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Sequence-based prediction of drug–target interactions has the potential to accelerate
drug discovery by complementing experimental screens. Such computational prediction
needs to be generalizable and scalable while remaining sensitive to subtle variations
in the inputs. However, current computational techniques fail to simultaneously
meet these goals, often sacrificing performance of one to achieve the others. We
develop a deep learning model, ConPLex, successfully leveraging the advances in
pretrained protein language models (“PLex”) and employing a protein-anchored
contrastive coembedding (“Con”) to outperform state-of-the-art approaches. ConPLex
achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy
compounds. It makes predictions of binding based on the distance between learned
representations, enabling predictions at the scale of massive compound libraries and
the human proteome. Experimental testing of 19 kinase-drug interaction predictions
validated 12 interactions, including four with subnanomolar affinity, plus a strongly
binding EPHB1 inhibitor (KD = 1.3 nM). Furthermore, ConPLex embeddings are
interpretable, which enables us to visualize the drug–target embedding space and use
embeddings to characterize the function of human cell-surface proteins. We anticipate
that ConPLex will facilitate efficient drug discovery by making highly sensitive in
silico drug screening feasible at the genome scale. ConPLex is available open source at
ConPLex.csail.mit.edu.
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In the drug discovery pipeline, a key rate-limiting step is the experimental screening
of potential drug molecules against a protein target of interest. Thus, fast and accurate
computational prediction of drug–target interactions (DTIs) could be extremely valuable,
accelerating the drug discovery process. One important class of computational DTI
methods, molecular docking, uses 3D structural representations of both the drug and
target. While the recent availability of high-throughput accurate 3D protein structure
prediction models (1–3) means that these methods can be employed starting only from
a protein’s amino acid sequence, the computational expense of docking (4) and other
structure-based approaches [e.g., rational design (5), active site modeling (6), template
modeling (7, 8)] unfortunately remains prohibitive for large-scale DTI screening. An
alternative class of DTI prediction methods use 3D structure only implicitly, making
rapid DTI predictions when the inputs consist only of a molecular description of the
drug [such as the SMILES string (9)] and the amino acid sequence of the protein
target. This class of sequence-based DTI approaches enables scalable DTI prediction,
but there have been barriers to matching the levels of accuracy obtained by structure-based
approaches.

In this paper, we introduce ConPLex, a rapid purely sequence-based DTI prediction
method that leverages rich featurizations from pretrained protein language models
(PLMs) and show that it can produce state-of-the-art performance on the DTI prediction
task at scale. The advance provided by ConPLex comes from two main ideas that
together overcome some of the limitations of previous approaches: informative PLM-
based representations and contrastive learning. While many methods have been proposed
for the sequence-based setting of the DTI problem (10) [e.g., using secure multiparty
computation (11), convolutional neural networks (12), or transformers (13)], their
protein and drug representations are constructed solely from DTI ground truth data.
The high level of diversity among the DTI inputs, combined with the limited availability
of DTI training data, limits the accuracy of these methods and their generalizability
beyond their training domain. Furthermore, the methods that do generalize often do so
by sacrificing fine-grained specificity, i.e., are unable to distinguish true-positive binding
compounds from false positives with similar physicochemical properties (“decoys”).
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In contrast, the “PLex” (Pretrained Lexicographic) part of
ConPLex helps alleviate the problem of limited DTI training
data. As we showed in our preliminary work (14), one way to
get around the limited size of DTI datasets that has hampered
the quality of the representations learned by previous methods
is to transfer learned proteins representations from pretrained
PLMs to the DTI prediction task. PLMs learn the distribu-
tional characteristics of amino acid sequences over millions
of proteins in an unsupervised fashion, generating sequence-
based representations that encode deep structural insights. A
design paradigm in machine learning is that an informative
featurization of the input can enhance the power of even simple
models. For DTI, where task-specific data are limited, using
PLM-generated representations as the input features allows us to
borrow strength from the much larger corpus of single protein
sequences (14). Starting with the PLMs, our second insight
directly addresses the fine-grained specificity problem in our
architecture by using the “Con” (Contrastive learning) part:
a protein-anchored contrastive coembedding that colocates the
proteins and the drugs into a shared latent space. We show that
this coembedding enforces separation between true interacting
partners and decoys to achieve both broad generalization and
high specificity (Fig. 2).

Putting these two ideas together gives us ConPLex, a represen-
tation learning approach that enables both broad generalization
and high specificity. We show that ConPLex enables more
accurate prediction of DTIs than competing methods while
avoiding many of the pitfalls suffered by currently available
approaches. Thus, our work constitutes a concrete demonstration
of the power of a well-designed transfer learning approach
that adapts foundation models for a specific task (15, 16). In
particular, we found that the performance of existing sequence-
based DTI prediction methods could be sensitive to variation
in drug-vs-protein coverage in the dataset, whereas ConPLex
performs well in multiple coverage regimes. Indeed, ConPLex
performs especially well relative to other methods in the zero-
shot prediction setting where no information is available about a
given protein or drug at training time. Experimental validation
of ConPLex yielded a 63% hit rate (12/19), including four
hits with subnanomolar binding affinity, demonstrating the
value of ConPLex as an accurate, highly scalable, in silico
screening tool.

ConPLex can also be adapted beyond the binary case to
make predictions about binding affinity. Furthermore, the shared
representation also offers advantages beyond prediction accuracy.
The coembedding of both proteins and drugs in the same
space offers intepretability, and we show that distances in this
space meaningfully reflect protein domain structure and binding
function: We leverage ConPLex representations to functionally
characterize cell-surface proteins from the Surfaceome database
(17), a set of 2,886 proteins localized to the external plasma
membrane that participate in signaling and are likely able to be
easily targeted by ligands.

ConPLex is extremely fast: As a proof of concept, we
make predictions for the human proteome against all drugs in
ChEMBL (18) (u2 ×1010 pairs) in just under 24 h using a
single NVIDIA A100 GPU. Thus, ConPLex has the potential to
be applied for tasks which would require prohibitive amounts
of computation for purely structure-based approaches or less
efficient sequence-based methods, such as genome-scale side-
effect screens, identifying drug repurposing candidates via mas-
sive compound libraries searches or in silico deep mutational scans
to predict variant effects on binding with currently approved or
potential new therapeutics. We note that most DTI methods

require significant computation on each drug–target pair (i.e.,
have quadratic time complexity). Because ConPLex predictions
rely only on the distance in the shared space, predictions can be
made highly efficiently once embeddings (which have linear time
complexity) are computed.

