ Þ� þ k

2
kHk2

2

(12)

where yi is the real label, yi
^

is the predicted label, H is the set of all
parameters in the end-to-end model (e.g. the combined networks of
CNN, GAT, the bidirectional encoder–decoder block and classifier),
N is the number of training samples, and k is the L2 regularization
coefficient.

3 Experiments

3.1 Experimental setup
In this study, the AUC, AUPR, precision and recall are chosen as the
main metrics to evaluate the performance of the model. In the
experiments, IIFDTI is implemented in Pytorch. We perform hyper-
parameter optimization on the DrugBank dataset. The dataset is div-
ided into training set, validation set and test set according to the
ratio of 8:1:1. We train the model on the training set and select the
optimal hyperparameters based on the performance on the valid-
ation set, and finally perform model evaluation on the test set. We
utilize grid search to determine the optimal hyperparameters of the
model. The training loss is optimized by using AdamW (Loshchilov
and Hutter, 2019) optimizer with a warmup strategy (He et al.,
2016). The selected hyperparameter settings of the model are listed
in Supplementary Section S6.

3.2 Baseline methods

• Models based on independent features

DeepDTA (Öztürk et al., 2018): This model consists of two 3-layer
CNNs. It is originally designed for predicting binding affinity. Here,
we change the last layer of its fully connected dense layers and the
corresponding loss function, which makes the model suitable for
DTIs predictions. We optimize the hyperparameters described from
the work based on DrugBank dataset to ensure fairness.

DeepConv-DTI (Lee et al., 2019): This model captures local resi-
due patterns of targets by convolutions on various lengths of amino
acid subsequences. It extracts features of drugs by using fully con-
nected dense layers on drug fingerprints. Finally, the feature vectors
of drugs and targets are concatenated to the fully connected dense
layers for predicting DTIs. We follow the hyperparameter setting
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described in the work because it has been optimized for data from
DrugBank database.

• Models based on interactive features

MolTrans (Huang et al., 2021): This model proposes a transformer-
based bio-inspired molecular representation method. First, it con-
structs the sub-structural pattern mining algorithm. Then, the inter-
action map is built from drug sequences and target sequences.
Finally, the CNN layer is applied on the interaction map to extract
higher-order interactions for predicting DTIs. We follow the hyper-
parameter setting described in the work because it has been opti-
mized for data from DrugBank database.

TransformerCPI (Chen et al., 2020): This model includes a
transformer-based neural network. Specifically, the features of tar-
get sequences are encoded to the decoder. At the same time, the de-
coder predicts DTIs based on the output of the encoder and the
topological features of drugs extracted by graph neural network. We
follow the hyperparameter setting described in the work.

The selected hyperparameter settings of baselines are listed in
Supplementary Section S7.

3.3 Comparison of results
To comprehensively evaluate the prediction performance, accord-
ing to the composition of different datasets, we run all the com-
pared methods on BindingDB dataset and GPCR dataset ten times
and get the averaged experimental results. On the other three
datasets (DrugBank, Human and C.elegans), we get the averaged
experimental results after 10 times repeated 5-fold cross-
validation. The best results are highlighted in bold for each met-
ric. The detailed dataset partition and training process are listed
in Supplementary Section S1.

As shown in Table 2, for DrugBank dataset, IIFDTI has achieved
more significant improvement compared to baselines. Compared
with the second best method, IIFDTI achieves an improvement of
5.97% and 6.89% in terms of AUC and AUPR.

For small public datasets, such as Human and C.elegans, IIFDTI
generally achieves better performance than baselines. IIFDTI is

better than the second best method by 1.02% and 0.71% on
Human and C.elegans datasets, respectively in terms of AUC.
Similarly, IIFDTI is better by 0.92% and 0.71% in terms of AUPR.

For large-scale public datasets, on the BindingDB dataset,
IIFDTI achieves an improvement of 1.07% and 1.17% in terms of
AUC and AUPR. On the GPCR dataset, IIFDTI almost achieves the
same performance as TransformerCPI and outperforms the other
three baselines in terms of AUC and AUPR.

The above results indicate that the proposed IIFDTI achieves
competitive results on various datasets compared to methods based
only on independent features (DeepDTA, DeepConv-DTI) or meth-
ods based only on interactive features (MolTrans, TransformerCPI).
When extracting independent features of drugs and targets, IIFDTI
models the sequence information and graph structure information of
drugs and targets based on CNN and GAT, while when extracting
interactive features, the attention-based encoder–decoder can well
preserve information between drug–target substructures. Combining
the advantages of independent features and interactive features,
IIFDTI achieves better results than baselines.

