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Abstract

Protein-DNA and protein-RNA interactions are involved in many biological activities. In the post-genome era, accurate identification
of DNA- and RNA-binding residues in protein sequences is of great significance for studying protein functions and promoting new
drug design and development. Therefore, some sequence-based computational methods have been proposed for identifying DNA-
and RNA-binding residues. However, they failed to fully utilize the functional properties of residues, leading to limited prediction
performance. In this paper, a sequence-based method iDRNA-ITF was proposed to incorporate the functional properties in residue
representation by using an induction and transfer framework. The properties of nucleic acid-binding residues were induced by the
nucleic acid-binding residue feature extraction network, and then transferred into the feature integration modules of the DNA-binding
residue prediction network and the RNA-binding residue prediction network for the final prediction. Experimental results on four
test sets demonstrate that iDRNA-ITF achieves the state-of-the-art performance, outperforming the other existing sequence-based
methods. The webserver of iDRNA-ITF is freely available at http://bliulab.net/iDRNA-ITF.

Keywords: induction and transfer framework, DNA- and RNA-binding residue identification, nucleic acid-binding residue identifica-
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Introduction
Proteins and nucleic acid (DNA or RNA) interactions
are involved in many biological processes, such as
regulation of gene expression, signal transduction,
post-transcriptional modification and regulation, etc.
[1–4]. Therefore, accurate identification of DNA- and
RNA-binding residues is essential in designing novel
drugs and studying protein and nucleic acid interaction
mechanisms [5]. Many wet-lab experimental meth-
ods were employed to detect DNA- and RNA-binding
residues in proteins, such as nuclear magnetic resonance
spectroscopy and X-ray [6]. However, they are time-
consuming and relatively expensive. In this regard, it
is very important to develop accurate and low-cost
computational methods for large-scale screening of
DNA- and RNA-binding residues in proteins [2, 7–9].

The computational methods include sequence- and
structure-based methods. The sequence-based methods
identify the functional sites from the protein sequences,
such as TargetS [10], RNABindRPlus [11], TargetDNA
[5], DNAPred [12], DRNAPred [1], SVMnuc [13], NCBR-
Pred [6], etc. They are based on various sequence-
derived features, including evolutional information,

physicochemical properties and predicted secondary
structures (SS). iDeepMV [14] utilizes several multi-
view features, including amino acid sequence view and
dipeptide component view. PreRBP-TL [15] predicts the
specific RNA-binding proteins by using the evolutionary
information. The structure-based methods identify the
functional sites from the three-dimensional structure
of a protein. Structure-based methods additionally use
the spatial features extracted from the structures to
identify the DNA- and RNA-binding residues compared
with the sequence-based methods, such as aaRNA [16],
NucleicNet [17], DNABind [18], GraphBind [2], etc. The
performance of the structure-based method is generally
better than that of the sequence-based method. This
is because the structures can provide spatial features
that are more closely related to functions. With the
development of sequencing technology, more and
more protein sequences with unknown functions and
structures should be analyzed, the applicability of
the structure-based method is limited. Although some
protein structure prediction tools, such as Modeller [19],
trRosseta [20] and AlphaFold [21] can predict the three-
dimensional structures based on the protein sequences,
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the differences between the predicted structures and
the real structures still exist. The structure-based
methods often failed to accurately predict the DNA-
and RNA-binding residues in proteins without known
structures. For example, GraphBind [2] is the state-
of-the-art structure-based method for the task of
identifying DNA- and RNA-binding residues in proteins
with known structures, but its performance decreased
obviously when it is only based on the predicted protein
structures.

Currently, sequence-based methods usually use
feature extraction tools to obtain sequence-derived
features, such as the amino acid information, etc. The
extraction process of these features fails to consider
the functional properties of the residues. However, rich
residue representation is critical for improving model
performance. Therefore, we designed induction and
transfer framework to incorporate the functional proper-
ties in residue representation to identify DNA- and RNA-
binding residues. In the induction phase, we introduced
the nucleic acid-binding function properties of residues,
related to both DNA- and RNA-binding residues. Nucleic
acid-binding residue training signal was used to guide the
network to learn nucleic acid-binding residue features. In
the transfer stage, the inductive features and the features
learned by the other modules were fused, and the DNA-
binding residue training signal and the RNA-binding
residue training signal were respectively used to guide
the learning to obtain task-transfer features and make
the final prediction. The ablation experiments showed
that the different modules in the induction and transfer
framework are complementary. The experimental results
showed that iDRNA-ITF achieves the best performance
among the sequence-based methods, and outperforms
the structure-based methods when identifying DNA-
and RNA-binding residues in proteins without known
structures.