Distinguishing between Low- and High-Coverage DTI Predic-
tion. We benchmark performance of ConPLex and competing
methods in two different regimes, which we term low-coverage
and high-coverage DTI prediction (Fig. 1C ). We show that
ConPLex outperforms its competitors in both settings, but note
that separating the two regimes helps clarify an often-seen issue in
the field: methods whose performance varies substantially across
different proposed DTI benchmarks. Several prior attempts have
been made to standardize DTI benchmarking and develop a
consistent framework for model evaluation (19, 20). However,
much of this work has overlooked a key aspect of benchmarking
that we find to significantly affect model performance—differing
per-biomolecule data coverage. We define coverage as the average
proportion of drugs or targets for which a data point exists in
that dataset, whether that is a positive or negative interaction
(Methods). Depending on the per-biomolecule data coverage of
the benchmark dataset, we claim that these benchmarks are
looking at very different problems. In particular, low-coverage
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Fig. 1. Drug-target interaction benchmarks display highly variable levels of
coverage. Coverage is defined as the proportion of drugs or targets for which
a data point (positive or negative) exists in that dataset. High- vs. low-coverage
benchmarks tend to reward different types of model performance. (A) In this
cartoon of an example low coverage dataset, drug candidates cover the full
diversity of the space, and no two drugs are highly similar. A successful model
can learn a coarse estimate of the fitness landscape, but must accurately
model a large part of drug space to generalize to all candidates. (B) For high-
coverage datasets, drugs tend to be targeted to a specific protein family.
Thus, a successful model does not need to generalize nearly as widely but
must be able to capture more minor variations in drug fitness to achieve
high specificity and differentiate between similar drugs. (C) In a review of
existing popular DTI benchmark datasets, we find widely varying coverage,
from datasets with nearly zero coverage (each drug/target is represented
only a few times) to nearly full coverage (all drug-by-target pairs are known
in the data).
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datasets (Fig. 1A) tend to measure the broad strokes of the
DTI landscape, containing a highly diverse set of drugs and
targets. Such datasets can present a modeling challenge due
to the diverse nature of targets covered but allow for a broad
assessment of compatibility between classes of compounds and
proteins. High-coverage datasets (Fig. 1B) represent the opposite
trade-off: They contain limited diversity in drug or target type
but report a dense set of potential pairwise interactions. Thus,
they capture the fine-grained details of a specific subclass of
drug–target binding and enable distinguishing between similar
biomolecules in a particular context.

The two coverage regimes correspond to different usage cases.
The low-coverage regime is relevant when applying DTI models
for large-scale scans to predict interactions for a potential target
against a large compound library [e.g., for drug repurposing as
in Dönertaş et al. (21) and Morselli et al. (22)] or for scanning
a candidate drug against an entire proteome to identify potential
adverse and off-target effects [as in Huang et al. (23, 24)]. Data
at this scale are often low coverage, with only a small number
of known interactions for each unique biomolecule. Thus, it
is important that DTI models used for these tasks are broadly
applicable and can accurately generalize to many different families
of proteins and drugs. However, this generalization often comes
at the cost of specificity, resulting in models that are unable to
distinguish between highly similar drugs or proteins.

The high-coverage regime is relevant when optimizing a
particular interaction. Here, models can be trained to be highly
specific to a protein family or class of drugs, so much so that
a per-drug or per-target model is trained to capture the precise
binding dynamics of that biomolecule (25). While such models
can be effective for lead optimization, they require high coverage
on the biomolecule of interest to make accurate predictions;
this may not always be available. Additionally, such models lack
the capacity to generalize beyond the training domain and thus
cannot be used for genome- or drug bank-scale prediction.

The PLM approach of ConPLex enables strong performance
in both regimes. In the low coverage regime, the strength is
coming mostly from the “PLex” part, where it can leverage the
effective generalization of language models to achieve state-of-
the-art performance. On high-coverage datasets, the “Con” part
also becomes important, since it becomes feasible to train drug- or
target-specific models with high accuracy, and such models often
outperform more generic models. We find that while single-task
models do perform well given available data, ConPLex is able to
achieve extremely high specificity in low-diversity, high-coverage
scenarios, while remaining broadly applicable to protein targets
with limited data. Thus, ConPLex is applicable for both large-
scale compound or target screens and fine-grained, highly specific
binding prediction. We discuss the issue of matching the right

model to the problem domain with respect to coverage further
in the Discussion.

Results

Model Overview. To achieve both generalizability and specificity,
ConPLex leverages advances in both protein language modeling
and metric learning. We start with pretrained representations
and learn a nonlinear projection of these representations to a
shared space (Rdh ). We guide the learning by alternating between
two objectives over multiple iterations: a coarse-grained objective
of accurately classifying DTIs and a fine-grained objective of
distinguishing decoys from drugs. The coarse-grained objective
is evaluated over a low-coverage dataset, which trains the model
to distinguish between broad classes of drug and target and
makes initial predictions in the right “neighborhood” of the DTI
space. The fine-grained objective is evaluated over a high-coverage
dataset, which fine-tunes the model to distinguish between true
and false positive interactions in the same “neighborhood” and
achieve high specificity within a class.

To featurize the inputs, here, we use the Morgan fingerprint
(26) for small molecules and embeddings from a pretrained
ProtBert model (27) for proteins. We investigate other choices for
features, including several other foundation PLMs in SI Appendix,
S2. We note that our framework is flexible to different methods
of featurization and make recommendations on the selection of
informative representations in the Discussion.

ConPLex Achieves State-of-the-Art Performance on Low-
Coverage and Zero-Shot Interactions. A key advance of Con-
PLex is the use of pretrained PLMs for protein representation. As
foreshadowed by Scaiewicz and Levitt (28), PLMs have repeatedly
been shown to encode evolutionary and structural information
(29–31) and to enable broad generalization in low-coverage
scenarios (32, 33). Here, we show that ConPLex achieves state-of-
the-art performance on three low-coverage benchmark datasets—
BIOSNAP, BindingDB, and DAVIS—where it is important to
learn the broad strokes of the DTI landscape. In Table 1, we show
the average area under the precision–recall curve (AUPR) over
five random initializations of each model evaluated on a held-
out test set (Methods). Here, we compare with several methods
which use non-PLM protein features: MolTrans (13), GNN-
CPI (34), and DeepConv-DTI (12). In addition, we compare to
the EnzPred-CPI model from Goldman et al. (25) (developed
simultaneously and independently), which uses a PLM for
protein featurization but does not perform a coembedding or
utilize a contrastive training step. Finally, we compare with the
single-task Ridge regression model described in ref. 25, which

