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Abstract

Motivation: Exploring drug–protein interactions (DPIs) provides a rapid and precise approach to assist in laboratory
experiments for discovering new drugs. Network-based methods usually utilize a drug–protein association network
and predict DPIs by the information of its associated proteins or drugs, called ‘guilt-by-association’ principle.
However, the ‘guilt-by-association’ principle is not always true because sometimes similar proteins cannot interact
with similar drugs. Recently, learning-based methods learn molecule properties underlying DPIs by utilizing existing
databases of characterized interactions but neglect the network-level information.

Results: We propose a novel method, namely BridgeDPI. We devise a class of virtual nodes to bridge the gap be-
tween drugs and proteins and construct a learnable drug–protein association network. The network is optimized
based on the supervised signals from the downstream task—the DPI prediction. Through information passing on
this drug–protein association network, a Graph Neural Network can capture the network-level information among di-
verse drugs and proteins. By combining the network-level information and the learning-based method, BridgeDPI
achieves significant improvement in three real-world DPI datasets. Moreover, the case study further verifies the ef-
fectiveness and reliability of BridgeDPI.

Availability and implementation: The source code of BridgeDPI can be accessed at https://github.com/SenseTime-
Knowledge-Mining/BridgeDPI. The source data used in this study is available on the https://github.com/IBM/
InterpretableDTIP (for the BindingDB dataset), https://github.com/masashitsubaki/CPI_prediction (for the C.ELEGANS and
HUMAN) datasets, http://dude.docking.org/ (for the DUD-E dataset), repectively.

Contact: limin@mail.csu.edu.cn or zhangjie1@sensetime.com

1 Introduction

Developing a new drug conventionally takes tens of years and bil-

lions of dollars (Avorn, 2015; Paul et al., 2010). In the process of

new drug development, drug–protein interaction (DPI) prediction is

a crucial step. Traditional experimental assays for determining DTIs

are to measure the value of half-maximal inhibitory concentration

(IC50) or inhibitory constant (Ki) in wet experiments. Although the

experimental assays remain the most reliable approach for examin-

ing DPIs, they are time-consuming and cost-intensive due to the

need of individual experiments for all of the possible drug–protein

pairs. Therefore, exploring the interaction mechanism between

drugs and proteins and developing some efficient computational

methods for predicting DPIs are very significant and urgently

demanded.

The interaction mechanism between drugs and proteins is very
complicated, so it is a big challenge to develop an efficient com-
putational method that can accurately determine DPIs. Current
computational methods for predicting DPIs are classified into
three categories: docking-based methods, network-based methods
and learning-based methods. Docking-based methods usually use
molecular dynamic simulation to reconstruct the contact relation-
ship between proteins and drugs in space. These methods aim to
look for the best binding position inside the binding pocket of the
proteins for drug molecules (Gschwend et al., 1996; Led and
Caflisch, 2018). Nevertheless, they require accurate 3D structures
of proteins, which are hard to obtain while some proteins even do
not have the 3D structure (Liu and Altman, 2015; Mizianty et al.,
2014; Zhang et al., 2012). In contrast to the docking-based meth-
ods, network-based methods bypass the direct reconstructing
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their contact relationship by using the ‘guilt-by-association’ prin-
ciple to predict DPIs based on some priori DPI data (Ballester and
Mitchell, 2010; Bleakley and Yamanishi, 2009; Ding et al., 2014;
Durrant and McCammon, 2011; Luo et al., 2017, 2019). The
‘guilt-by-association’ principle assumes that if a target has a simi-
lar profile with another target, the former target is likely to inter-
act with a drug, which can directly interact with the latter target
(Luo et al., 2021; Wang and Lukasz, 2019). Thus, these methods
usually need to construct a network that contains the existing
drugs and proteins and calculate similarity scores of the drug–
drug and protein–protein pairs. However, the ‘guilt-by-associ-
ation’ principle relies on the quality of the similarity scores, and
cannot be easily applied to low-frequency or unseen proteins.
Moreover, the ‘guilt-by-association’ principle is not always true,
because there are also some similar proteins that cannot interact
with similar drugs (Maggiora et al., 2014). Recently, with the
plentiful accumulation of data, learning-based methods have been
successfully applied to predict DPIs (Li et al., 2020, 2022; Wan
et al., 2019; Wang et al., 2021; Wang and Zeng, 2013; Yuvaraj
et al., 2021). Learning-based methods usually take protein
sequences and drug molecules as the input for DPI prediction.
Compared to the network-based methods, learning-based meth-
ods mainly focus on learning the interaction mechanism of each
single drug–protein pair by the prior data but ignore some
network-level information, i.e. the ‘guilt-by-association’ prin-
ciple, which is quite crucial to infer DPIs. Therefore, it is very im-
portant and necessary to design a model that brings the ‘guilt-by-
association’ principle into the learning-based methods.