3.4 Ablation experiment
We conduct ablation experiments from two aspects, including com-
ponent ablation and model design. The model structures of all abla-
tion methods are listed in Supplementary Section S8.

In terms of the component ablation, we remove the relevant net-
work structures to confirm their importance to the improvement of
performances. IIFDTI (independent) indicates that the IIFDTI uses
only independent features (Section 2.2.2). IIFDTI (interactive_a)
indicates that the IIFDTI uses only interactive features (Section
2.2.1). IIFDTI (u_a) indicates that a unidirectional encoder–decoder
structure is used for the interactive features in IIFDTI, in which
drugs are inputted to the encoder and targets are inputted to the de-
coder. IIFDTI (u_b) indicates that a unidirectional encoder–decoder
structure is used for the interactive features in IIFDTI, in which tar-
gets are inputted to the encoder and drugs are inputted to the de-
coder. From the results shown in Table 3, IIFDTI performs better
than IIFDTI (u_a) and IIFDTI (u_b), which confirms that the use of
bidirectional encoder–decoder structure is of great significance for

Table 2. The results on all the dataset: AUC, AUPR, precision, recall of the baselines and IIFDTI

Datasets Methods AUC (SD) AUPR (SD) Precision (SD) Recall (SD)

DrugBank DeepDTA 0.871 (0.003) 0.870 (0.004) 0.786 (0.015) 0.798 (0.020)

DeepConv-DTI 0.836 (0.003) 0.831 (0.007) 0.736 (0.023) 0.767 (0.022)

MolTrans 0.862 (0.007) 0.862 (0.010) 0.809 (0.006) 0.767 (0.015)

TransformerCPI 0.865 (0.003) 0.868 (0.007) 0.774 (0.011) 0.821 (0.009)

IIFDTI 0.923 (0.005) 0.930 (0.006) 0.854 (0.021) 0.860 (0.022)

Human DeepDTA 0.972 (0.001) 0.973 (0.002) 0.938 (0.012) 0.935 (0.017)

DeepConv-DTI 0.967 (0.002) 0.964 (0.004) 0.939 (0.018) 0.907 (0.023)

MolTrans 0.974 (0.002) 0.976 (0.003) 0.955 (0.012) 0.933 (0.022)

TransformerCPI 0.970 (0.006) 0.974 (0.005) 0.911 (0.021) 0.937 (0.011)

IIFDTI 0.984 (0.003) 0.985 (0.003) 0.946 (0.017) 0.947 (0.017)

C.elegans DeepDTA 0.983 (0.001) 0.984 (0.007) 0.970 (0.011) 0.960 (0.010)

DeepConv-DTI 0.983 (0.002) 0.985 (0.001) 0.954 (0.006) 0.936 (0.008)

MolTrans 0.982 (0.003) 0.982 (0.003) 0.971 (0.007) 0.963 (0.012)

TransformerCPI 0.984 (0.002) 0.983 (0.003) 0.949 (0.011) 0.948 (0.012)

IIFDTI 0.991 (0.002) 0.992 (0.003) 0.954 (0.010) 0.971 (0.011)

BindingDB DeepDTA 0.934 (0.007) 0.934 (0.008) 0.858 (0.021) 0.860 (0.023)

DeepConv-DTI 0.922 (0.003) 0.921 (0.004) 0.835 (0.024) 0.846 (0.031)

MolTrans 0.899 (0.006) 0.897 (0.010) 0.826 (0.021) 0.768 (0.019)

TransformerCPI 0.933 (0.011) 0.934 (0.015) 0.840 (0.023) 0.891 (0.022)

IIFDTI 0.944 (0.003) 0.945 (0.004) 0.879 (0.011) 0.873 (0.013)

GPCR DeepDTA 0.776 (0.006) 0.762 (0.015) 0.713 (0.014) 0.712 (0.015)

DeepConv-DTI 0.752 (0.011) 0.685 (0.010) 0.695 (0.020) 0.713 (0.021)

MolTrans 0.807 (0.004) 0.788 (0.009) 0.699 (0.007) 0.762 (0.014)