Table 1. ConPLex is highly accurate and generalizes broadly in low coverage settings
Dataset ConPLex EnzPred-CPI MolTrans GNN-CPI† DeepConv-DTI† Ridge

BIOSNAP 0.897 ± 0.001 0.866± 0.003 0.885± 0.005 0.890± 0.004 0.889± 0.005 0.641± 0.000
BindingDB 0.628 ± 0.012 0.602± 0.006 0.598± 0.013 0.578± 0.015 0.611± 0.015 0.516± 0.000
DAVIS 0.458 ± 0.016 0.277± 0.009 0.335± 0.017 0.269± 0.020 0.299± 0.039 0.320± 0.000

Unseen Drugs 0.874 ± 0.002 0.844± 0.005 0.863± 0.005 – 0.847± 0.009 N/A
Unseen Targets 0.842 ± 0.006 0.795± 0.004 0.668± 0.045 – 0.766± 0.022 0.617± 0.000

ConPLex outperforms several state-of-the-art methods, including EnzPred-CPI (25), MolTrans (13), GNN-CPI (34), and DeepConv-DTI (12), as well as a simple single-target Ridge regression
model, on several low- and zero- coverage benchmark datasets. We report the average and SD of the area under the precision–recall curve (AUPR) for 5 random initializations of each
model. Metrics for models with † are taken from ref. 13. Ridge regression cannot be applied for the Unseen Drugs dataset since a separate model is trained for each drug in the
training set.
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trains a different model per drug rather than a single model for
the entire benchmark.

Observing the strength of ConPLex to generalize on low-
coverage data, we sought to evaluate its performance on fully zero-
shot prediction. Unseen drugs and Unseen targets are variants
of the BIOSNAP dataset where drugs/targets in the test set do not
appear in any interactions in the training set (Methods). Note that
for the unseen drugs setting, the Ridge model cannot be applied
since a different model must be trained for each drug that appears
in the training set. We show that ConPLex achieves the best zero-
shot prediction performance (Table 1), further demonstrating
the applicability of the model to large-scale, very low-coverage
prediction tasks.

Contrastive Learning Enables High-Specificity DTI Mapping.
Another key advance of our method is the use of contrastive
learning to fine-tune model predictions on high-coverage data
to achieve high specificity. Recently, Heinzinger et al. (35)
demonstrated the use of semisupervised contrastive learning for
effective protein embedding-based annotation transfer. Here,
we adapt contrastive learning to a fully supervised setting
and demonstrate that the contrastive training is essential to
achieving specificity using DTI pairs from the Database of
Useful Decoys (DUD-E) (36). The DUD-E dataset contains
57 protein targets and drugs which are known to interact with
each target. However, it also contains 50 negative “decoy” small
molecules for each drug, which have similar physicochemical
properties to the truly interacting small molecule but are known
to not bind the target. Thus, accurate prediction on DUD-E
requires a model to achieve high specificity and to accurately
differentiate between highly similar compounds. Additionally,
DUD-E contains four different classes of targets—G-protein-
coupled receptors (GPCRs), kinases, proteases, and nucleases—
so models must generalize across target classes (note that single
task models do not have this generalization requirement since a
different model is trained per target).

We derive evaluation sets from DUD-E by holding out 50%
of proteins in each target class for testing and using the remaining
targets for training (full splits are specified in SI Appendix, S1).
Here, we evaluate a ConPLex model trained on BIOSNAP, both
with and without contrastive training on DUD-E, and show that
contrastive training is essential to achieving specificity on decoys.

For each target in the DUD-E test set, we use t-SNE to visualize
the target alongside all drugs and decoys using embeddings
learned by both versions of the model. Fig. 3 A and B shows
one such example, the tyrosine kinase VGFR2. We also show the
distribution of distances in the latent space between the target
embedding and the embeddings of the drugs and decoys for each
model (Fig. 3 C and D) (P-values from the one-sided t test).
Without contrastive training, drugs are interspersed with decoys
and are far away in space from the target, while ConPLex clusters
most true drugs very close to both each other and the VGFR2
embedding.

In Fig. 3E, we show a quantitative analysis of all 31 test-set
targets. We compute the effect size (Cohen’s d ) of the difference
between predicted drug and decoy scores. We plot these effect
sizes for ConPLex trained with and without contrastive training.
An increase in the effect size indicates that the coembedding
distances learned by the model better represent binding speci-
ficity. The effect size increases for every target, and the median
effect size between predicted true and decoy compound scores
was 0.730 prior to contrastive training compared to 4.716 after.
For each class of targets, we also report the median P-value
(one-sided t test) between drug and decoy scores predicted by
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Fig. 2. Outline of the ConPLex model architecture and training framework.
ConPLex is trained in two phases, to optimize both generalizability and
specificity. (A) Protein features are generated using a pretrained PLM [here
ProtBert (27)], and drug features are generated using the Morgan fingerprint
(26). These features are transformed into a shared latent space by a
learned nonlinear projection. The prediction of interaction is based on the
cosine distance in this space, and the parameters of the transformation are
updated using the binary cross-entropy on a low-coverage dataset. (B) In the
contrastive phase, triplets of a target, drug, and decoy are transformed in
the same way into the shared space. Here, the transformation is treated as a
metric learning problem. Parameters are updated using the triplet distance
loss on a high-coverage dataset (36) to minimize the target-drug distance
while maximizing the target-decoy distance. No additional penalty is applied
if the target-decoy distance is greater than the target-drug distance plus
some margin. (C) ConPLex is trained in alternating epochs of the binary
and contrastive phase to simultaneously optimize both objectives. After each
round, learning rates and the contrastive margin are updated according to
an annealing scheme.

ConPLex. While contrastive training has an extremely large
impact on specificity in high-coverage domains, we also show
that this additional training does not significantly decrease the
model performance on low-coverage benchmarks via an ablation
study in SI Appendix, S3.

In addition to evaluation on DUD-E, we also evaluate
ConPLex on five benchmark datasets derived from family-
specific enzyme–substrate screens (Methods). These datasets are
extremely high coverage, generally including data points for all
possible pairs of drugs and targets. We find that in this regime,
ConPLex and other PLM-based models like EnzPred-CPI have
strong but highly variable performance and are still generally
outperformed by a Ridge regression model (SI Appendix, S5) as
shown previously in ref. 25. However, a fine-scale single-task
model is limited in its generalizability beyond the enzyme family
on which it was trained (Discussion).

