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Abstract—Accurately pinpointing the locations where 
proteins bind to DNA is crucial for the discovery of novel 
drug targets and the development of targeted therapeutic 
strategies.  In this study, a graph neural network 
architecture called GraphSAGE has notably improved the 
precision of predicting protein-DNA binding sites. This 
model represents protein sequences as a graph, with amino 
acid residues serving as nodes, and employs a pre-trained, 
large-scale protein language model as ESM to derive 
residues’ features. The effectiveness of the model was 
rigorously evaluated using ten-fold cross-validation on 
benchmark datasets, including PDNA-316, PDNA-335, and 
PDNA-543, yielding Matthews Correlation Coefficients 
(MCC) of 0.741, 0.750, and 0.735, respectively. These results 
demonstrate considerable improvements over the existing 
state-of-the-art methods, with respective increments of 0.207, 
0.185, and 0.174. Furthermore, the methodology is not only 
confined to binding site prediction but is also extensible to 
applications in protein functional annotation, drug 
discovery, and pharmaceutical design. The entire codebase 
for this project can be accessed without restriction through 
the subsequent URL: 
https://github.com/primrosehry/iProtDNA-SAGE.  

Keywords-protein-DNA binding site; graph neural 

network; imbalanced dataset learning 

I.  INTRODUCTION 

The precise prediction of protein-DNA binding sites is 
crucial for understanding the mechanisms of protein-DNA 
interactions and may provide key information for drug 
development and therapeutic strategies[1]. However, 
prevalent empirical techniques tend to be expensive and 
laborious. Therefore, developing fast and accurate 
computational prediction algorithms is particularly 
important. Predictive models are expected to accelerate 
research processes, reduce costs, and play a broad role in 
the biomedical field. 

This prediction task also faces many challenges. 
Firstly, data on protein-DNA binding sites is relatively 
scarce, making it difficult to obtain representative training 
data. Secondly, compared to other bioinformatics tasks, 
predicting protein-DNA binding sites requires 
consideration of more factors, such as the physicochemical 
properties of protein and DNA sequences and the 
interactions between sequences[2]. 

In previous studies, a range of approaches have been 
adopted for pinpointing sites of protein-DNA interaction, 
encompassing the analysis of protein sequences, 
phylogenetic insights, secondary structural examination, 
and propensities for binding of specific residues. Yu et al.[3] 
proposed the TargetS model, which integrates these 
features to construct discriminative features for prediction. 
Hu et al.[4] developed the TargetDNA method which 
utilizes primary sequence information, evolutionary data, 
and predicted solvent accessibility to recognize protein-
DNA binding residues. Ding et al.[5] used protein 
sequences and discrete cosine transformations to extract 
features and combined relative solvent accessibility 
information to improve accuracy. Shen et al.[6] introduced 
MLAB method, which harnesses local evolutionary 
information from primary sequence data classified DNA-
protein binding sites without 3D information. PredDBR[7], 
introduced by Hu and colleagues, detects residues that 
interact with DNA through the analysis of PSFM, PSS, and 
ligand-binding residue prediction probabilities as features, 
when the spatial configuration of the protein is not 
accessible. Wang et al.[8] introduced iDRNA-ITF on 
sequence data, which utilizes inductive and transfer 
framework to incorporate the functional characteristics of 
residues. This approach aids in the recognition of residues 
that interact with DNA and RNA. 

Dealing with imbalanced datasets poses a significant 
challenge in forecasting protein-DNA interaction regions. 
Zhu et al.[3] designed the E-HDSVM algorithm, using a 
two-stage imbalanced learning approach to develop 
DNAPred, resulting in substantial improvements in the 
precision of determining protein-DNA interaction regions. 
Song et al.[9] crafted a refinement method harnessing the 
interaction likelihood of focal residues and their 
surroundings to rectify the skewed outcomes from the 
classifier, thereby accurately foreseeing the particular 
residues involved in protein-DNA interfaces. 

