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Abstract

Summary: The development of new drugs is costly, time consuming and often accompanied with safety issues.
Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for al-
ready approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by
which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the poten-
tial to expedite drug repurposing. Several models have been proposed for this task. However, these models repre-
sent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called
GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show
that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also out-
perform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–
target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.

Availability of implementation: The proposed models are implemented in Python. Related data, pre-trained models
and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to repro-
duce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.

Contact: thin.nguyen@deakin.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

It costs about 2.6 billion US dollars to develop a new drug
(Mullard, 2014), and can take up to 17 years for FDA approval
(Ashburn and Thor, 2004; Roses, 2008). Finding new uses for al-
ready approved drugs avoids the expensive and lengthy process
of drug development (Ashburn and Thor, 2004; Strittmatter,
2014). For example, nearly 70 existing FDA-approved drugs are
currently being investigated to see if they can be repurposed to
treat COVID-19 (Gordon et al., 2020). In order to repurpose
drugs effectively, it is useful to know which proteins are targeted
by which drugs. High-throughput screening experiments are used
to examine the affinity of a drug toward its targets; however,
these experiments are costly and time-consuming (Cohen, 2002;
Noble et al., 2004), and an exhaustive search is infeasible be-
cause there are millions of drug-like compounds (Deshpande
et al., 2005) and hundreds of potential targets (Manning et al.,
2002; Stachel et al., 2014). As such, there is a strong motivation
to build computational models that can estimate the interaction

strength of new drug–target pairs based on previous drug–target
experiments.

Several computational approaches have been proposed for drug–
target affinity (DTA) prediction (Corsello et al., 2017; Iskar et al.,
2012; Kinnings et al., 2011). One approach is molecular docking,
which predicts the stable 3D structure of a drug-target complex via
a scoring function (Li et al., 2019). Even though the molecular dock-
ing approach is potentially more informative, it requires knowledge
about the crystallized structure of proteins which may not be avail-
able. Another approach uses collaborative filtering. For example,
the SimBoost model uses the affinity similarities among drugs and
among targets to build new features. These features are then used as
input in a gradient boosting machine to predict the binding affinity
for unknown drug–target pairs (He et al., 2017). Alternatively, the
similarities could come from others sources (rather than the training
data affinities). For example, kernel-based methods use kernels built
from molecular descriptors of the drugs and targets within a regular-
ized least squares regression (RLS) framework (Cichonska et al.,
2017, 2018). To speed up model training, the KronRLS model
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computes a pairwise kernel K from the Kronecker product of the
drug-by-drug and protein-by-protein kernels (Cichonska et al.,
2017, 2018) (for which any similarity measure can be used). DTA

prediction may also benefit from adopting methods for predicting
drug–target interactions (DTI). Approaches in this line of work in-
clude DTI-CDF (Chu et al., 2019), a cascade deep forest model or
DTI-MLCD (Chu et al., 2020), a multi-label learning supported
with community detection.

Another approach uses neural networks trained on 1D repre-
sentations of the drug and protein sequences. For example, the
DeepDTA model uses 1D representations and layers of 1D convo-
lutions (with pooling) to capture predictive patterns within the
data (Öztürk et al., 2018). The final convolution layers are then
concatenated, passed through a number of hidden layers, and
regressed with the drug–target affinity scores. The WideDTA

model is an extension of DeepDTA in which the sequences of the
drugs and proteins are first summarized as higher-order features
(Öztürk et al., 2019). For example, the drugs are represented by
the most common sub-structures (the Ligand Maximum Common
Substructures (LMCS) (Wo�zniak et al., 2018)), while the proteins
are represented by the most conserved sub-sequences [the Protein
Domain profiles or Motifs (PDM) from PROSITE (Sigrist et al.,
2010)]. While WideDTA (Öztürk et al., 2019) and DeepDTA

(Öztürk et al., 2018) learn a latent feature vector for each protein,
the PADME model (Feng et al., 2018) uses fixed-rule descriptors
to represent proteins, and performs similarly to DeepDTA