In this paper, we develop BridgeDPI, a deep learning frame-
work, which simultaneously combines the advantages of
network-based methods and learning-based methods, to predict
DTIs. Compared to previous learning-based methods, we intro-
duce protein sequences and drug molecules into a supervised
drug–protein association network. The network provides neigh-
borhood information of proteins and drugs, which makes the
model not only learn the interaction mechanism of drug–protein
pairs but also provides a network-level perspective to assist
learning. In the process of constructing the supervised network,
we introduce a class of nodes called bridge nodes. The bridge
nodes are devised to connect all the proteins or drugs and meas-
ure the associations among proteins/drugs from a network-level
perspective. From the network-based point of view, through the
bridge nodes, we can get two types of paths from a protein to a
drug: explicit paths and implicit paths. As shown in Figure 1,
considering the protein–drug pair P1–D1, we can go from P1 to
bridge nodes to D1, where the bridge nodes explicitly measure
the interaction between P1 and D1 and thus the interaction
mechanism is learned to decide whether the pair interacts. Paths
like P1 to bridge nodes to D1 are defined as the explicit paths.
From another point of view, we can also go from P1 to bridge
nodes to P2 to bridge nodes to D2 to bridge nodes to D1, where
the bridge nodes not only measure the associations between pro-
teins (i.e. P1–P2)/drugs (i.e. D2–D1) but also measure the

interactions between proteins and drugs (i.e. P2–D2). In this
way, the interaction between P1 and D1 can be implicitly
inferred by P1–P2, P2–D2, and D2–D1. Paths like this type are
the implicit paths. In a word, due to the bridge nodes, BridgeDPI
not only learns a deep interaction mechanism but also assists DPI
prediction from a network-level perspective. This makes
BridgeDPI more comprehensively grasp features to perform DPI
prediction and the prediction results are also more reliable.

We provide comprehensive comparison results with other base-
lines in four different datasets. Compared to the state-of-the-art
(SOTA) results, BridgeDPI achieves the area under the receiver
operating characteristic curve (AUROC) scores of 97.5% (1.9%
higher) in the BindingDB dataset, 99.5% (0.7% higher) in the
C.ELEGANS dataset and 99.0% (1.1% higher) in the HUMAN
dataset. In addition, we use the Directory of Useful Decoys,
Enhanced (DUD-E) dataset as an independent test set to evaluate
the generalization. BridgeDPI trained on the BindingDB dataset
gets the AUROC scores of 77.2% (3.2% higher). In summary, all
results indicate that BridgeDPI is effective and reliable in predict-
ing DPIs.

2 Materials and methods

2.1 Datasets
BindingDB: The BindingDB dataset has collected affinity data of
2 286 319 drug–protein pairs from corresponding research papers,
where 8536 proteins and 989 383 drugs are included (Gilson et al.,
2016; the raw BindingDB can be accessed at https://www.bind
ingdb.org/bind/index.jsp, and the Gao’s version of BindingDB can
be downloaded from https://github.com/IBM/InterpretableDTIP).
On this basis, Gao et al. (2018) select the data having IC50 value
and convert the IC50 values into 1 for interactions
(IC50<100 nM), 0 for no interactions (IC50>10 000 nM) to con-
struct a binary classification dataset. The dataset contains 39 747
positive samples and 31 218 negative samples and is divided into
training (28 240 positive and 21 915 negative samples), validation
(2831 positive and 2776 negative samples) and test (2706 positive
and 2802 samples) sets. We use this dataset for our main head-to-
head comparisons.

C.ELEGANS and HUMAN datasets: C.ELEGANS and
HUMAN datasets have been widely used in DPI prediction (the bal-
anced versions of C.ELEGANS and HUMAN datasets can be down-
loaded from https://github.com/masashitsubaki/CPI_prediction).
Both of them are constructed by combining a set of highly credible
negative drug–protein samples via an in silico screening method
with the known positive samples (Liu et al., 2015). We follow
Tsubaki et al. (2019) and use the balanced versions to do research.
The C.ELEGANS dataset has 7786 drug–protein pairs, including
1876 proteins and 1767 drugs. The HUMAN dataset has 6728
drug–protein pairs, including 2001 proteins and 2726 drugs. Both
the C.ELEGANS dataset and the HUMAN dataset are randomly
divided for 5-fold cross-validation.

DUD-E dataset: The DUD-E is a widely used dataset covering
102 proteins and 22 886 clustered ligands (Mysinger et al., 2012;
the DUD-E dataset can be accessed at http://dude.docking.org/).
There are 50 decoys for each active with similar physical and chem-
ical properties but dissimilar 2D topology. It contains 1 429 790
protein-ligand samples in total (22 645 positive samples, 1 407 145
negative samples). The samples are demonstrated by wet experi-
ments or computational methods. DUD-E is used as an independent
test set to evaluate how our model performs in reality. In this paper,
we train BridgeDPI on the BindingDB dataset and test it on the
DUD-E dataset.