ConPLex Discovers DTIs with Subnanomolar Binding Affinity.
Since ConPLex exhibited strong performance on several
benchmark datasets, we next sought to experimentally validate
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Fig. 3. Contrastive training enables high specificity in discriminating drugs from decoys. We demonstrate that contrastive learning is essential for ConPLex
to achieve high specificity using the DUD-E (36) dataset of drugs and decoys (nonbinding small molecules with similar physicochemical properties to the true
drugs). (A and B) Using t-SNE, we show the learned ConPLex latent space for VGFR2 (green) and known drugs (blue) and decoys (gray). Without contrastive
training, drug and decoy representations do not separate, and true drugs are far from their target. With contrastive training, VGFR2 and drugs cluster very
tightly compared to decoys. (C and D) ConPLex predictions significantly differentiate between drugs and decoys after contrastive training (P = 0.000 paired t
test) but do not differ at all without such training (P = 0.999). (E) We compute the effect size between drug and decoy predictions using Cohen’s d for all 31
targets in the test set. Targets are classified as proteases (green), GPCRs (orange), kinases (blue), and nuclear proteins (red). This effect is computed for ConPLex
both with and without contrastive training. Contrastive training increases the effect size for every target (median 0.730 vs. 4.716). For each class, we report the
median P-value for ConPLex drug vs. decoy predictions. ConPLex performs particularly well for kinases and nuclear proteins and more poorly for GPCRs.

predictions using an in vitro biochemical binding assay. We
selected 51 kinases from the Surfaceome database (17) with
commercially available assays from the DiscoveryX company and
used ConPLex to scan against a set of 4715 compounds from the
ZINC database (37) purchasable from the Cayman Chemical
Company (Methods) (38). We selected 19 interactions spanning
5 kinases and 14 compounds in an unbiased manner. (These pairs
were chosen based solely on top scoring ConPLex predictions,
without any use of prior knowledge from experimental results
or in the literature.) We determined KD values for each of the
19 interactions (Table 2), finding that 12/19 pairs tested had
KD values less than 100 nM. Of these, four bound with sub-
nanomolar affinity, all of which recapitulate known interactions
in the literature. Weglicki et al. identified AG-1478 as an EGFR
inhibitor but noted that its therapeutic use may be limited due
to triggering hypomagnesemia and cardiac dysfunction (39).
Sordella et al. (40) described the downstream impact in lung

cancer when Gefitinib inhibits EGFR. In a review of Nintedanib
discovery, Roth et al. (41) noted it as an FLT3 inhibitor, and
Wang et al. (42) described Linifanib inhibition of FLT3.

We also identify an interaction between EPHB1 and PD-
166326 with nearly subnanomolar affinity (KD = 1.30).
Wolff et al. (43) previously identified PD-166326 as a tyrosine-
kinase inhibitor but did not report any binding to EPHB1, and
DrugBank (44) lists only ABL1 as a known target (DrugBank
ID: DB08339). EPHB1 has been implicated in chronic pain
(45, 46); at the time of publication, there are no known
inhibitors of EPHB1 listed in the Protein Kinase Inhibitor
Database (PKIDB) (47), and our findings indicate that PD-
166326 may act as a binder toEPHB1. Future work could involve
further characterization of this interaction, its impact on EPHB1
function, and possible therapeutic outcomes. In Fig. 4B, we show
that PD-166326 is the only compound from our screen close to
EPHB1 in coembedding space.
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Table 2. We selected and tested 19 potential binding in-
teractions, where the selection of tests was done based
solely on ConPLex-predicted interaction and without
consulting previous experiments or literature

EGFR EPHB1 FLT3 KIT TGFBR2

AG-1478 0.33∗ – – – –
Gefitinib 0.60∗ – – – –
Janex 1 26.00 – – – –
SB-431542 >1e4 – – – –
AG-1296 >1e4 – 62.00 27.00 –
ZM 447439 >1e4 – – >1e4 –
PD-166326 – 1.30 – – –
Nintedanib – – 0.17∗ – –
Linifanib – – 0.72∗ 1.70 –
Sorafenib – – 7.20 36.00 –
Imatinib – – – 6.00 –
Wortmannin – – – – >1e4
Pluripotin – – – – >1e4
Monorden – – – – >1e4

We determined the KD values for each interaction via an in vitro biochemical assay
(Methods), and we show here the KD in nM units. Twelve exhibited binding affinity in the
nanomolar range, including four (denoted with *) binding with subnanomolar affinity. The
only target for which we incorrectly predicted there would be hits was TGFBR2, which has no
known inhibitors in PKIDB (47), suggesting that it may be difficult to target. We recapitulate
several known interactions (Results) and find a tightly binding interaction between EPHB1
and PD 166326 (bold), which to our knowledge has not been previously characterized.

Notably, all three of the compounds that we predicted
to interact with TGFBR2 were false positives (Wortmannin,
Pluripotin, and Monorden). Despite its significance in cancer
signaling (48), there are no known inhibitors of TGFBR2 in
PKIDB, suggesting that it may be difficult to target via small-
molecule drugs.

Additionally, we found that ConPLex predictions were
well calibrated. Using varying thresholds, we can compute a
precision–recall curve (over 19 data points, AUPR = 0.91).
For high-precision screening, we recommend using a ConPLex-
predicted threshold of 0.923 (SI Appendix, S7).

Incorporating Drug Binding Information Improves Protein
Representations. One of the advantages of the coembedding
approach that our model takes is the ability to visualize and
investigate the shared embedding space. For instance, we show
in Fig. 4 A–C that kinases and their inhibitors tend to
colocalize within the space. Seeking to expand our analysis,
we subsequently mapped all 2,716 predicted surface proteins
from the Surfaceome database into ConPLex embedding space
and investigated their representations. In Fig. 4D, we show the
projections all Surfaceome proteins, colored by their classification
into one of five functional categories [from Almén et al. (49)]—
transporters, receptors, enzymes, miscellaneous, and those that
are unclassified. ConPLex projections of surface proteins cluster
in embedding space by functional type, with transporters and
receptors especially separating from other classes.

However, the Almén functional classification is quite broad
and may group proteins with vastly different functions and
binding properties. We further demonstrate the link between
ConPLex projections and protein function, by evaluating how
the learned DTI embedding space separates proteins by domains
contained therein. We identified Pfam domains (50) for each
protein in the Surfaceome database using HMMscan (51) and
compared the projections of proteins that share the same
domains. We identified 780 unique domains across all proteins,
of which 126 domains were represented in at least 10 proteins. To
quantitatively evaluate the coherence of ConPLex embeddings,

we trained separate logistic regression classifiers for each domain
to separate proteins with that domain from others and used
the model’s confidence (log( p

1−p )) for in-sample proteins as a
measure of separation for the domain. We find that for all 126
domains, the model more confidently discriminated domains
when trained on ConPLex representations than the baseline
ProtBert embeddings.