(Öztürk et al., 2018).
The deep learning models are among the best performers in

DTA prediction (Mayr et al., 2018). However, these models repre-
sent the drugs as strings, which are not a natural way to represent
molecules. When using strings, the structural information of the
molecule is lost, which could impair the predictive power of a
model as well as the functional relevance of the learned latent
space. Already, graph convolutional networks have been used in
computational drug discovery, including interaction prediction,
synthesis prediction, de novo molecular design and quantitative
structure prediction (Gao et al., 2018a; Hirohara et al., 2018;
Kearnes et al., 2016; Liu et al., 2019; Mayr et al., 2018; Sun
et al., 2020; Torng and Altman, 2019). However, graph neural
networks have not been used for DTA prediction. Of these, (Gao
et al., 2018b; Mayr et al., 2018; Torng and Altman, 2019) are
closest to our work, but look at binary prediction, while our
model looks to predict a continuous value of binding affinity.
Also, in Mayr et al. (2018), the input is a drug descriptor (single
input), while our model takes as input both a drug descriptor and
a sequence (dual input).

In this article, we propose GraphDTA, a new neural network
architecture capable of directly modeling drugs as molecular graphs,
and show that this approach outperforms state-of-the-art deep
learning models on two drug–target affinity prediction benchmarks.
The approach is based on the solution we submitted to the IDG-
DREAM Drug-Kinase Binding Prediction Challenge (https://www.
synapse.org/#!Synapse:syn15667962/wiki/583305), where we were
among the Top Ten Performers from 530 registered participants
(https://www.synapse.org/#!Synapse:syn15667962/wiki/592145). In
order to better understand how our graph-based model works, we
performed a multivariable statistical analysis of the model’s latent
space. We identified correlations between hidden node activations
and domain-specific drug annotations, such as the number of ali-
phatic OH groups, which suggests that our graph neural network
can automatically assign importance to well-defined chemical fea-
tures without any prior knowledge. We also examine the model’s
performance and find that a handful of drugs contribute dispropor-
tionately to the total prediction error, and that these drugs are inliers
(i.e. not outliers) in an ordination of the model’s latent space. Taken
together, our results suggest that graph neural networks are highly
accurate, abstract meaningful concepts, and yet fail in predictable
ways. We conclude with a discussion about how these insights can
feedback into the research cycle.

2 Materials and methods

2.1 Overview of GraphDTA
We propose a novel deep learning model called GraphDTA for
drug–target affinity (DTA) prediction. We frame the DTA predic-
tion problem as a regression task where the input is a drug–target
pair and the output is a continuous measurement of binding affinity
for that pair. Existing methods represent the input drugs and pro-
teins as 1D sequences. Our approach is different; we represent the
drugs as molecular graphs so that the model can directly capture the
bonds among atoms.

2.2 Drug representation
Simplified Molecular Input Line Entry System (SMILES) was
invented to represent molecules to be readable by computers
(Weininger, 1988), enabling several efficient applications, including
fast retrieval and substructure searching. From the SMILES code,
drug descriptors like the number of heavy atoms or valence electrons
can be inferred and readily used as features for affinity prediction.
One could also view the SMILES code as a string. Then, one could
featurize the strings with natural language processing (NLP) techni-
ques, or use them directly in a convolutional neural network
(CNN).

Instead, we view drug compounds as a graph of the interactions
between atoms, and build our model around this conceptualization.
To describe a node in the graph, we use a set of atomic features
adapted from DeepChem (Ramsundar et al., 2019). Here, each node
is a multi-dimensional binary feature vector expressing five pieces of
information: the atom symbol, the number of adjacent atoms, the
number of adjacent hydrogens, the implicit value of the atom, and
whether the atom is in an aromatic structure (Ramsundar et al.,
2019). We convert the SMILES code to its corresponding molecular
graph and extract atomic features using the open-source chemical
informatics software RDKit (Landrum, 2006).