TransformerCPI 0.842 (0.007) 0.837 (0.010) 0.755 (0.013) 0.796 (0.015)

IIFDTI 0.845 (0.008) 0.842 (0.007) 0.766 (0.009) 0.783 (0.017)

The best results are highlighted in bold for each metric.
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the performance improvement of IIFDTI. IIFDTI also performs bet-
ter than IIFDTI (independent) and IIFDTI (interactive_a) on
DrugBank dataset, which indicates that the combination of inter-
active features from the bidirectional encoder–decoder structure and
independent features from GAT and CNN can improve the perform-
ance of the proposed model. Similar results on other benchmark
datasets are available in Supplementary Section S9.

In terms of the model design, the modules of our model are
replaced by other existing structures to confirm the conclusion that
combining independent and interactive features is effective. IIFDTI
(interactive_b) contains only interactive features, which replace the ori-
ginal encoders for drug–target pairs with GAT and CNN structures.
IIFDTI (interactive_c) contains only interactive features, which replaces
the bidirectional encoder–decoder structure with a different interactive
feature extraction module proposed by the previous work (Huang
et al., 2021). IIFDTI (independentþinteractive_b) is composed of
IIFDTI (independent) and IIFDTI (interactive_b), and IIFDTI (indepen-
dentþinteractive_c) is composed of IIFDTI (independent) and IIFDTI
(interactive_c). The results show that IIFDTI (indepen-
dentþinteractive_b) outperforms IIFDTI (independent) and IIFDTI
(interactive_b), IIFDTI (independentþinteractive_c) outperforms
IIFDTI (independent) and IIFDTI (interactive_c). From the perspective
of model design, the ablation experiments indicate that combining in-
dependent features and interactive features is effective. Furthermore,
IIFDTI also outperforms IIFDTI (independentþinteractive_b) and
IIFDTI (independentþinteractive_c), and it indicates that the combined
GAT, CNN and transformer structure enhances the performances of
IIFDTI. This may be due to the complementarity of features extracted
by different feature extractors. Similar results on other benchmark
datasets are available in Supplementary Section S10.

Overall, the ablation studies indicate that fusing independent

features and interactive features and choosing appropriate model
components are effective for improving the performance of our
framework.

3.5 Imbalanced dataset and independent test set

experiments
In order to test the performances of IIFDTI on imbalanced dataset,

we also construct the imbalanced benchmark dataset, Davis (Davis
et al., 2011). Davis records wet lab assay values measuring binding

affinities among drugs and targets. We divide all samples into posi-
tive and negative samples by the threshold 5.0 following previous
works (Davis et al., 2011; Öztürk et al., 2018). The details of the

Davis dataset are listed in Supplementary Section S11. Finally, the
Davis dataset contains 7320 positive samples and 18452 negative

samples between 379 targets and 68 drugs, and the ratio of positive
and negative samples is about 1:2.5. As shown in Table 5, IIFDTI
outperforms other methods, and IIFDTI is better than the second

best method by 0.50% and 3.01% in terms of AUC and AUPR,
respectively. The experimental results indicate that IIFDTI is still
reliable under imbalanced dataset training.

Table 3. The results on DrugBank: AUC, AUPR, precision and recall of IIFDTI (independent), IIFDTI (interactive_a), IIFDTI (u_a), IIFDTI (u_b)

and IIFDTI

Methods Number of parameters AUC (SD) AUPR (SD) Precision (SD) Recall (SD)

IIFDTI (independent) 15.9 M 0.859 (0.002) 0.855 (0.006) 0.794 (0.016) 0.787 (0.019)

IIFDTI (interactive_a) 17.5 M 0.867 (0.005) 0.886 (0.005) 0.805 (0.018) 0.781 (0.019)

IIFDTI (u_a) 24.2 M 0.919 (0.004) 0.924 (0.002) 0.867 (0.011) 0.833 (0.023)

IIFDTI (u_b) 24.2 M 0.913 (0.004) 0.918 (0.007) 0.858 (0.018) 0.823 (0.023)

IIFDTI 29.8 M 0.923 (0.005) 0.930 (0.006) 0.854 (0.021) 0.860 (0.022)

The best results are highlighted in bold for each metric.