2.2 Framework of BridgeDPI
We propose a novel end-to-end deep learning framework, namely
BridgeDPI, for DPI prediction task. The overall learning architec-
ture is illustrated in Figure 2. BridgeDPI takes protein sequences
and drug SMILES (Weininger, 1988) as inputs and predicts their
interactions. It consists of four parts: drug feature extraction part,

Fig. 1. A toy example of our constructed graph. The graph includes three types of

nodes: protein nodes, drug nodes, bridge nodes; three types of edges: bridge node-

protein node, bridge node-drug node, bridge node-bridge node; and two types of

paths: the explicit path (e.g. P1->bridge nodes->D1) and the implicit path (e.g. P1-

>bridge nodes->P2->bridge nodes->D2->bridge nodes->D1)
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protein feature extraction part, drug–protein bridge graph con-
struction part and classification part. For the drug and protein fea-
ture extraction parts, the Convolutional Neural Network (CNN)

layers and some Feed-Forward Network (FFN) layers are applied
to extract the features from the drug SMILES and the protein

sequences. For the drug–protein bridge graph construction part,
some bridge nodes are introduced to construct the bridges between
proteins and drugs, and thus we can use a Graph Neural Network

(GNN) to capture the network-level information to predict DPIs.
For the classification part, we get element-wise product of the pro-

teins’ and drugs’ graph embeddings after GNN, and then feed it
into a linear layer with sigmoid activation to predict the interac-
tions. In this section, we will describe the details of each compo-

nent in BridgeDPI.

2.2.1 Feature extraction of proteins

Before feeding proteins into BridgeDPI, we need to describe them

as numeric vectors. In order to better describe the properties of
protein sequences, we vectorize them from both a local and global

perspective. For the local view, we employ some CNN filters to
capture the key local patterns in the protein sequences. Firstly,
the one-hot encoding is used to encode the protein’s primary

amino acid sequences. Then, a 1D CNN with max-pooling is
applied to extract the local features. Finally, we transform the

CNN’s output by a two-layer FFN to get the final local features
of the protein. For the global view, we select the protein’s k-mer
statistics as its global features because the k-mer information

reveals the distribution of global characteristics and measures
biological similarity for discrimination (Leslie et al., 2004). In
our study, we set k¼1, 2, 3, which generate 20- (k¼1), 400-

(20�20, k¼2) and 8000- (20�20�20, k¼3) dimension vec-
tors, respectively. The vectors are normalized and concatenated

to represent the protein from a global view. Here, we give up k �
4 because it generates too many (� 160 000) dimensions and

makes the method too complex, easily leading to overfitting and

time-consuming training. Specifically, for protein i with length lp,

its final representation Pi 2 R
dh is vectorized as:

Pi ¼ Plocal
i þ Pglobal

i ; (1)

where Plocal
i 2 R

dh and Pglobal
i 2 R

dh are protein i’s local and global

features, dh is the dimension of them. The Plocal
i and Pglobal

i are com-

puted by Equation (2), pi 2 R
lp�20 is the one-hot embedding of the

protein i, ai 2 R
8420 is the concatenated vectors of the 1-mer,

2-mer, 3-mer statistic vectors.

Plocal
i ¼ FFNlocal

p ðCNNpðpiÞÞ
Pglobal

i ¼ FFNglobal
p ðaiÞ

; (2)

where FFNlocal
p ð�Þ is a one-layer FFN, FFNglobal

p ð�Þ is a two-layer

FFN, CNNpð�Þ is the 1D CNN with max-pooling. And the output of
them is all activated by the Rectified Linear Unit (ReLU) function.

2.2.2 Feature extraction of drugs

After representing proteins, drug molecules also need to be vectorized.
Analogously, we also extract the local view’s and global view’s features
from drug molecules. Different from the protein sequences, drug mole-
cules are graphs with atoms as nodes and chemical bonds as edges. It
means that the statistics of k-mer-like information are not appropriate
anymore. Therefore, we choose another global view’s representation
technique: molecular fingerprint. The molecular fingerprint encodes a
drug molecular into a series of binary digits, where some substructure
and topological information are implied (Rogers and Hahn, 2010). As
for the local view’s representation, similar to proteins, we also employ
some CNNs. Firstly, we encode each atom of the drug into a 75-di-
mension vector, which contains physical–chemical features of atoms
and bonds (Ramsundar et al., 2019). Next, a CNN with max-pooling
is used to extract features from the 75-dimension vectors and the
extracted features are fed into a 3-layer FFN to obtain the final local
features of the drug molecules. Specifically, for drug j with ld atoms, its

final representation Dj 2 R
dh is defined as:

Dj ¼ Dlocal
j þDglobal

j ; (3)

where Dlocal
j 2 R

dh and Dglobal
j 2 R

dh are drug j’s local and global

features, dh is the dimension of them which is equal to the dimension

Fig. 2. The framework of BridgeDPI: on the left is the protein feature extraction part, on the right is the drug feature extraction part, the middle is the drug–protein bridge

graph construction part, and the bottom is the classification part. BridgeDPI uses CNN and FFN to extract proteins’/drugs’ local and global features. After that, some bridge

nodes are introduced to construct the bridges between proteins and drugs and thus we can use a GNN to obtain the graph embeddings of proteins and drugs. Finally, we feed

the graph embedding into a linear layer with sigmoid activation to predict DPIs
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of proteins’ final representations. The Dlocal
j and Dglobal

j are calcu-

lated by Equation (4), dj 2 R
ld�75 is the 75-dimension per-atom fea-

tures, bj 2 R
1024 is the molecular fingerprint of the drug j.

Dlocal
j ¼ FFNlocal

d ðCNNdðdjÞÞ
Dglobal

j ¼ FFNglobal
d ðbjÞ

; (4)

where FFNlocal
d ð�Þ is a one-layer FFN, FFN

global
d ð�Þ is a three-layer

FFN, CNNdð�Þ is the 1D CNN with max-pooling. And the output of
them is all activated by the ReLU function.

2.2.3 Bridge graph’s construction

After obtaining the final representations of proteins and drugs,
the next thing is to introduce the network-level information. To

do this, we construct a supervised drug–protein association net-
work, called bridge graph. Specifically, we introduce a class of

nodes called bridge nodes to the constructed network to super-
visedly measure the associations among proteins/drugs and the
interactions between drug–protein pairs. The bridge nodes are

actually some dh-dimension vectors in the space of Pi and Dj,
and their associations are defined as the cosine similarities be-
tween them:

aPi ;Bk
¼ Pi � Bk

jjPijj2jjBkjj2
aDj ;Bk

¼ Dj � Bk

jjDjjj2jjBkjj2

; (5)

where Pi 2 R
dh and Dj 2 R

dh are the final representations of pro-

tein i and drug j, Bk 2 R
dh represents a bridge node, � is to com-

pute the inner product of vectors, jj � jj2 is to compute the two-

norm value of a vector. The vectors of the bridge nodes are initial-

ized randomly from a normal distribution Nð0; 1Þ. In our model,
we employ m bridge nodes (i.e. B1;B2; . . . ;Bm) to jointly measure

the associations and the interactions: for the protein–drug pair
ði� jÞ, their interaction can be measured by aPi ;Bk

and aDj ;Bk
; for

another protein–drug pair ðu� vÞ, their interaction can be also

measured in the same way; moreover, if we think about the both
pairs ði� jÞ and ðu� vÞ, with the bridge nodes as its medium, the

association between protein i and protein u can be inferred by
aPi ;Bk

and aPu ;Bk
, and the association between drugj and drugv can

be inferred in the same way. In other words, the associations’ and

the interactions’ information, or the network-level information, is
embedded in the constructed network with m bridge nodes and

protein/drug nodes, and thus we can use a GNN to capture the
information.

In detail, for the protein–drug pair ði� jÞ and the m bridge
nodes, we first compute the cosine similarity between them to obtain
a weighted adjacency matrix of the graph:

Aði�jÞ ¼

aPi ;Pi
aPi ;Dj

aPi ;B1
. . . aPi ;Bm

aDj ;Pi
aDj ;Dj

aDi ;B1
. . . aDi ;Bm

aB1 ;Pi
aB1 ;Dj

aB1 ;B1
. . . aB1 ;Bm

. . . . . . . . . . . . . . .
aBm ;Pi

aBm ;Dj
aBm ;B1

. . . aBm ;Bm

0
BBBBB@

1
CCCCCA
; (6)

where Aði�jÞ 2 R
ðmþ2Þ�ðmþ2Þ is the weighted adjacency matrix, a�;� is

the cosine similarity between nodes defined as Equation (5). For the
stability of convergence, we filter out the negative edges and do nor-

malization for Aði�jÞ:

Lði�jÞ ¼ D�
1
2ReLUðAði�jÞÞD�

1
2; (7)

where D�
1
2 2 R

ðmþ2Þ�ðmþ2Þ is the degree matrix of Aði�jÞ; ReLUð�Þ is

to filter out the negative edges.
Then, to capture the network-level information, a 3-layer GNN

is implemented as:

Z0 ¼

Pi

Di

B1

. . .
Bm

0
BBBB@

1
CCCCA

Z1 ¼ ReLUðLði�jÞZ
0W1 þ b1Þ

Z2 ¼ ReLUðLði�jÞZ
1W2 þ b2Þ

Z3 ¼ ReLUðLði�jÞZ
2W3 þ b3Þ

; (8)

where Z0 2 R
ðmþ2Þ�dh is the initial node embedding of the graph,

Z1;Z2;Z3 2 R
ðmþ2Þ�dh are the node embeddings after aggregating

the neighbor information, W1;W2;W3 2 R
dh�dh and b1;b2; b3 2

R
1�dh are the hidden parameters of the GNN, ReLUð�Þ is the activa-

tion function.
Finally, we select the first two rows of Z0;Z1;Z2;Z3 and sum

them up to get the final vectors of protein i and drug j which have

aggregated the network-level information.