Neural networks' progress has led to a growing 
adoption of deep learning models for this particular task. 
Cao and colleagues recommended employing deep 
learning models with convolutional layers to enhance 
accuracy in predicting protein-DNA binding sites[10]. In 
2019, Nguyen et al.[11] created the iProDNA-CapsNet, 
which utilizes a position-specific scoring matrix (PSMM) 
and capsule neural networks (CapsNets). Hendrix et al.[12] 
designed and tested a deep learning framework called 
DeepDISE using the 3D coordinates and surface atom 
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types of proteins to successfully predict DNA binding 
residues. Guan et al.[13] proposed a seq2seq model utilizing 
transformers to extract sequence features and improving 
identifying performance of protein-DNA binding residues. 
Yuan et al.[14] introduced GraphSite, a novel approach for 
identifying DNA-binding residues building upon 
AlphaFold2’s protein structure prediction capabilities. 
However, proteins, as biological macromolecules, have 
complex topological structures, and CNNs are mainly used 
to process data in Euclidean space, which is not convenient 
for processing non-Euclidean protein topological 
structures[15]. 

This study proposes an innovative approach that adopts 
graph neural networks to forecast protein-DNA binding 
sites. The model first converts protein sequences into 
graph-structured data, then uses graph inductive 
representation learning models to extract features of nodes 
(amino acids) in the graph, and finally uses MLP to predict 
binding sites. The model’s efficacy has been confirmed 
through extensive testing across various datasets. 

II. METHODS 

A. Dataset Description 

Assessing the model's forecasting accuracy involved 
the use of five distinct datasets for protein-DNA interfaces: 
543[4], 335, 316[3], 52[6], and 41[4]. Detailed statistics of 
these datasets are presented in TABLE I. , the datasets 543, 
335, and 316 were utilized in ten-part cross-validation 
assessments, whereas 41 and 52 served for standalone 
verification exercises. 

The PDNA-543 collection encompasses 543 proteins 
that bind to DNA, while the PDNA-41 set contains 41 of 
these protein arrangements. In the combined set of these 
two datasets, the homology between any two sequences 
does not exceed 30%. 

The PDNA-335 dataset is composed of 335 sequences 
of DNA-binding proteins, and the PDNA-52 dataset 
contains 52 sequences. Within the PDNA-335 dataset, no 
sequence has a pairwise identify exceeding 40% with any 
sequence in PDNA-52 dataset. 

Lastly, the PDNA-316 set, assembled by researchers 
including Si[16], consists of 316 DNA-binding protein 
sequences, with no more than 30% sequence similarity 
among any pair within the compilation. 

TABLE I.  SUMMARY STATISTICS FOR THE FIVE BENCHMARK 
DATASETS 

Dataset 
No. of 

Sequences 
No. of Positive 

samples 
No. of Negative 

samples 
Imbalance 

Ratio 

PDNA-543 543 9549 134995 14.14 

PDNA-335 335 6461 71320 11.04 

PDNA-316 316 5609 67109 11.96 

PDNA-52 52 973 16225 16.68 

PDNA-41 41 734 14021 19.10 

B. Framework of iProtDNA-SAGE 

The iProtDNA-SAGE model discussed in this paper 
employs GraphSAGE[16] for the identification of binding 
regions involving proteins and DNA. The comprehensive 
framework of this model is depicted in Figure 1. This 
process typically involves the subsequent steps: 

 
Figure 1.  The framework of iProtDNA-SAGE. 