2.3 Protein representation
One-hot encoding has been used in previous works to represent both
drugs and proteins, as well as other biological sequences like DNA
and RNA. This paper tests the hypothesis that a graph structure
could yield a better representation for drugs, and so only drugs were
represented as a graph. Although one could also represent proteins
as graphs, doing so is more difficult because the tertiary structure is
not always available in a reliable form. As such, we elected to use
the popular one-hot encoding representation of proteins instead.

For each target in the experimented datasets, a protein sequence
is obtained from the UniProt database using the target’s gene name.
The sequence is a string of ASCII characters which represent amino
acids. Each amino acid type is encoded with an integer based on its
associated alphabetical symbol [e.g. Alanine (A) is 1, Cystine (C) is
3, Aspartic Acid (D) is 4 and so on], allowing the protein to be repre-
sented as an integer sequence. To make it convenient for training,
the sequence is cut or padded to a fixed length sequence of 1000 res-
idues. In case a sequence is shorter, it is padded with zero values.

These integer sequences are used as input to the embedding
layers which return a 128-dimensional vector representation. Next,
three 1D convolutional layers are used to learn different levels of ab-
stract features from the input. Finally, a max pooling layer is applied
to get a representation vector of the input protein sequence.

2.4 Deep learning on molecular graphs
Having the drug compounds represented as graphs, the task now is
to design an algorithm that learns effectively from graphical data.
The recent success of CNN in computer vision, speech recognition
and natural language processing has encouraged research into graph
convolution. A number of works have been proposed to handle two
main challenges in generalizing CNN to graphs: (i) the formation of
receptive fields in graphs whose data points are not arranged as
Euclidean grids, and (ii) the pooling operation to down-sample a
graph. These new models are called graph neural networks.
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In this work, we propose a new DTA prediction model based on
a combination of graph neural networks and conventional CNN.
Figure 1 shows a schematic of the model. For the proteins, we use a
string of ASCII characters and apply several 1D CNN layers over
the text to learn a sequence representation vector. Specifically, the
protein sequence is first categorically encoded, then an embedding
layer is added to the sequence where each (encoded) character is rep-
resented by a 128-dimensional vector. Next, three 1D convolutional
layers are used to learn different levels of abstract features from the
input. Finally, a max pooling layer is applied to get a representation
vector of the input protein sequence. This approach is similar to the
existing baseline models. For the drugs, we use the molecular graphs
and trial four graph neural network variants, including GCN (Kipf
and Welling, 2017), GAT (Veli�ckovi�c et al., 2018), GIN (Xu et al.,
2019) and a combined GAT-GCN architecture, all of which we de-
scribe below.

2.4.1 Variant 1: GCN-based graph representation learning

In this work, we focus on predicting a continuous value indicating
the level of interaction of a drug and a protein sequence. Each drug
is encoded as a graph and each protein is represented as a string of
characters. To this aim, we make use of GCN model (Kipf and
Welling, 2017) for learning on graph representation of drugs. Note
that, however, the original GCN is designed for semi-supervised
node classification problem, i.e. the model learns the node-level fea-
ture vectors. For our goal, to estimate the drug-protein interaction, a
graph-level representation of each drug is required. Common techni-
ques to aggregate the whole graph feature from learned node

features include Sum, Average and Max Pooling. In our experi-
ments, the use of Max Pooling layer in GCN-based GraphDTA usu-
ally results in better performance compared to that of the remaining.

Formally, denote a graph for a given drug as G ¼ ðV;EÞ, where
V is the set of N nodes each is represented by a C-dimensional vector
and E is the set of edges represented as an adjacency matrix A. A
multi-layer graph convolutional network (GCN) takes as input a
node feature matrix X 2 RN�C(N ¼ jVj, C: the number of features
per node) and an adjacency matrix A 2 RN�N; then produces a
node-level output Z 2 RN�F(F: the number of output features per
node). A propagation rule can be written in the normalized form for
stability, as in Kipf and Welling (2017):

Hðlþ1Þ ¼ r ~D
�1

2 ~A ~D
�1

2HðlÞWðlÞ
� �

(1)

where ~A ¼ Aþ IN is the adjacency matrix of the undirected graph

with added self-connections, ~Dii ¼
P

i
~Aii; HðlÞ 2 RN�C is the ma-

trix of activation in the lth layer, Hð0Þ ¼ X, r is an activation func-
tion, and W is learnable parameters.