Table 4. The results on DrugBank: AUC, AUPR, precision and recall of IIFDTI (independent), IIFDTI (interactive_b), IIFDTI (interactive_c),

IIFDTI (independentþinteractive_b), IIFDTI (independentþinteractive_c) and IIFDTI

Methods Number of parameters AUC (SD) AUPR(SD) Precision (SD) Recall (SD)

IIFDTI (independent) 15.9 M 0.859 (0.002) 0.855 (0.006) 0.794 (0.016) 0.787 (0.019)

IIFDTI (interactive_b) 24.8 M 0.875 (0.008) 0.889 (0.011) 0.831 (0.023) 0.783 (0.015)

IIFDTI (interactive_c) 228.0 M 0.852 (0.009) 0.846 (0.012) 0.787 (0.017) 0.772 (0.012)

IIFDTI (independentþ interactive_b) 29.2 M 0.905 (0.010) 0.920 (0.010) 0.929 (0.022) 0.681 (0.008)

IIFDTI (independentþ interactive_c) 228.1 M 0.869 (0.009) 0.874 (0.010) 0.779 (0.013) 0.807 (0.015)

IIFDTI 29.8 M 0.923 (0.005) 0.930 (0.006) 0.854 (0.021) 0.860 (0.022)

The best results are highlighted in bold for each metric.

Table 5. The results on Davis: AUC, AUPR, precision and recall of baselines and IIFDTI

Methods AUC (SD) AUPR (SD) Precision (SD) Recall (SD)

DeepDTA 0.906 (0.002) 0.862 (0.004) 0.788 (0.022) 0.743 (0.019)

DeepConv-DTI 0.901 (0.002) 0.821 (0.005) 0.762 (0.021) 0.706 (0.025)

MolTrans 0.892 (0.004) 0.794 (0.008) 0.784 (0.014) 0.623 (0.012)

TransformerCPI 0.846 (0.001) 0.748 (0.001) 0.689 (0.002) 0.607 (0.004)

IIFDTI 0.911 (0.002) 0.888 (0.003) 0.805 (0.001) 0.823 (0.003)

The best results are highlighted in bold for each metric.

Table 6. Summary of the training set and test set

Datasets Targets Drugs Interactions Positive Negative

Training set 1606 1471 12 624 6312 6312

Test set 1326 1144 4624 949 3675
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To better evaluate the generalization ability of the model, we
simulate the real experimental environment by collecting the train-
ing set and the test set on the time series. As shown in Table 6, the
approved data of DrugBank release version 5.0.3 (before October
2016) is used as training set. Then, we filter the newly approved
data after October 2016 as an independent test set with ensuring
that the drugs or targets in the test set do not appear in the training
set.

As shown in Table 7, we get the experimental results with the
cross-validation for 10 times. Compared with other methods, the
improvement of IIFDTI is significant. IIFDTI achieves an improve-
ment of 1.65% and 1.54% in terms of AUC and AUPR compared
with the second best method. The results indicate that IIFDTI can
deal with problems for an independent test set in a real data
environment.

3.6 Attention interpretation
In order to better analyze what the models have learned and what
they are based on to make predictions, we analyze the attention
weights learned by models, whose visualizations and interpretations
can greatly help us to design future models. Based on the attention
mechanism in encoder–decoder framework, we can simply under-
stand the underlying mechanism based on the attention weights of
drug sequences and target sequences.

As shown in Figure 3, the Dihydrofolate reductase (PDB:3FS6)
and Retinoic acid receptor Y (PDB:6FX0) with their corresponding
actives are selected as examples. For each example, the left side
shows the 3D protein structures, in which the binding sites are

highlighted in red. The right side shows the amino acid sequence of
the protein and the model-learned attention weights for each resi-
due, visualized with a heatmap to better distinguish them. These res-
idues that are marked redder indicate higher weights, and the actual
binding sites on the amino acid sequence are marked in dark red. As
shown in Figure 3a, the sequence fragments with higher attention
weight visualized by heatmap cover multiple binding site positions,
e.g. the 5th to 9th, 53rd to 57th, 74th to 78th and 117th to 121st
positions in the amino acid sequence. Similarly, as shown in
Figure 3b, sequence fragments with higher attention weight (e.g.
55th to 60th, 86th to 98th and 231st to 233rd) also cover many
known binding sites. From the results, IIFDTI can almost successful-
ly localize the binding site of the ligand to these high-weight regions.
It indicates that our model has learned the knowledge insights and
biological significances from large amounts of data.