Fig. 4F shows the change in confidence scores for all 126
domains, where the dotted line represents equal confidence using
either ConPLex or ProtBert. We find that prediction of all
domains was improved using ConPlex. However, proteins with
kinase domains (PF14575, PF01404, PF00069, and PF07714)
separated especially well, whereas 7-transmembrane (7TM) do-
mains characteristic of GPCRs (PF00001, PF00002, PF00003,
and PF13853) showed more modest improvement (SI Appendix,
S6). In Fig. 4E, we show the same visualization of projections as
in Fig. 4D but colored by another top-differentiated domain,
PKinase (PF00069). As discussed previously, ConPLex was
trained contrastively with several kinase targets and excels at
kinase prediction on DUD-E (Fig. 3E), so it is unsurprising
that proteins with these domains separate well. In fact, one
of the top differentiated domains is the Ephrin ligand binding
domain (PF01404), which is responsible for binding to the ephrin
ligand (52). While the model was also trained contrastively with
7TM GPCR targets, many fewer training data samples were
available. In addition to the dearth of training examples, GPCRs
are less soluble than kinases and tend to exhibit more dynamic
behavior—all of which contribute to difficulty predicting ligand
binding. Future work in this area might adjust distances in this
landscape to account for the low metric entropy of biological
sequences, as demonstrated by Berger et al. (53).

Adapting ConPLex for Affinity Prediction. While we have to
this point been using the model to predict probabilities of
interaction and perform binary classification, we show that
ConPLex can be easily adapted to perform binding affinity
prediction and that this model too achieves state-of-the-art
performance. The final step of our binary interaction predictor
is converting the cosine distance between the projections in the
DTI space to a probability using a sigmoid activation (Methods).
However, it is completely natural to replace this activation
with a dot product between the two projections, which enables
the model to make real-valued predictions, which can then be
interpreted as a binding affinity. We evaluated ConPLex trained
for affinity prediction on the Therapeautics Data Commons
(TDC) DTI Domain Generalization (TDC-DG) benchmark.
The TDC-DG benchmark contains binding affinity (IC50) data
from interactions patented between 2013 and 2018, with the
test set drawn from interactions patented in 2019 and 2021
(Methods). Thus, these data require out-of-domain generalization
and correspond to the real-life scenario of training on interactions
up to a known point and predicting interactions which are yet
to be documented. We trained ConPLex to predict binding
affinity with five random train/validation splits and achieve an
average Pearson correlation (PCC) coefficient between the true
and predicted affinity of 0.538(±0.008) on the held-out test set.
At submission, ConPLex is the top-performing method on the
TDC-DG benchmark on TDC (Table 3).

To investigate the strengths and limitations of ConPLex
for affinity prediction, we evaluated performance by target
type. Targets were annotated with Pfam domains (50) using
HMMscan (51), and the PCC between predicted and true
IC50 was computed over targets in each family (full details
SI Appendix, S8). We observed especially strong performance on
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Experimental Validation of Kinase-Small Molecule Interactions

Surfaceome Proteins Cluster by Function in Embedding Space Functional Coherence vs. ProtBert

Fig. 4. The shared representation space learned by ConPLex captures DTI and protein function. (A) We show that 51 kinases from the Surfaceome (17)
database cluster together in ConPLex embedding space but occupy just a small section of the entire space when coembedded with the compounds from
the ZINC (37) Cayman-purchasable library. (B and C) Zooming in on the full embedding space highlights drug–target pairs chose for experimental validation.
EPHB1 has only a single compound nearby in embedding space, PD-166326, which was confirmed to bind with single-digit nanomolar affinity. FLT3 and KIT are
neighbors in embedding space and tightly bind many of the same compounds; both bind to Linifanib with < 2nM affinity. EGFR was not found to bind to any of
the compounds also tested with FLT3 and KIT but binds three other drugs nearby in the embedding space, two of which bind with subnanomolar affinity. On the
other hand, none of the three compounds we tested nearby TGFBR2 (Wortmannin, Pluripotin, and Monorden) were found to bind. (D) ConPLex representations
of all cell surface proteins from the Surfaceome (17) cluster by functional class as assigned in Almén et al. (49). (E) These representations also cluster by several
functional Pfam domains (50), such as the PKinase domain (PF00069) shown in blue. (F ) We evaluated the coherence of representations for each domain by
training a logistic regression classifier and report the model’s average confidence for proteins containing that domain as log( p

1−p ). ConPLex separates all 126
domains better than the untransformed ProtBert embeddings (SI Appendix, S6, P = 4.85× 10−54, paired t test), discriminating kinase domains (blue) especially
well. We have also highlighted other classes of domains, including cadherins (green), 7-transmembrane proteins (orange), and immunoglobulins (red).

12 immunoglobulin targets (Pfam domains PF13927, PF13895,
PF07679, PF00047), where we observed a PCC of 0.803. In
keeping with our previous finding of ConPLex’s relative strength
on kinases over GPCRs (Fig. 3E), we observed a correlation of
0.578 on 94 protein targets with PKinase domains (PF07714,
PF00069), including targets with SH3 domains (PF00018,
PF07653; 13 targets; PCC = 0.705) and PI3K domains
(PF00613, PF00792; 6 targets; PCC = 0.633). However, we
observed substantially weaker performance on 7TM domains
(PF00001; 14 targets; PCC = 0.254) and GPCR domains
(PF10320; 8 targets; PCC = 0.176). To assess ConPLex’s
variability in its accuracy, we computed a 95% prediction interval
based on a linear regression between the true and predicted
IC50 (SI Appendix, S8). While the correlations were strong,
we found substantial variability around the true IC50, with
the width of the prediction interval around the true ln(IC50)

being ±4.89 ln(nM). Altogether, the variability in ConPLex’s
performance across domains makes it important to understand
the target of interest when using ConPLex to predict binding
affinity.