1) Sequence to Graph Conversion: Protein sequences 
are converted into graph structures with each amino acid 
corresponding to a node. Features of the amino acid 
residue are extracted using the pre-trained ESM2 model[3], 
assigning each amino acid a feature vector of 5120 
dimensions. The depiction of the protein's adjacency 
matrix is outlined below: 

a) First, obtain the corresponding PDB file from the 
Protein Data Bank, based on the protein sequence ID in 
the dataset. 

b) Extract the three-dimensional coordinates of the 
Cα atoms of each residue from the PDB file. Then, 
represent the coordinates of the Cα atoms as the spatial 
positions of the residue molecules[17].  

c) Calculate the distance between the Cα  atoms of 
each residue pair within the residue sequence and generate 
a distance matrix. For example, for a residue sequence of 
length N, an N×N distance matrix will be generated. The 
matrix is a symmetric, with entries at position (i, j) and (j, 
i) representing the spatial separation of the Cα atoms from 
residues i and j, respectively. 

d) Select a distance threshold; when the distance 
between two residues is less than this threshold, it is 
considered that there is an interaction relationship 
between these two residues[18]. Then, set the values in the 
distance matrix that are less than the distance threshold to 
1, and the rest to 0, while setting the main diagonal of the 
matrix to 0, thus obtaining the adjacency matrix of the 
protein graph. 

2) Feature Extraction: Informatin pertaining to the 
protein’s structure and function is captured by extracting 
features from its graph representation. These features may 
include the amino acid's properties, the connectivity of 
nodes, and the overall topology of the graph. 

3) Graph Convolutional Networks (GCNs): Graph 
convolutional layers, such as the SAGEConv layer 
mentioned earlier, are applied to learn node 
representations. These layers integrate information from 
the surrounding nodes of a given node to refine its feature 
vector, allowing the model to capture the local structure 
around each amino acid. 

4) Training and Prediction): the MLP is employed for 
the identification of sites where proteins interact with 
DNA. After passing through the SAGEConv layer, the 
model obtains a set of feature vectors representing the 
protein-DNA complex, which are then input into the MLP 
for further processing and classification. 
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C. Evaluation Indexes 

To ensure a comprehensive and fair evaluation of the 
model’s performance, five metrics are utilized: Acc, Sen, 
Spe, Pre, and the MCC. The calculations for these metrics 
are detailed below: 

 
TP

TP FN
Sen =

+

 (1) 

 
TN

 Spe
TN FP

=

+

 (2) 

 
TP TN

Acc
TP FN TN FP

+
=

+ + +

 (3) 

 
TP

Pre
TP FP

=

+

 (4) 

 
TP TN FP FN

MCC
(TP FN)(TP FP)(TN FN)(TN FP)

⋅ − ⋅
=

+ + + +

 (5) 

In this context, TP refers to the number of instances 
correctly identified as positive, while TN represents the 
number of instances correctly identified as negative; FP 
refers to the number of instances incorrectly identified as 
positive rather than negative; FN pertains to the number of 
instances incorrectly identified as negative rather than 
positive. 

Specifically, the present study predicts a binary 
classification problem with class imbalance. Therefore, the 
MCC holds particular significance as it comprehensively 
considers all aspects of the confusion matrix, thereby 
providing a more balanced measure that is independent of 
the class distribution. This makes it an excellent choice for 
evaluating models on imbalanced datasets. 

III. RESULTS AND DISCUSSIONS 

A. Distance threshold between amino acids 

The distance threshold between amino acids is a crucial 
parameter in constructing the protein graph. To determine 
the optimal threshold, we set different values on the 
datasets 543, 316, and 335, conducting cross-validation 
across ten partitions. The outcomes are presented in 
TABLE II to IV.  

The experimental result reveals that the MCC metric 
achieves its optimal value across all three datasets when 
the distance threshold is fixed at 8Å. As the distance 
threshold increases, the MCC tends to decrease. A higher 
threshold results in more edges being generated in the 
graph, which, while allowing the target residues to 
aggregate information from more adjacent residues, may 
also introduce more noise. This could avoid the model 
quickly memorizing the dataset throughout the ten-fold 
cross-validation training process. 