Materials and methods
Datasets
The datasets used in this study were constructed by
Graphbind [2], including DNA-573_Train, RNA-495_Train,
DNA-129_Test and RNA-117_Test. All the proteins were
collected from the BioLiP database [22]. The sequence
similarity of protein chains in each training set is <30%,
and the sequence similarity between the protein chains
in the test set and the protein chains in the training set
is <30% [2]. For better training models and evaluation
methods for the performance of predicting DNA- and
RNA-binding residues, we recombine these datasets
because each dataset only contains a single type of
binding proteins. The DNA-573_Train and RNA-495_Train
were combined to construct a hybrid benchmark set
DRNA-1068_Bench. The benchmark set was split into
DRNA-962_Train (90%) and DRNA-106_Valid (10%), which
were used for training the model and optimizing the
parameters, respectively. The hybrid test DRNA-246_Test

was constructed by combining DNA-129_Test and RNA-
117_Test, it was used to evaluate the cross-prediction
problem. The statistical information is listed in Table 1.

Empirical feature
In this study, a variety of feature extraction tools were
used to extract the sequence-derived features, includ-
ing evolutionary information, physicochemical proper-
ties and predicted SS.

We used Position-Specific Scoring Matrix (PSSM) [23],
Position-Specific Frequency Matrix (PSFM) and Hidden
Markov Model (HHM) to represent the evolution informa-
tion of proteins. For a given protein sequence P with L
amino acids, we used PSI-BLAST [24] with default param-
eters to search against the nrdb90 database [25] to obtain
the PSSM profiles and PSFM profiles with the size of L×20.
The sigmoid function [2] was used to normalize each
element x in PSSM to the range [0,1]:

x = 1
1 + e−x

(1)

The HHblits [26] with default parameters was employed
to search against the uniclust30 database [27] to obtain
the HHM profiles with the size of L × 30. Each element
e in HHM was normalized to the range of [0,1] by the
following rule [6]:

e =
{

0.0, if e is∗
2.0−e×0.001, otherwise

(2)

The predicted structural features of amino acids were
generated by SPIDER2 [28], including 8-dimensional SS,
2-dimensional CN and 4-dimensional HSE. In addition,
seven physicochemical properties (SEVEN; [29]) including
steric parameter, polarizability, volume, hydrophobicity,
isoelectric point, helix probability and sheet probability
were obtained. The element s in predicted SS and SEVEN
were normalized to the range of [0,1] by the min–max
scaling:

s = s − smin

smax − smin
(3)

where smin is the minimum values of each column in
these features, smax is the maximum values of each col-
umn in these features. Finally, for the jth residue, empiri-
cal features hEmp

j ∈ R
1×91 were obtained by concatenating

PSSM, PSFM, HHM, SS, CN, HSE and SEVEN.

Induction and transfer framework
A site in the sequences may have different molecular
functions, which we called residues with different func-
tional properties. Nucleic acid-binding function is associ-
ated with both DNA-binding function and RNA-binding
function, and they have similar characteristics. Moti-
vated by transfer learning, we designed an induction and
transfer framework (see Figure 1) to extract and transfer
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Table 1. The statistical information of the datasets

Dataset DBRsa RBRsb Non-NABRsc DBPsd RBPse

DNA-573_Train 14 479 0 145 404 573 0
RNA-495_Train 0 14 609 122 290 0 495
DNA-129_Test 2240 0 35 275 129 0
RNA-117_Test 0 2031 35 314 0 117
DRNA-1068_Bench 14 479 14 609 267 694 573 495
DRNA-962_Train 13 256 13 252 233 997 503 446
DRNA-106_Valid 1223 1357 33 697 50 49
DRNA-246_Test 2240 2031 70 589 129 117

aDBRs represent the DNA-binding residues. bRBRs represent the RNA-binding residues. cNon-NABRs represent the non-nucleic acid-binding residues. dDBPs
represent the DNA-binding proteins. eRBPs represent the RNA-binding proteins.