Discussion

Much previous work has recognized the value of meaningful
drug representations (54, 55) for DTI prediction, yet relatively
little work has focused on the target protein representation.
As a method to use pretrained PLMs for DTI prediction,
ConPLex is yet another example of the power of transferring
learned representations for biology (13, 31, 32, 56, 57). This
approach enables broad generalization to unseen proteins as well
as extremely fast model inference (>10× speed-up even over
other sequence-based approaches SI Appendix, S4). This speed is
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Table 3. ConPLex can be adapted for state-of-the-art
affinity prediction
Model PCC

ConPLex 0.538 ± 0.008
MMD 0.433± 0.010
CORAL 0.432± 0.010
ERM 0.427± 0.012
MTL 0.425± 0.010
GroupDRO 0.384± 0.006
AndMASK 0.288± 0.019
IRM 0.284± 0.021

By replacing the cosine distance in the final step of ConPLex with a dot product
between the projections, ConPLex can be used for affinity prediction rather than binary
classification. The TDC-DG dataset contains IC50 values for patented drug–target pairs,
where training/testing data are split from before/after 2018. We report the average and
SD of the PCC coefficient between true and predicted values across five train/validation
splits. Metrics for all methods other than ConPLex come from the TDC leaderboard (19, 58),
where at the time of submission, ConPLex is the best-performing method.

particularly valuable for drug repurposing and iterative screening,
where large compound libraries are evaluated against hitherto-
uncharacterized proteins implicated in a disease of interest.
The coembedding approach which enables this speedup could
also be effective for integrative multistructure models [e.g.,
the IMP framework (59)] where efficient scanning of possible
combinations is important. Recent methods have also demon-
strated the power of PLMs for transferring knowledge between
species (32), and our framework may enable more accurate
transfer of DTI from the model organisms on which drugs are
initially tested, to their eventual use in human patients. Skolnick
and Zhou (60) have reported the importance of considering
small molecule binding pockets for protein–protein interaction
prediction; thus, our DTI-informed protein representations may
also be useful in that context. While structural similarity is
often implicitly learned by PLMs, future work could explicitly
incorporate structure where such data are available, perhaps by
incorporating a more advanced projection architecture like the
Geoformer (3).

It has been shown in previous work that the performance of
different PLMs varies on different tasks and that there is not
one clearly “best” language model (14, 61, 62). While we have
chosen to use ProtBert here, it is likely that other existing or
newly developed language models may yield better performance
for certain types of drugs or targets. Likewise, advancements in
drug representation may improve performance—the ConPLex
framework is flexible to different input features, and it remains
important to experiment with different feature choices for the
task at hand (SI Appendix, S2).

ConPLex approaches the DTI decoy problem from the per-
spective of adversarial machine learning, where the model must
act as a discriminator for adversarial examples from the decoy
database. This approach is directly enabled by the coembedding
architecture—to compute the triplet distance loss, the protein
and drugs must be coembedded, and the distance between them
must be meaningful and simply computed. Such an approach
would not be feasible using a model which concatenates features
up front, nor for a model which has significant computation
defining the probability of interaction after the coembedding.
Thus, the shared lexicographic space in which we embed the
proteins, targets, and decoys is key. Future work could explore
adapting molecular generation methods such as JT-VAE or
HierG2G (63, 64) to directly act as a generator for decoys. High-
specificity DTI prediction is valuable beyond decoy detection—

greater specificity of inference can help improve personalized
medicine or the modeling of drug effects against rare variants
from underrepresented populations.

It is also important to consider the coverage of the problem to
select an appropriate method. While we recommend the use of
PLM-based features in all cases, if enough data are available, for
specific enzyme-family prediction tasks, we still recommend the
use of single-task models (25). To verify individual interactions,
energy-based molecular docking will likely be more accurate,
although at the cost of being substantially slower (4). Different
classes of computational tools for DTI prediction each have
varying strengths, and the highest quality predictions can be
achieved by leveraging all of these methods together where each
is most fit.

Drug discovery is a fundamental task for human health yet
remains both extremely expensive and time consuming, with
the median drug requiring over 1 billion dollars (65) and 10 y
(66) from development to approval and distribution. While
experimental results will remain the gold standard for validating
drug functionality, in silico prediction of drug–target binding
remains much faster and cheaper and so will continue to play
an important role in early screening of therapeutic candidates
(67). To address this step in the drug design pipeline, we have
introduced ConPLex. DTI prediction methods should be able
to generalize to unseen types of drugs and targets, while also
discriminating between highly similar molecules with different
binding properties. ConPLex tackles both of these challenges
through its dual use of PLMs and contrastive learning. We hope
that its broad applicability, specificity on decoys, and ability to
scale to massive data will allow ConPLex to be a critical step in
this pipeline and contribute to the efficient discovery of effective
therapeutics.

Materials and Methods
Computing Dataset Coverage. Let 1(i,j) be the indicator variable, meaning
there exists an observation of drug i and target j. For a dataset with m
unique drugs and n unique targets, we can define the coverage for drug d
as Cd = 1

n
∑n

j=0 1(d,j) and for a target t as Ct = 1
m

∑m
i=0 1(i,t). Then, for a

given dataset, we can evaluate the median drug and target coverage. A dataset
with maximum coverage would have a single data point for each drug–target pair
and, thus, a median coverage of 1 for both drugs and targets. Conversely, each
drug and target would be represented only a single time in a minimum coverage
dataset, resulting in drug and target coverages of 1

n and 1
m , respectively. We

report the median drug and target coverage for each benchmark dataset in
Table 4. Since the DUD-E dataset is separated out by targets, we instead report
the median number of drugs against each target.

Benchmarks Overview.
Low coverage benchmarks. We evaluate our framework on three broad-scale,
low-coverage benchmark datasets. Two datasets, DAVIS (68) and BindingDB
(69), consist of pairs of drugs and targets with experimentally determined
dissociation constants (KD). Following ref. 13, we treat pairs with KD < 30
as positive DTIs, while larger KD values are negative. The third dataset, ChG-
Miner from BIOSNAP (70), consists of only positive DTIs. We create negative
DTIs by randomly sampling an equal number of protein–drug pairs, making the
assumption that a random pair is unlikely to be positively interacting. The DAVIS
dataset represents a few-shot learning setting: It contains only 2,086 training
interactions, compared to 12,668 for BindingDB and 19,238 for BIOSNAP. The
rest of the data preparation follows (13). The datasets are split into 70% for
training, 10% for validation, and the remaining 20% for testing. Training data
are artificially subsampled to have an equal number of positive and negative
interactions, while validation and test data are left at the ratio originally in the
dataset.
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Table 4. Full specification of benchmark datasets
Dataset Drugs Targets Median Coverage # Training # Validation # Test

BIOSNAP 4,510 2,181 0.0023/0.0020 9,670/9,568 1,396/1,352 2,770/2,727
Unseen Drugs 9,535/9,616 1,383/1,353 2,918/2,675
Unseen Targets 9,876/9,499 1,382/1,386 2,578/2,762