P̂i ¼
X3

k¼0

Zk
1

D̂j ¼
X3

k¼0

Zk
2

; (9)

where Zk
1 2 R

1�dh is the first row of Zk, Zk
2 2 R

1�dh is the second row

of Zk, P̂i ; D̂j 2 R
1�dh are the final vectors of protein i and drug j.

2.2.4 Classification

After aggregating the network-level information to the protein and
drug representations, the last thing is to infer whether the drug–pro-
tein pair interacts. We use element-wise product of drugs’ and pro-

teins’ final vectors to model the interaction mechanism and after a
two-layer FFN the interaction probabilities are predicted:

ŷði�jÞ ¼ FFNoutputðP̂i � D̂j Þ ; (10)

where � is to compute the element-wise product of two vectors,
FFNoutput is a two-layer FFN with ReLU activation for its first layer

and Sigmoid activation for its second layer, ŷði�jÞ 2 R is the pre-
dicted interaction probability. In order to make the predicted inter-
action probabilities close to the true interaction values, we use a

binary cross entropy loss function as our training objective, and the
L2 regularization is added to improve the model’s robustness.

L ¼ 1

jPj
X
ði�jÞ2P

½yði�jÞ logðŷði�jÞÞ þ ð1� yði�jÞÞlogð1� ŷði�jÞÞÞ�

þk
P

h2H khk
2

; (11)

where P is the set of all protein–drug pairs in the training set,
yði�jÞ 2 R is the true interaction value for protein–drug pair ði� jÞ,

Table 1. The setting of hyper-parameters in BridgeDPI

Hyper-parameter Value

Protein Filter size of CNNp 25

Filter num of CNNp 64

Neuron num of FFNlocal
p 128

Neuron num of FFNglobal
p 1024, 128

Drug Filter size of CNNd 7

Filter num of CNNd 64

Neuron num of FFNlocal
d 128

Neuron num of FFNglobal
d 1024, 256, 128

Bridge graph Num of bridge nodes 64

Neuron num of GNN 128, 128, 128

Classification Neuron num of FFNoutput 128, 1
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H is the set of all parameters in our model, k is an adjustable regular-
ization coefficient that balances the terms.

2.3 Implementation details
We use Pytorch 1.6.0 (Paszke et al., 2019) to implement BridgeDPI.
The Adam (Kingma and Ba, 2019) optimizer with learning rate
0.001 is used in our experiments. And the L2 regularization coeffi-
cient k is set to 0.001. For each epoch, the data of protein–drug pairs
are randomly shuffled and the batch size is set to 512. BridgeDPI
will be trained for 100 epochs and the model with the best AUROC
on the validation set will be retained. For the setting of other hyper-
parameters, such as the number of layers, the number of neurons,
the ratio of dropout and others, experiments are carried out to
choose their values according to the performance on the validation
set. All of the experimental processes are running on one NVIDIA
GeForce RTX 1080 Ti GPU. And the final hyper-parameters’ setting
of BridgeDPI is shown in Table 1.

For proteins, we use a 1D CNN, which has 64 filters with width
25 to extract its local features. After that, a one-layer FFN is used to
transform the local features to a 128-dimension space. For protein’s
global features, we introduce a two-layer FFN for non-linear trans-
formation, containing 1024 and 128 neurons, respectively. For
drugs, we employ a 1D CNN with 64 filters of width 25 to extract
its local features. Then, a one-layer FFN is also used to transform
the local features to the 128-dimension space. For drug’s global fea-
tures, we introduce a three-layer network for non-linear transform-
ation, containing 1024, 256 and 128 neurons, respectively. Their
outputs are all 128-dimension vectors that serve as the embeddings
of protein/drug nodes on the bridge graph. For bridge graph, we
introduce 64 bridge nodes with the same 128 dimensions as protein/
drug nodes in the graph. Then, we use a three-layer GNN to capture
the network-level information, which means that each node can ag-
gregate at most three-depth neighbor information outwards. In the
end, the scores of the interactions between proteins and drugs are
obtained through a two-layer FFN with 128, 1 neurons. Moreover,
we also use the dropout technique (Srivastava et al., 2014) to im-
prove BridgeDPI’s generalization and the dropout rate is set to 0.5.