nucleic acid-binding functional features to identify DNA-
binding residues and RNA-binding residues. In the induc-
tion phase, the task of identifying nucleic acid-binding
residues was used to induce the nucleic acid-binding fea-
tures, which are related to both DNA- and RNA-binding
residues. In the transfer phase, the inductive features and
the features learned by the other modules were fused,
and the DBR training signal and the RBR training signal
were respectively used to guide the learning to obtain
task-transfer features and make the final prediction.
To develop the networks for the three residue recog-
nition tasks, we used the ‘one-versus-all’ method [30]
to transform the DRNA-962_Train and DRNA-106_Valid
into three binary training and validation sets of the task
network (STrain

NAB and SValid
NAB , STrain

DB and SValid
DB , STrain

RB and
SValid

RB ). For the nucleic acid-binding residue network, both
the DBRs and RBRs were treated as positive samples.
For the DNA-binding residue network and RNA-binding
residue network, the DBRs and RBRs were respectively
treated as positive samples. Through the induction of
the common characteristics and transferring the com-
mon characteristics to downstream tasks with specific
signals, the final prediction models can obtain better
generalization performance.

Architecture of neural networks
The general network structures of the three tasks were
shown in Figure 2A. We used feature extraction tools to
extract residue-level empirical features from the protein
sequences in the dataset, and then specific local features
are learned through the convolutional attention module
according to the training signals of different tasks, and
the feature integration module is employed to concate-
nate empirical features and specific local features. The
integrated features are input to the BiGRU module to
extract sequence information, and then make classifi-
cation by the fully connected layer. The networks of dif-
ferent tasks have differences in training signal, network
parameters and feature integration module.

Convolutional attention module

If the protein sequence is treated as a text and the
amino acid is treated as a character, the nucleic acid-
binding residues can be considered as the named entities

in the text. Therefore, the idea of named entity recog-
nition (NER) and the other sequence labeling tasks in
the natural language process can be applied to identify
DNA- and RNA-binding residues in proteins. CAN-NER
[31] was proposed in the task of Chinese named entity
recognition. It mainly proposed a convolutional atten-
tion module to solve the problem of inaccurate Chinese
word segmentation. It uses local attention to capture the
relations of the central character and each context token
in the window. Considering that DNA- and RNA-binding
residue recognition task also suffers from the problem of
no clear word-level segmentation between each residue,
we learn from the convolutional attention module in
CAN-NER to extract the local features of residues. The
convolutional attention module was shown in Figure 2B.

For each window in the CNN, whose size is k. In each
window, local attention is applied to capture the rela-
tionship between the central residue and each context
residue in the window, and then the sum-pooling strategy
is used to extract the local features. For the jth residue,
the local attention output hm is calculated as follows [31]:

hm = αmhEmp
m (4)

where m ∈
{
j − k−1

2 , . . . , j + k−1
2

}
, αm is the attention

distribution, which is calculated as [31]:

αm =
exp

(
s
(
hEmp

j , hEmp
m

))
∑

n∈
{
j− k−1

2 ,...,j+ k+1
2

} exp
(
s
(
hEmp

j , hEmp
n

)) (5)

s
(
hEmp

j , hEmp
m

)
is the attention scoring function, which

is calculated as [31]:

s
(
hEmp

j , hEmp
m

)
= vT tanh

(
WhEmp

j + UhEmp
m

)
(6)

where v, W and U are the learnable parameters. The
CNN layer contains h kernels on a context window of k
residues [31],

hc
j =

∑
k

[
WC ∗ h

j− k−1
2 :j+ k−1

2
+ bc

]
(7)
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Figure 1. Induction and transfer framework of iDRNA-ITF. The nucleic acid-binding residue network was trained with STrain
NAB to summarize the features

of nucleic acid-binding residues from empirical features. Then, the features of nucleic acid-binding residues were input into the DNA-binding residue
network and the RNA-binding residue network respectively, and the features were transferred to a new feature space according to more specific task
signals. The DNA-binding residue network was trained with STrain

DB , the RNA-binding residue network was trained with STrain
RB . Finally, the prediction

scores of the DNA-binding residue network and RNA-binding residue network were respectively passed through SoftMax to obtain the final prediction
results.