BindingDB 7,165 1,254 0.0008/0.0010 6,334/6,334 927/5,717 1,905/11,384
DAVIS 68 379 0.3707/0.3676 1,043/1,043 160/2,846 303/5,708
TDC-DG 140,746 477 0.0021/0.0005 146,891 36,539 49,028

Phosphatase 165 218 1.0/1.0 5,054/27,286 — 370/3,260
Esterase 96 146 1.0/1.0 2,150/10,426 — 926/514
Glycosyltransferase 89 54 0.9259/0.9778 725/3,042 — 113/417
Halogenase 62 42 1.0/1.0 303/1,991 — 20/290
BKACE 17 161 1.0/1.0 255/2,193 — 19/270

DUD-E † 8,996/406,208 — 11,430/521,132
GPCR 99,671 5 18,563
Kinase 315,399 26 15,409
Protease 286,089 15 9,271
Nuclear 151,133 11 16,257

We report the number of unique drugs and targets, the median (drug/target) coverage, and the number of training, validation, and test samples in each dataset. The numbers of pairs are
shown as (positive/negative), except for TDC-DG (19, 58), which is a regression task; thus, the total number of pairs is shown. We consider BIOSNAP (70), BindingDB (69), DAVIS (68), and
TDC-DG as low-coverage, while Phosphatase (71), Esterase (72), Glycosyltransferase (73), Halogenase (74), BKACE (75), and DUD-E (36) are considered high-coverage. † Because DUD-E is
a decoy dataset, we report as coverage the median number of true drugs or decoys for each target.

Zero-shot benchmarks. We evaluate our framework on two zero-shot prediction
modifications of BIOSNAP. Following ref. 13, the Unseen proteins set was
created by selecting 20% of proteins from the full set and selecting any
interactions including these proteins for the test set. Thus, there are no proteins
which appear in both the training and test set. The corresponding process was
used to create theUnseen drugs dataset. The training set was then further split
using 7/8 of the interactions for training and 1/8 of the interactions for testing.
As above, data are subsampled so that training is balanced.
Continuous benchmarks. Continuous affinity prediction data come from the
TDC-DG (19). The TDC-DG consists of 140,746 unique drugs and 477 unique
targets derived from BindingDB (69) interactions that have patent information.
Each interaction is labeled with an experimentally determined dissociation
constant (IC50). Interactions are temporally split, so that training pairs are from
patents filed between 2013 and 2018, and test pairs are from between 2019
and 2021. In addition, 20% of the training pairs are randomly set aside as
a validation set. We train five different models with the train/validation splits
determined by the TDC benchmarking framework and report the average PCC
coefficient of predictions on the test set.
High coverage benchmarks. The Database of Useful Decoys: Enhanced (DUD-E)
(36) consists of 102 protein targets and known binding partners (average 224
molecules per target). For each binding partner, there are 50 “decoys,” or
physiochemically similar compounds that are known not to bind with the target.
Of note, 57 of the targets are classified as either GPCRs, kinases, nuclear proteins,
or proteases. We generate train–test splits by splitting targets within classes, so
that there are representative members of each class in both the training and
test sets, but no target appears in both the training and test set (26 train and 31
test). These data are by definition high coverage since there are several true and
decoy compounds available for each target. We provide the full target splits in
SI Appendix, S1.

We also evaluate several protein-family-specific datasets from various
different sources compiled by Goldman et al. (25). These include DTI data on
β -ketoacid cleavage (BKACE) (75), Esterase (72), Glycosyltransferases (73),
Halogenase (74), and Phosphatase (71) enzymes. These data are uniformly
very high coverage, with a known data point for nearly every drug–target pair.
Following ref. 25, we performed a 10-fold cross-validation where the data were
split into train–test sets by target, so that all drugs appear in both the training
and test set, but no target does.

ConPLex Model.
Target featurization. We generate protein target features using pretrained
PLMs: These models generate a protein embedding Efull ∈ Rn×dt for a

protein of length n, which is then mean-pooled along the length of the protein
resulting in a vector E ∈ Rdt . Specifically, we investigate the pretrained
models Prose (30), ESM (76), and ProtBert (27), with default dimensions
dt = 6165, 1280, and1024, respectively (SI Appendix, S2). Elnaggar et al.
recommend the use of ProtT5XLUniref50, but we found that it did not perform as
well as ProtBert for the DTI prediction task. We emphasize that the language and
projection models are used exclusively to generate input features—their weights
are kept unchanged and are not updated during DTI training.
Drug featurization. We featurize the drug molecule by its Morgan fingerprint
(26), an encoding of the SMILES string of the molecular graph as a fixed-
dimension embedding M ∈ Rdm (we chose dm = 2,048) by considering the
local neighborhood around each atom. The utility of the Morgan fingerprint for
small molecule representation has been demonstrated in refs. 25 and 77. We
additionally investigated the use of molecule embeddings from Mol2Vec (78)
and MolR (79) and found that they failed to perform as well as the Morgan
fingerprint (SI Appendix, S2).
Transformation into a shared latent space and prediction. Given a target
embedding T ∈ Rdt and small molecule embedding M ∈ Rdm , we transform
them separately into T∗, M∗ ∈ Rh using a single fully connected layer with
a ReLU activation. These layers are parameterized with weight matrices Wt ∈

Rh×dt , Wm ∈ Rh×dm , and bias vectors bt , bm ∈ Rh.

T∗ = ReLU(WtT + bt) [1]

M∗ = ReLU(WmM + bm) [2]

Given the latent embeddings T∗, M∗, we compute the probability of a DTI
p̂(T∗, M∗) as the cosine similarity between the embedding vectors, followed by
a sigmoid activation. Thus, we compute the predicted probability as:

p̂(T∗, M∗) = σ (
T∗ · M∗

||T∗||2 · ||M∗||2
) [3]

When predicting compound binding affinity ŷ(T∗, M∗), we substitute the
sigmoid and cosine similarity (Eq. 3) with a dot product followed by a ReLU
activation, which gives a nonnegative distance in the embedding space (Eq. 4).

ŷ(T∗, M∗) = ReLU(T∗ · M∗) [4]

Training. The model is trained both for broad and fine predictions, with the loss
computed depending on the training dataset. Broad-scale training data use the
binary cross-entropy loss (LBCE ) between the true labels y and the predicted
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interaction probabilities p̂. When the model is trained to predict binding affinity,
we substitute the binary cross-entropy loss with the mean squared error loss
(LMSE ) during supervision.