3 Results

3.1 Performance on the BindingDB dataset
To evaluate the performance of BridgeDPI in predicting DPIs, we
compare BridgeDPI with some methods including Tiresias (Fokoue
et al., 2016), E2E (Gao et al., 2018), CPI-GNN (Tsubaki et al.,
2019), DrugVQA (Zheng et al., 2020), GraphDTA (Nguyen et al.,
2021) and TransformerCPI (Chen et al., 2020) on the BindingDB
dataset. In addition, we believe that a practical model should be able
to handle unseen proteins because of a mass of unknown proteins in
nature. Thus, we follow Zheng et al. (2020) to divide the test set
into a seen protein test set and an unseen protein test set, and we in-
vestigate the performance of BridgeDPI in these two test sets.

Table 2 shows the results of BridgeDPI and other baselines on these
two test sets. The symbol ‘—’ indicates the absence of results, which
means that the experimental results are not present in the cited
paper. Overall, BridgeDPI achieves SOTA performance in the test
set. The accuracy (ACC), AUROC and the area under the precision-
recall curve (AUPR) of BridgeDPI have reached to 93.0%, 97.5%
and 97.3%, respectively, which are significantly superior to the
previous method.

For the seen protein test set, we find that the results in all models
are decent, with AUROC and ACC generally exceeding 90%.
Tiresias, which infers DPIs by constructing a large-scale association
network, has a relatively low AUROC of 93.9%. The potential rea-
son is that the DPIs do not necessarily exist between proteins and
drugs with high similarity information. This also proves that it is not
enough to rely solely on the ‘guilt-by-association’ principle to infer
DPIs. Other learning-based approaches adequately learn the mech-
anism of DPIs by the priori DPI information, increasing the AUROC
to around 97%, suggesting that learning to model the interaction
mechanism is significant and necessary for DPI prediction (except
for E2E, which we speculate the reason is that the E2E model is too
partial to the performance on the unseen proteins but ignores the
seen proteins). Among them, BridgeDPI achieves the best AUROC
and ACC, reaching 98.9% and 96.1%, respectively. Compared to
other baselines, BridgeDPI not only pays attention to learn the inter-
action mechanism but also combines a network-level perspective to
assist learning. Consequently, our model can obtain more compre-
hensive feature expressions of proteins and drugs that aggregate the
network-level information. And the expressions will be more con-
ductive to the learning of the DPI mechanism.

Table 3. Performances of BridgeDPI and baselines on the

C.ELEGANS and the HUMAN datasets

Methods C.ELEGANS HUMAN

AUROC (%) F1 (%) AUROC (%) F1 (%)

k-NN 85.8 81.4 86.0 85.8

RF 90.2 83.2 94.0 87.9

LR 89.2 88.3 91.1 90.2

SVM 89.4 80.1 91.0 95.8

E2E/GOa 98.6 95.0 97.0 90.3

CPI-GNN 97.8 93.3 97.0 92.0

DrugVQA — — 97.9 95.7

GraphDTA 97.4 91.9 96.0 89.7

TransformerCPI 98.8 95.2 97.3 92.0

BridgeDPI 99.5 97.0 99.0 94.9

aGO feature required by E2E needs to be obtained from the UniProt data-

base, and there are a large number of GO missing for these two datasets.

Therefore, we only reproduced the results of the E2E/GO [without (the) GO

feature] model.

Table 2. Performances of BridgeDPI and baselines on BindingDB dataset

Methods Overall test set Seen protein set Unseen protein set

ACC

(%)

AUROC

(%)

AUPR

(%)

ACC

(%)

AUROC

(%)

AUPR

(%)

ACC

(%)

AUROC

(%)

AUPR

(%)