3.7 Case study
In order to further verify the effectiveness of the proposed model, we
apply IIFDTI for de novo predictions on two important drugs and
targets [Diacerein (DrugBank ID: DB11994) and Aspartate amino-
transferase (Uniprot ID: Q2TU84)], respectively. In this section, we
use the pre-trained model to predict the interactive probabilities be-
tween them and known drugs or targets in the datasets. For the pre-
diction results, we sort the candidate drugs (or targets) according to
their prediction scores. Finally, the predicted interactions are veri-
fied through the DrugBank database (Wishart et al., 2006).

As shown in Table 8, the top 10 candidate targets for Diacerein
predicted by IIFDTI are listed and there are 11 validated targets of

Table 7. The results of independent test set experiment: AUC, AUPR, precision and recall of baselines and IIFDTI

Methods AUC (SD) AUPR (SD) Precision (SD) Recall (SD)

DeepDTA 0.784 (0.004) 0.519 (0.007) 0.450 (0.006) 0.635 (0.010)

DeepConv-DTI 0.782 (0.005) 0.472 (0.005) 0.459 (0.013) 0.626 (0.016)

MolTrans 0.501 (0.010) 0.203 (0.006) 0.183 (0.032) 0.417 (0.015)

TransformerCPI 0.782 (0.005) 0.500 (0.015) 0.427 (0.008) 0.660 (0.007)

IIFDTI 0.797 (0.004) 0.527 (0.009) 0.436 (0.002) 0.679 (0.008)

The best results are highlighted in bold for each metric.

(a) (b)

Fig. 3. Visualizations of attention weights. (a) attention weight of Dihydrofolate reductase (PDB:3FS6). (b) Attention weight of Retinoic acid receptor Y (PDB:6FX0)

Table 8. The predicted candidate targets for new drug Diacerein

Rank Target name Target Uniprot ID Source

1 Prostaglandin G/H synthase 1 P23219 Unknown

2 Cyclooxygenase-2 P35354 Unknown

3 Cytochrome P450 3A4 P08684 PubMed: 18814214

4 GMP-PDE gamma P18545 Unknown

5 Calstabin-1 P62942 Unknown

6 Cholesterol 25-hydroxylase P11712 PubMed: 18814214

7 Lactoylglutathione lyase Q04760 Unknown

8 Cytochrome P450 1A2 P05177 PubMed: 18814214

9 Dihydrofolate reductase P00374 Unknown

10 CYPIID6 P10635 PubMed:18814214

The best results are highlighted in bold for each metric.
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all 2176 targets. From the result, we can find that 4 out of 10 targets

are predicted successfully (marked in bold). Similarly, Table 9 shows
the predicted candidate drugs for the new target Aspartate amino-
transferase, for which there are 3 validated drugs of all 4400 drugs.
All 3 candidate drugs are predicted successfully in the top 10
(marked in bold).

Overall, the above two cases (i.e. Diacerein and Aspartate ami-
notransferase) are considered challenging where they need to predict

candidate drugs (or targets) for new targets (or drugs) precisely. The
results demonstrate that the IIFDTI has the ability to accurately pre-

dict interactive candidates for unknown drugs and targets from large
sample sets, which has a great significance for drug screening and
drug reposition.

4 Conclusion

Identifying the potential drug–target interactions is a crucial task in

drug discovery and drug reposition. Although existing research has
achieved great success, improving the performance of DTI predic-

tions still remains a major challenge. In this study, an end-to-end
deep learning model named IIFDTI based on the fusion of independ-
ent and interactive features is proposed for predicting DTIs.

Compared with existing state-of-the-art models on several bench-
mark datasets, the computational results show that IIFDTI can

achieve greater performance than baselines. Simultaneously, the
mapped visualizations of attention weights learned by IIFDTI pro-
vide meaningful guidance for interpretations of biological signifi-

cance and the prediction optimization of DTIs.
Predicting DTIs is an extremely complex and difficult problem.

It is clear that IIFDTI still has room for further improvement. In this
study, only one type of data, such as amino acid sequences for tar-
gets and SMILES strings for drugs, is learned as input. In practice,

drugs and targets have different representations from different lev-
els. The modeling and fusion of the information provide a possibility

to improve the performance of predicting DTIs. In future work, we
will focus on the fusion of multi-view representations in deep
learning-based models.
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