Training on fine-scale data (DUD-E) was performed using contrastive learning.
Contrastive learning uses triplets of training points rather than pairs, denoted
theanchor,positive, andnegative, and aims to minimize the distance between
the anchor and positive examples while maximizing the distance between the
anchor and the negative examples. In the DTI setting, the natural choice for a
triplet is the protein target as the anchor, the true drug as the positive, and
decoy as the negative example, respectively. We derive a training set of triplets
in the following manner: For each known interacting drug–target pair (T, M+),
we randomly sample k = 50 noninteracting pairs (T, M−) and generate the
triplets(T, M+, M−), where M− is drawn from the set of all decoys against T . We
map these to latent space embeddings as described above. Since all the entities
are now comparable to each other, we can compute the triplet margin-distance
loss (LTRM).

LTRM(a, p, n) =
1
N

N∑
i=1

max(D(a, p)− D(a, n) + m, 0) [5]

where
D(u, v) = 1− p̂(u, v) [6]

The margin m sets the maximum required delta between distances, above which
the loss is zero.
Margin annealing. The margin m sets the maximum required delta between
distances, above which the loss is zero. Initially, a large margin requires the
decoy to be much further from the target than the drug to avoid a penalty,
resulting in larger weight updates. As training progresses, lower margins relax
this constraint, requiring only that the drug be closer than the decoy as m→ 0.
Here, the margin is initialized at Mmax = 0.25 according to a tanh decay with
restarts schedule. Every Emax = 10 contrastive epochs, the margin is reset to
the initial Mmax , for a total of 50 epochs. At epoch i, the margin is set to

m(i) = Mmax(1− tanh(
2(i mod Emax)

Emax
)) [7]

Implementation. Model weights were initialized using the Xavier method from
a normal distribution (80). Weights were updated with error backpropagation
using the AdamW optimizer (81) for a total of 50 epochs. For the binary
classification task, the learning rate was initially set to 10−4 and adjusted
according to a cosine annealing schedule with warm restarts (82) every 10
epochs. For the contrastive task, the learning rate was initially set to 10−5,
and the same annealing schedule was followed. The margin for the contrastive
loss was initially set to 0.25 and decreased to a minimum of 0 over 50 epochs
according to a tanh decay schedule with restarts every 10 epochs. We used a
latent dimension d =1,024 (results were robust to even with lower dimensions,
and much higher dimensions may overfit or be subject to topological restrictions)
and a batch size of 32. The model was implemented in PyTorch version 1.11.
Model training, and inference was performed on a machine with a 112-core
Intel Xeon Gold 6258R CPU and using a single NVIDIA A100 GPU. We compare
training and inference run times in SI Appendix, S4.

Surfaceome Analysis. We evaluate the functional use of ConPLex embeddings
using data from the Surfaceome database (17), which contains 2,886 cell-
surface proteins. We identified Pfam domains using HMMscan from HMMER3
(51) with default settings. We analyzed domains hit in>10 proteins. For each
domain, we trained a logistic regression classifier from sklearn with balanced
class weights. We also evaluated domain coherence using spectral clustering
with k = 10 clusters and evaluated the adjusted mutual information (AMI)
between true clusters (protein has/does not have domain) and predicted clusters
(SI Appendix, S6).

Experimental Determination of Kinase Binding Affinity. From the Sur-
faceome (17) database, we selected 51 kinases which were available by the
KdELECT assay from DiscoveryX. From the ZINC database (37), we selected
4715 compounds purchasable from the Cayman Chemical Company. Using a
ConPLex model trained on BindingDB and fine-tuned on DUD-E, we predicted
all pairwise interactions between kinases and small molecule drugs. Without
previously consulting the literature on kinases or drugs, we selected 5 kinases
which were highly represented in the top predictions (EGFR, EPHB1, FLT3, KIT,
and TGFBR2). We then selected 19 binding pairs to test, covering 14 drugs with
high ConPLex-predicted interactions. The full list of ConPLex predictions can be
found in SI Appendix, Data S1.

We performed KD determination using the KdELECT assay from the DiscoveryX
company, following the procedure from Hie et al. (83). KdELECT measures
competition between test compounds and an immobilized, active site-directed
ligand. Ligands are tagged with DNA oligomers, and competition is measured
by qPCR of this barcode. BL21-derived E. coli were infected with T7 phase
strains tagged with each kinase target and incubated with shaking at 32◦C.
Streptavidin-coated magnetic beads were treated with a biotinylated ligand at
room temperature for 30 min, following which the beads were blocked with
excess biotin and washed with blocking buffer [SeaBlock (Pierce), 1% bovine
serum albumin (BSA), 0.05% Tween 20, and 1 mM dithiothreitol (DTT)] to
remove unbound ligand. Test compounds were prepared as 111X stocks in
100% DMSO. An 11-point, threefold compound dilution series was created, with
a top test compound concentration of 10,000 nM. Three DMSO control points
were also used. Test compounds are distributed by acoustic transfer (noncontact
dispensing) in 100% DMSO and then diluted into the assays for a final DMSO
concentration of 0.9%.

Kinases, ligand-bound affinity beads, and test compounds were combined
in 1X binding buffer [20% SeaBlock, 0.17X phosphate-buffered saline (PBS),
0.05% Tween 20, and 6 mM DTT] in a 384-well plate, with a final volume of
0.02 mL for each reaction. Plates were incubated for 1 h at room temperature with
shaking. Affinity beads were washed with wash buffer (1x PBS, 0.05% Tween 20),
resuspended in elution buffer (1x PBS, 0.05% Tween 20, 0.5 mM nonbiotinylated
affinity ligand), and incubated for 30 min at room temperature with shaking.
The concentration of kinases was measured using qPCR. To compute KD of the
binding, a standard dose–response curve was fit to the Hill equation curves using
the Levenberg–Marquardt algorithm (Hill slope =−1).

Genome-wide ChEMBL Scan. We trained a ConPLex model using BindingDB
and DUD-E and used it to make predictions for all pairs of human proteins against
all drugs in ChEMBL. Human protein sequences were taken from the STRING
database and processed following ref. 32, resulting in 15,816 proteins between
50 and 800 amino acids long. Small molecule structures were downloaded from
ChEMBL 30 (18), resulting in 1,533,652 compounds. Prediction took just under
a day, accounting for embedding time.

Data, Materials, and Software Availability. Dataset data have been de-
posited in Github (https://github.com/samsledje/ConPLex_dev) (38). Previously
published data were used for this work (19, 36, 68–75).
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