Tiresias (Fokoue et al. (2016) — — — 91.5 93.9 — — 68.0 —

E2E/GO (Gao et al. (2018) 78.3 — — 80.8 92.2 — 75.3 89.4 —

E2E (Gao et al. (2018) 84.8 — 91.0 85.0 91.6 — 84.6 90.5 —

CPI-GNN (Tsubaki et al. (2019) 83.2 — — 93.0 97.0 — 71.5 73.8 —

DrugVQA (Zheng et al. (2020) 88.7 93.6 — 91.0 96.0 — 86.0 92.2 —

GraphDTA (Nguyen et al. (2021) 85.5 93.6 93.4 94.7 98.2 97.8 74.4 82.7 82.7

TransformerCPI (Chen et al. (2020) 89.3 95.7 95.8 94.9 98.6 98.5 82.6 90.7 91.1

BridgeDPI 93.0 97.5 97.3 96.1 98.9 98.6 89.3 95.8 95.5
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For the unseen protein test set, it is clear that the difference in
the performance of these methods varies greatly. Tiresias yields the
worst AUROC of 68.0%, which means this method cannot be easily
applied to unseen proteins. This is easy to understand because the
unseen proteins are some isolated nodes in the drug–protein associ-
ation network, lacking enough neighbor information to infer how
they interact. Other learning-based approaches make some improve-
ments by learning the interaction mechanism of drugs and proteins.
Among them, BridgeDPI outperforms other methods and achieves
SOTA performance, with AUROC and ACC reaching 95.8% and
89.3% in unseen proteins, 3.9% and 3.8% higher than the previous
optimal method (DrugVQA). It indicates that introducing the bridge
nodes indeed improves the performance on the unseen protein set by
incorporating the network-level information and the learned inter-
action mechanism. Moreover, the constructed bridge graph also
enables BridgeDPI to learn some deeper interaction rules because
each information aggregation in the GNN is like an interaction
among proteins or drugs, or between proteins and drugs. And this is
why BridgeDPI is more accurate in predicting DPIs on both the seen
protein test set and the unseen protein test set.

3.2 Performance on the C.ELEGANS and HUMAN

datasets
Furthermore, we also conduct experiments on the C.ELEGANS
dataset and HUMAN dataset (Liu et al., 2015), which are widely
used in many studies. We choose k-Nearest Neighbor (k-NN),
Random Forest (RF), Logistic Regression (LR), Support Vector
Machine (SVM), E2E/GO, CPI-GNN, DrugVQA, GraphDTA and
TransformerCPI as the baselines. The results are shown in Table 3.
Since Gao et al. (2018) do not provide the code of E2E, we repro-
duce their model and obtain the experimental results on the two
datasets. We used the codes from GraphDTA’s (Nguyen et al.,
2021) and TransformerCPI’s (Chen et al., 2020) github to generate
their results on the BindingDB dataset. The results of other baselines
are from their original papers. As can be seen from Table 3, for the
randomly divided C.ELEGANS and HUMAN datasets, almost all
proteins in the test set are seen proteins, which means that the mod-
els can learn almost all of the protein information well from the
training dataset, resulting in very good results. In this case, the un-
supervised k-NN is slightly worse than other models, with AUROC
85.8% and F1 81.4% on the C.ELEGANS dataset, AUROC 86.0%
and F1 85.8% on the HUMAN dataset, respectively. In contrast, the
traditional supervised machine learning methods (i.e. RF, LR and
SVM) are slightly better, with AUROC of the C.ELEGANS dataset
reaching around 90.0%, AUROC of the HUMAN dataset exceeding
91.0%. The deep learning methods E2E/GO, CPI-GNN, DrugVQA,
GraphDTA, TransformerCPI and BridgeDPI all reach excellent per-
formance, with AUROC over 96.0% and F1 over 89%. Among
them, BridgeDPI achieves the best performance, with AUROC, F1
of 99.5%, 97.0% on the C.ELEGANS dataset, respectively, and
99.0%, 94.9% on the HUMAN dataset, respectively. The results
are in line with our expectations. Because the models such as KNN,
RF, LR and SVM, without high-quality features, are difficult to
learn complex non-linear relationships among DPIs, while the deep

learning models have strong feature extraction abilities to learn the
interaction rules. On this basis, BridgeDPI integrates the network-
level information and the learned interaction mechanism, further

improving the results.

3.3 Performance on an independent test set
Although we have achieved excellent results on these benchmark

datasets, such datasets have serious data bias, which will lead to
the inflated performance (Chen et al., 2019; Yang et al., 2020). In

order to investigate the realistic performance of our model, we
conduct the following experiments: train models on the
BindingDB dataset and test models on the DUD-E dataset.

Additionally, we propose an evaluation indicators called pP@k,
which is defined as the average protein-level precision at the top k
predictions (as shown in Formula 12). pP@k indicates the accur-

acy of the model for k recalled drugs from the protein level, which
can reasonably evaluate the reliability of DPI prediction methods

in drug screening.

pP@k ¼ 1

m

Xm
i¼1

P
j2ŝk

r ðiÞ
yði�jÞ

k
; (12)

where m is the number of proteins, ŝk
r ðiÞ is the set of k most possible

drugs recalled by the model for protein i, yði�jÞ 2 f0; 1g is the true
interaction value for the pair of protein i and drug j.

We set k ¼ 10; 20; 40;80;160 in this experiment. The results are
shown in Table 4. Not surprisingly, the performances of these mod-

els are all greatly reduced, with AUROC of the SVM even less than
50%. Compared with other models, the performance of BridgeDPI

is the best. For AUROC, BridgeDPI is 9.41%, 8.58%, 29.14%,
32.03%, 46.79% higher than E2E/GO, KNN, RF, LR, SVM, re-
spectively. Moreover, if the whole BindingDB dataset is used for

training, the AUROC of BridgeDPI and E2E/GO will reach to
77.2% and 74.8%, respectively. For pP@k, BridgeDPI can accurate-

ly recall more than 60% of drug candidates at k � 80, which sig-
nificantly outperforms other compared methods. And if the whole
BindingDB dataset is used for training, BridgeDPI can accurately re-

call more than 80% of drug candidates at k � 40. The results show
the reliability of BridgeDPI and that BridgeDPI performs better even
under a more realistic condition.