B. Comparison with Other Methods 

1) Comparison and Analysis of 10-Fold Cross-

Validation on the Training Set 
On the 316 dataset, iProDNA-SAGE was subjected to 

a ten-fold cross-validation process, with results compared 
against models like DBS-PRED[3], BindN[3], 
DNABindR[19], DP-Bind[20], BindN-rf[21], TargetDNA[4], 
EC-RUS[5], DNAPred, PredDBR[7], and ULDNA[3]. The 
results are presented in TABLE V.  

TABLE II.  TEN-FOLD CROSS VALIDATION RESULTS OF 
IPROTDNA-SAGE ON PDNA-543 

Threshold(Å) Sen Spe Acc Pre MCC 
8 0.802 0.978 0.966 0.719 0.741 

10 0.783 0.977 0.964 0.709 0.726 
12 0.784 0.975 0.963 0.692 0.717 
15 0.752 0.978 0.963 0.710 0.711 
18 0.742 0.978 0.963 0.708 0.705 

a. The parameters for the FocalLoss loss function are set to α=0.85 and γ=2.25. 

TABLE III.  TEN-FOLD CROSS VALIDATION RESULTS OF IPROTDNA-
SAGE ON PDNA-316 

Threshold(Å) Sen Spe Acc Pre MCC 
8 0.779 0.976 0.961 0.733 0.735 

10 0.784 0.974 0.959 0.714 0.726 
12 0.772 0.973 0.958 0.709 0.717 
15 0.736 0.977 0.959 0.729 0.710 
18 0.745 0.975 0.958 0.716 0.707 

b. The parameters for the FocalLoss loss function are set to α=1 and γ=2. 

TABLE IV.  TEN-FOLD CROSS VALIDATION RESULTS OF IPROTDNA-
SAGE ON PDNA-335 

Threshold(Å) Sen Spe Acc Pre MCC 
8 0.813 0.973 0.960 0.733 0.750 

10 0.810 0.969 0.956 0.706 0.732 
12 0.811 0.969 0.956 0.704 0.732 
15 0.798 0.970 0.957 0.713 0.731 
18 0.778 0.972 0.956 0.714 0.721 

c. The parameters for the FocalLoss loss function are set to α=1 and γ=2. 

TABLE V.  COMPARISON OF TEN-FOLD CROSS-VALIDATION 
RESULTS OF IPROTDNA-SAGE WITH OTHER METHODS ON PDNA-

316 

Method Sen Spe Acc MCC 
DBS-PRED 0.530 0.760 0.750 0.170 

BindN 0.540 0.800 0.780 0.210 
DNABindR 0.660 0.740 0.730 0.230 

DP-Bind 0.690 0.790 0.780 0.290 
BindN-rf 0.670 0.830 0.820 0.320 

TargetDNA 0.430 0.950 0.910 0.375 
EC-RUS(WSRC)  0.511 0.950 0.916 0.439 

DNAPred 0.521 0.951 0.918 0.452 
PredDBR 0.561 0.953 0.921 0.497 
ULDNA 0.676 0.950 0.929 0.561 

iProtDNA-SAGE  0.780 0.976 0.961 0.735 

 
On the PDNA-543 dataset, iProDNA-SAGE was 

subjected to ten-fold cross-validation, and its performance 
was evaluated against other models such as iProDNA-
CapsNet[11], TargetDNA, Hierarchical Feature[13], 
DNAPred, EC-RUS, PredDBR, and ULDNA. The results 
can be found in TABLE VI.  

TABLE VI.  COMPARISON OF TEN-FOLD CROSS-VALIDATION 
RESULTS OF IPROTDNA-SAGE WITH OTHER METHODS ON PDNA-

543 

Method Sen Spe Acc MCC 
iProDNA-CapsNet 0.642 0.850 0.837 0.313 

TargetDNA 0.406 0.950 0.914 0.339 
Hierarchical Feature 0.452 0.954 0.928 0.352 

DNAPred 0.449 0.950 0.917 0.373 
EC-RUS (WSRC) 0.476 0.949 0.918 0.392 

PredDBR 0.454 0.955 0.914 0.415 
ULDNA 0.668 0.950 0.931 0.534 

iProtDNA-SAGE  0.802 0.978 0.966 0.741 

 
On the PDNA-335 dataset, iProDNA-SAGE 

underwent ten-fold cross-validation, with performance 
evaluated against PredDBR, TargetS, EC-RUS, and 
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DNAPred models. Details of these findings are presented 
in TABLE VII.  