A layer-wise convolution operation can be approximated, as in
Kipf and Welling (2017):

Z ¼ ~D
�1

2 ~A ~D
�1

2XH (2)

where H 2 RC�F (F: the number of filters or feature maps) is the ma-
trix of filter parameters.

Note that, however, the GCN model learns node-level outputs
Z 2 RN�F. To make the GCN applicable to the task of learning a

Fig. 1. This figure shows the GraphDTA architecture. It takes a drug–target pair as the input data, and the pair’s affinity as the output data. It works in three stages. First, the

SMILES code of a drug is converted into a molecular graph, and a deep learning algorithm learns a graph representation. Meanwhile, the protein sequence is encoded and

embedded, and several 1D convolutional layers learn a sequence representation. Finally, the two representation vectors are concatenated and passed through several fully con-

nected layers to estimate the output drug–target affinity value
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representation vector of the whole graph, we add a global max pool-
ing layer right after the last GCN layer. In our GCN-based model,
we use three consecutive GCN layers, each activated by a ReLU

function. Then a global max pooling layer is added to obtain the
graph representation vector.

2.4.2 Variant 2: GAT-based graph representation learning

Unlike graph convolution, the graph attention network (GAT)
(Veli�ckovi�c et al., 2018) proposes an attention-based architecture to

learn hidden representations of nodes in a graph by applying a self-
attention mechanism. The building block of a GAT architecture is a
graph attention layer. The GAT layer takes the set of nodes of a

graph as input, and applies a linear transformation to every node by
a weigh matrix W. For each input node i in the graph, the attention
coefficients between i and its first-order neighbors are computed as

aðWxi;WxjÞ (3)

This value indicates the importance of node j to node i. These at-
tention coefficients are then normalized by applying a soft-max
function, then used to compute the output features for nodes as

rð
X

j2NðiÞ
aijWxjÞ (4)

where rð:Þ is a non-linear activation function and aij are the normal-
ized attention coefficients.

In our model, the GAT-based graph learning architecture
includes two GAT layers, activated by a ReLU function, then fol-
lowed a global max pooling layer to obtain the graph representation

vector. For the first GAT layer, multi-head-attentions are applied
with the number of heads set to 10, and the number of output fea-

tures set to the number of input features. The number of output fea-
tures of the second GAT is set to 128.

2.4.3 Variant 3: graph isomorphism network (GIN)

The GIN (Xu et al., 2019) is newer method that supposedly achieves
maximum discriminative power among graph neural networks.
Specifically, GIN uses a multi-layer perceptron (MLP) model to up-

date the node features as

MLPðð1þ �Þxi þ
X

j2BðiÞ
xiÞ (5)

where � is either a learnable parameter or a fixed scalar, x is the

node feature vector and B(i) is the set of nodes neighboring i.
In our model, the GIN-based graph neural net consists of five

GIN layers, each followed by a batch normalization layer. Finally, a
global max pooling layer is added to obtain the graph representation

vector.

2.4.4 Variant 4: GAT-GCN combined graph neural network

We also investigate a combined GAT-GCN model. Here, the graph

neural network begins with a GAT layer that takes the graph as in-
put, then passes a convolved feature matrix to the subsequent GCN
layer. Each layer is activated by a ReLU function. The final graph

representation vector is then computed by concatenating the global
max pooling and global mean pooling layers from the GCN layer

output.

2.5 Benchmark
To compare our model with the state-of-the-art DeepDTA (Öztürk

et al., 2018) and WideDTA (Öztürk et al., 2019) models, we use the
same datasets from the (Öztürk et al., 2018, 2019) benchmarks:

• Davis contains the binding affinities for all pairs of 72 drugs and

442 targets, measured as Kd constants and ranging from 5.0 to

10.8 (Davis et al., 2011).