Table 4. Performances of different methods on an independent test set

Methods AUROC (%) pP@10 (%) pP@20 (%) pP@40 (%) pP@80 (%) pP@160 (%)

Training on the customized BindingDB dataset (Gao et al., 2018).

k-NN 65.3 40.3 41.3 40.9 40.3 37.8

RF 54.9 42.0 41.2 40.5 40.0 37.6

LR 53.7 47.9 48.4 48.6 47.1 42.2

SVM 48.3 40.3 39.7 38.7 37.8 35.0

E2E/GO 64.8 53.1 54.8 54.8 52.7 46.4

BridgeDPI 70.9 68.2 67.5 66.1 61.6 53.1

Training on the full BindingDB dataset (Gilson et al., 2016).

E2E/GO 74.8 70.1 70.1 67.5 62.5 53.3

BridgeDPI 77.2 85.2 84.8 81.5 73.3 60.4

Fig. 3. Performance of BridgeDPI with different number of bridge nodes
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3.4 Effect of the number of bridge nodes
By introducing the bridge nodes, BridgeDPI builds multiple bridges
between all proteins and drugs. Thus, we carry out further study
about the influence of the number of bridge nodes. We apply dif-
ferent numbers (i.e. 1, 2, 4, 8, 16, 32, 64, 128, 256) of bridge
nodes to observe the performance on the BindingDB dataset.
Figure 3 shows the results of the overall test set, the seen protein
set and the unseen protein set for different numbers of bridge
nodes. As we can see, the performances of different numbers of
bridge nodes are stable on seen proteins but fluctuate greatly on
unseen proteins. As the number of bridge nodes increases, the
AUROC and AUPR of the unseen protein set are continuously
improving, and thus it leads a better performance on the overall
test set. This is in line with our respective because the bridge
nodes’ connection to all proteins and drugs means the unseen pro-
teins are no longer an isolated node, which will make predicting
DPIs easier. When the number of bridge nodes is 64, the perform-
ance is the best. More bridge nodes can explore more potential re-
lationship between proteins and drugs together. However, too
many bridge nodes will lead some nodes to play a similar role in
voting and bring the risk of overfitting and excessive costs.

4 Case study

In order to show the performance of BridgeDPI in practical virtual
screening, we select two important viral targets, 3C-like protease
(3CLpro) and RNA-dependent RNA polymerase (RdRp), as the re-
search objects. The two targets play a major role in the protein repli-
cation/transcription and host cell recognition, and therefore are vital
for the viral reproduction and spread of infection (Murugan et al.,
2020). As same as (Kim et al., 2021), we also select some candidates,
such as Baricitinib and Ivermectin, to test the predicted interactions.
First, we obtain the amino acid sequences of the two targets [the se-
quence of 3CLpro is from the Protein Data Bank (PDB) database
(Sussman et al., 1998) with PDB ID 6WQF, RdRp is from the
National Center for Biotechnology Information (NCBI; Pruitt et al.,
2007) with NCBI YP_009725307.1]. Then, the sequences and the
candidate molecules are fed into BridgeDPI. Finally, the interaction
probabilities of them are predicted, as shown in Table 5.

Table 5 shows that Baricitinib, Remdesivir, Lopinavir and
Ritonavir are all very potential drugs that can interact with the
3CLpro; Ivermectin, Redmdesivir, Sofosbuvir, Daclatasvir, Lopinavir
and Ritonavir are all effective drugs that can bind with the RdRp. In
fact, many studies and clinical trials also validate the results (Caly
et al., 2020; Elfiky, 2020; Favalli et al., 2020; Kalil et al., 2021;
Sadeghi et al., 2020; Stower, 2020). In contrast, unrelated drugs such
as Aspirin have little interaction potential with the viral targets. These
experimental results verify the validity and reliability of BridgeDPI in

predicting new drugs, indicating that BridgeDPI plays a guide role in
actual research and drug discovery.

5 Conclusion

In this study, we propose an end-to-end deep learning framework to
predict DPIs by introducing the network-level information to a
learning-based framework. We construct a supervised drug–protein
network and introduce a class of bridge nodes to it. The bridge
nodes bridge the gap among drugs and proteins by information pass-
ing among diverse drugs and proteins, and thus we can use a GNN
to capture the network-level information and rely on a supervised
‘guilt-by-association’ to perform predictions. Therefore, our model
integrates more comprehensive features by taking into account both
the advantages of network-based methods and learning-based meth-
ods. The experiments show that our approach outperforms other
competing methods on BindingDB, C.ELEGANS, Human, DUD-E
datasets and achieves SOTA performances. Moreover, the case
study with concrete examples also reaffirms the usefulness of our
model.
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