TABLE VII.  COMPARISON OF TEN-FOLD CROSS-VALIDATION 
RESULTS OF IPROTDNA-SAGE WITH OTHER METHODS ON PDNA-

335 

Method Sen Spe Acc MCC 
EC-RUS 0.4870 0.951 0.926 0.378 
TargetS 0.4170 0.945 0.899 0.362 

DNAPred 0.5430 0.917 0.886 0.390 
PredDBR 0.4259 0.953 0.910 0.390 
ULDNA 0.6760 0.948 0.925 0.565 

iProtDNA-SAGE 0.8130 0.973 0.960 0.750 

 
Tables V through VII demonstrate that iProDNA-

SAGE significantly outperforms other prediction models 
on the datasets 316, 543, and 335. Notably, its MCC 
metric exceeds that of the highest-performing ULDNA 
model by approximately 0.18. 

2) Comparison and Analysis on Independent Test Sets 
To expand the evaluation of iProDNA-SAGE's 

accuracy, this study conducted standalone tests on 41 test 
cases using the 543 dataset as the training collection, and 
on 52 test cases using the 335 dataset as the training data. 
The model was then compared with the two current top-
performing predictors, PredDBR and ULDNA, in 
comparative experiments, with the results presented in 
TABLE VIII.  

TABLE VIII.  COMPARISON OF INDEPENDENT TESTING OF IPROTDNA-
SAGE ON PDNA-41 AND PDNA-52 

DataSet Method Sen Spe Acc MCC 

PDNA-41 
PreDBR 0.391 0.968 0.939 0.359 
ULDNA 0.556 0.970 0.950 0.499 

iProtDNA-SAGE 0.492 0.978 0.954 0.489 

PDNA-52 
PreDBR 0.539 0.958 0.935 0.451 
ULDNA 0.704 0.944 0.931 0.517 

iProtDNA-SAGE 0.679 0.946 0.931 0.505 

 
As shown in TABLE VIII. , iProDNA-SAGE achieved 

excellent performance on both independent test sets. It 
demonstrated substantial enhancement compared to 
PredDBR, achieving an MCC boost of 0.13 for the 41 
dataset and a 0.05 rise for the 52 dataset. While iProDNA-
SAGE's performance is slightly behind the current best 
predictor, ULDNA, the difference is minimal. However, 
iProDNA-SAGE demonstrated superior performance in 
the ten-fold cross-validation across the three training sets, 
with remarkably consistent results across all datasets. 

These series of comparative experimental results 
indicate that iProDNA-SAGE exhibits stable performance 
across different datasets, achieving excellent results in both 
cross-validation and independent testing. 

IV. CONCLUSION 

This paper introduces an approach leveraging both 
sequence and structural data to forecast regions where 
proteins interact with DNA. It begins by creating a protein 
graph, with nodes representing the protein's residues, with 
connections between nodes determined by a truncated 
distance threshold. Subsequently, graph neural networks 
are employed to generate feature representations for the 
nodes, followed by a classifier for node classification. 

Additionally, ESM2, which is trained beforehand on 
protein sequences, is employed to derive characteristics for 

the amino acid units. These features are subsequently 
merged with the GraphSAGE approach to construct an 
encoder that refines the node embeddings. To boost the 
accuracy of the protein-DNA interaction site forecaster on 
skewed datasets, the FocalLoss function is implemented as 
the objective function. Experiments conducted across five 
benchmark datasets and comparisons with various existing 
algorithms demonstrate that iProtDNA-SAGE achieves 
significant improvements in identifying interaction regions 
between proteins and DNA, effectively validating the 
model's strengths. 
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