• Kiba contains the binding affinities for 2116 drugs and 229 tar-

gets, measured as KIBA scores and ranging from 0.0 to 17.2

(Tang et al., 2014).

To make the comparison as fair as possible, we use the same set
of training and testing examples from Öztürk et al. (2018, 2019), as

well as the same performance metrics: Mean Square Error (MSE, the
smaller the better) and Concordance Index (CI, the larger the bet-
ter). For all baseline methods, we report the performance metrics as

originally published in Öztürk et al. (2018, 2019). The hyper-
parameters used for our experiments are summarized in Table 1.

The hyper-parameters were not tuned, but chosen a priori based on
our past modeling experience.

2.6 Model interpretation
The activation of nodes within layers of a deep neural network are

called latent variables, and can be analyzed directly to understand
how a model’s performance relates to domain knowledge (Le et al.,
2020). We obtained the 128 latent variables from the graph neural

network layer, and analyzed them directly through a redundancy
analysis. This multivariable statistical method allows us to measure

the percent of the total variance within the latent variables that can
be explained by an external data source. In our case, the external
data source is a matrix of 38 molecular JoeLib features/descriptors

(Wegner et al., 2004) for each drug [available from ChemMine
Tools (Backman et al., 2011)]. We also compare the value of the
principal components from these latent variables with the per-drug

test set error. Here, the per-drug (or per-protein) error refers to the
median of the absolute error between the predicted DTA and the

ground-truth DTA for all test set pairs containing that drug (or that
protein). For these analyses, we focus on the GIN model (Xu et al.,
2019) (because of its superior performance) and the Kiba dataset

(Tang et al., 2014) (because of its larger drug catalog).

3 Results and discussion

3.1 Graphical models outperform the state-of-the-art
Table 2 compares the performance of 4 variant GraphDTA models
with the existing baseline models for the Davis dataset. Here, all 4

variants had the lowest MSE. The best variant had an MSE of 0.229
which is 14.0% lower than the best baseline of 0.261. The improve-

ment is less obvious according to the CI metric, where only 2 of the
4 variants had the highest CI. The best CI for a baseline model was
0.886. By comparison, the GAT and GIN models achieved a CI of

0.892 and 0.893, respectively.
Table 3 compares the performance of the GraphDTA models

with the existing baseline models for the Kiba dataset. Here, 3 of the
4 variants had the lowest MSE and the highest CI, including GIN,

GCN and GAT-GCN. Of note, the best MSE here is 0.139, which is
28.8% lower than the best baseline of 0.179. Of all variants tested,
GIN is the only one that had the best performance for both datasets

and for both performance measures. For this reason, we focus on
the GIN in all post hoc statistical analyses.

Table 1. Hyper-parameters for different graph neural network var-

iants used in our experiments

Hyper-parameters Setting

Learning rate 0.0005

Batch size 512

Optimizer Adam

GCN layers 3

GIN layers 5

GAT layers 2

GAT_GCN layers 2
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3.2 Graphical models discover known drug properties
A graph neural network works by abstracting the molecular
graph of each drug into a new feature vector of latent variables.
In our model, there are 128 latent variables which together
characterize the structural properties of the drug. Since the la-
tent variables are learned during the DTA prediction task, we
assume that they represent graphical features that contribute
meaningfully to DTA.

Unfortunately, it is not straightforward to determine the molecu-
lar sub-structures to which each latent variable corresponds.
However, we can regress the learned latent space with a matrix of
known molecular descriptors to look for overlap. Figure 2 shows a
redundancy analysis of the 128 latent variables regressed with 38
molecular descriptors (Wegner et al., 2004) [available from
ChemMine Tools (Backman et al., 2011)]. From this, we find that
20.19% of the latent space is explained by the known descriptors,
with the ‘Number of aliphatic OH groups’ contributing most to the
explained variance. Indeed, two latent variables correlate strongly
with this descriptor: hidden nodes V58 and V14 both tend to have
high activation when the number of aliphatic OH groups is large.
This finding provides some insight into how the graphical model
might ‘see’ the drugs as a set of molecular sub-structures, though
most of the latent space is orthogonal to the known molecular
descriptors.

3.3 A few drugs contribute disproportionately to total

error
Although the GraphDTA model outperforms its competitors, we
wanted to know more about why its predictions sometimes failed.
For this, we averaged the prediction error for each drug (and each
protein), for both the Davis and Kiba test sets. Figures 3 and 4 show
the median of the absolute error (MAE) for affinity prediction,
sorted from smallest to largest. Interestingly, we see that a handful
of drugs (and a handful of proteins) contribute disproportionately to
the overall error. Of note, CHEMBL1779202 (an ALK inhibitor),
CHEMBL1765740 (a PDK1 inhibitor) and the protein CSNK1E all
had an MAE above 2.

We examined the latent space with regard to the prediction
error, but could not find any obvious pattern that separated hard-to-
predict drugs from easy-to-predict drugs. The only trend we could
find is that the easy-to-predict drugs are more likely to appear as
outliers in a PCA of the latent space. Supplementary Figure S1
(https://github.com/thinng/GraphDTA/blob/master/supplement.pdf)
shows the median errors plotted against the first six principal com-
ponents, where we see that the hard-to-predict drugs usually appear
close to the origin. We interpret this to mean that drugs with unique
molecular sub-structures are always easy to predict. On the other
hand, the hard-to-predict drugs tend to lack unique structures,
though this is apparently true for many easy-to-predict drugs too.

Table 2. Prediction performance on the Davis dataset, sorted by MSE

Method Protein rep. Compound rep. CI MSE

Baseline models

DeepDTA (Öztürk et al., 2018) Smith-Waterman Pubchem-Sim 0.790 0.608

DeepDTA (Öztürk et al., 2018) Smith-Waterman 1D 0.886 0.420

DeepDTA (Öztürk et al., 2018) 1D Pubchem-Sim 0.835 0.419

KronRLS (Cichonska et al., 2017, 2018) Smith-Waterman Pubchem-Sim 0.871 0.379

SimBoost (He et al., 2017) Smith-Waterman Pubchem-Sim 0.872 0.282

DeepDTA (Öztürk et al., 2018) 1D 1D 0.878 0.261

WideDTA (Öztürk et al., 2019) 1D þ PDM 1D þ LMCS 0.886 0.262

Proposed method—GraphDTA

GCN 1D Graph 0.880 0.254

GAT_GCN 1D Graph 0.881 0.245

GAT 1D Graph 0.892 0.232

GIN 1D Graph 0.893 0.229

Note: Baseline results are from Öztürk et al. (2018, 2019). We compare four graph neural network variants: GIN (Xu et al., 2019), GAT (Veli�ckovi�c et al.,

2018), GCN (Kipf and Welling, 2017) and combined GAT-GCN (Kipf and Welling, 2017; Veli�ckovi�c et al., 2018). Italics: best for baseline models, bold: better

than baselines.

Table 3. Prediction performance on the Kiba dataset, sorted by MSE

Method Protein rep. Compound rep. CI MSE

Baseline models

DeepDTA (Öztürk et al., 2018) 1D Pubchem-Sim 0.718 0.571

DeepDTA (Öztürk et al., 2018) Smith-Waterman Pubchem-Sim 0.710 0.502

KronRLS (Cichonska et al., 2017, 2018) Smith-Waterman Pubchem-Sim 0.782 0.411

SimBoost (He et al., 2017) Smith-Waterman Pubchem-Sim 0.836 0.222

DeepDTA (Öztürk et al., 2018) Smith-Waterman 1D 0.854 0.204

DeepDTA (Öztürk et al., 2018) 1D 1D 0.863 0.194

WideDTA (Öztürk et al., 2019) 1D þ PDM 1D þ LMCS 0.875 0.179

Proposed method—GraphDTA

GAT 1D Graph 0.866 0.179

GIN 1D Graph 0.882 0.147

GCN 1D Graph 0.889 0.139

GAT_GCN 1D Graph 0.891 0.139

Note: Baseline results are from Öztürk et al. (2018, 2019). We compare four graph neural network variants: GIN (Xu et al., 2019), GAT (Veli�ckovi�c et al.,

2018), GCN (Kipf and Welling, 2017) and combined GAT-GCN (Kipf and Welling, 2017; Veli�ckovi�c et al., 2018). Italics: best for baseline models, bold: better

than baselines.
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3.4 Model interpretation and the research cycle
Knowing how a model works and when a model fails can feedback
into the research cycle. In the post hoc statistical analysis of our
model, we find that a graph neural network can learn the import-
ance of known molecular descriptors without any prior knowledge.
However, most of the learned latent variables remain unexplained

by the available descriptors. Yet, the model’s performance implies
that these learned representations are useful in affinity prediction.
This suggests that there are both similarities and differences in how
machines ‘see’ chemicals versus how human experts see them.
Understanding this distinction may further improve model perform-
ance or reveal new mechanisms behind drug–target interactions.

Fig. 2. The left panel of the figure shows a redundancy analysis triplot for the 128 drug latent variables regressed with 38 JoeLib molecular descriptors (Wegner et al., 2004).

The blue dots represent drugs, the green dots represent latent variables (the 6 furthest from origin are labelled) and the arrows represent molecular descriptors (the 5 longest

are labelled). The right panel of the figure shows the activation of two latent variables plotted against the number of aliphatic OH groups in that drug. These results suggest

that the graph convolutional network can abstract known molecular descriptors without any prior knowledge

Fig. 3. This figure shows the median of the absolute error for each drug, sorted in increasing order, for the Davis and Kiba test sets. Here, we see that the errors are not distrib-

uted evenly across the drugs. It is harder to predict the target affinities for some drugs than others
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Meanwhile, the distribution of the test set errors suggest that
there are ‘problem drugs’ (and ‘problem proteins’) for which predic-
tion is especially difficult. One could action this insight either by col-
lecting more training data for these drugs (or proteins), or by using
domain-knowledge to engineer features that complement the mo-
lecular graphs. Indeed, knowing that the PCA outliers are the easiest
to predict suggests that some additional feature input may be needed
to differentiate between drugs that lack distinct molecular sub-
graphs. Although 2D graphs contain more information than 1D
strings, our model still neglects the stereochemistry of the molecules.
Future experiments could test whether representing drugs in 3D (or
proteins in 2D) further improves model performance.

Interestingly, under-representation of proteins in the training set
does seem to be the reason for the ‘problem proteins’.
Supplementary Material (https://github.com/thinng/GraphDTA/
blob/master/supplement.pdf) shows an analysis of the effect of hom-
ologous proteins on test set performance. Although we see that test
set error varies across clustered protein groups, the training set rep-
resents all protein clusters equally well. This suggests that the vari-
ation in test set performance is not simply explained by
asymmetrical representation of protein groups within the
training set.

4 Summary and future work

We test GraphDTA with four graph neural network variants,
including GCN, GAT, GIN and a combined GAT-GCN architec-
ture, for the task of drug–affinity prediction. We benchmark the per-
formance of these models on the Davis and Kiba datasets. We find
GraphDTA performs well for two separate benchmark datasets and
for two key performance metrics. In a post hoc statistical analysis of
our model, we find that GraphDTA can learn the importance of
known molecular descriptors without any prior knowledge. We also
examine the model’s performance and find that a handful of drugs
contribute disproportionately to the total prediction error. Although
we focus on drug–target affinity prediction, our GraphDTA model
is a generic solution for any similar problem where either data input
can be represented as a graph.

It may be possible to improve performance further by represent-
ing proteins as graphs too, for example by a graph of their 3D struc-
ture. However, determining the 3D structure of a target protein is
very challenging. We chose to use the primary protein sequence be-
cause it is readily available. The use of 1D sequences, instead of 3D
structures, also reduces the number of parameters that we need to
learn, making it less likely that we over-fit our model to the training

data. Still, for some problem applications, it may make sense to use
structural information, as well as binding site, binding confirmation,
and solution environment information, to augment the model.
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