Figure 2. The network architecture of iDRNA-ITF. (A) The general network structures of DBRs identification task, RBRs identification task and NABRs
identification task. (B) The convolutional attention module extracts specific-local features according to the different training signals. (C) The BiGRU
module captures the long- and short-distance dependence among residues along with the protein. (D) The feature integration module of DNA-binding

concatenates empirical features, DNA-binding residue local features and the task-transfer features obtained by transDB

(
hBiGRU−NAB

j

)
. (E) The feature

integration module of RNA-binding concatenates empirical features, RNA-binding residue local features and the task-transfer features obtained by

transRB

(
hBiGRU−NAB

j

)
.
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where WC and bc are learnable parameters, the operation
∗ represents the element-wise product and h

j− k−1
2 :j+ k−1

2
means a concatenation of the hidden states h

j− k−1
2

, . . . ,

h
j+ k−1

2
. Finally, we perform the sum-pooling to get the

local features of each residue. For the jth residue, the
local features extracted by the convolutional attention
module of the three tasks are hConvAtt−NAB

j ∈ R
1×110,

hConvAtt−DB
j ∈ R

1×110 and hConvAtt−RB
j ∈ R

1×50, respectively.

Feature integration module

The feature integration module of the nucleic acid-
binding residue network is used to concatenate empirical
features and local-specific features, the output of this
module is defined as follows:

fNAB
j =

[
hEmp

j ; hBiGRU−NAB
j

]
(8)

The feature integration modules of the DNA-binding
residue network and the RNA-binding residue network
were shown in Figure 2D and E, respectively. The feature
integration modules in these two networks transfer
the features of nucleic acid-binding residues through
the fully connected layer, and then we concatenate
the empirical features, local-specific features and task-
transfer features. The output of the DNA-binding feature
integration modules is defined as follows:

fDB
j =

[
hEmp

j ; hConvAtt−DB
j ; transDB

(
hBiGRU−NAB

j

)]
(9)

where trans_DB
(
hBiGRU−NAB

j

)
is the task-transfer function

and means DNA-binding residue identification as a
training signal to perform task-transfer on hBiGRU−NAB

j to
extract task-transfer features. It can be represented by:

transDB

(
hBiGRU−NAB

j

)
= WDBhBiGRU−NAB

j + bDB (10)

where WDB and bDB are learnable parameters.
The output of the RNA-binding feature integration

modules is defined as follows:

f RB
j =

[
hEmp

j ; hConvAtt−RB
j ; transRB

(
hBiGRU−NAB

j

)]
(11)

where transRB
(
hBiGRU−NAB

j

)
is the task-transfer function

and means DNA-binding residue identification as a
training signal to perform task-transfer on hBiGRU−NAB

j
to extract task-transfer features. It can be represented
by:

transRB

(
hBiGRU−NAB

j

)
= WRBhBiGRU−NAB

j + bRB (12)

where WRB and bRB are learnable parameters.
Finally, the outputs (fNAB

j ∈ R
1×201, fDB

j ∈ R
1×251 and

fRB
j ∈ R

1×251) of the feature integration modules of the
three tasks are respectively input into their BiGRU mod-
ules for sequence feature learning.

BiGRU module and output layer

The BiGRU module was shown in Figure 2C, which con-
tains two layers of BiGRU. This module is used to capture
long- and short-distance dependencies between residues
along with the protein. The BiGRU is defined as:

hBiGRU
j = BiGRU

(
hBiGRU

j−1 , fj; W1, W2

)
(13)

where fj is the output of the feature integration module,
hBiGRU

j−1 is the previous hidden state for the BiGRU layer,
W1 and W2 are learnable parameters. Finally, we get
the sequence information of the three tasks, denoted as
hBiGRU−NAB

j ∈ R
1×160, hBiGRU−DB

j ∈ R
1×160, hBiGRU−RB

j ∈ R
1×160,

respectively.
For nucleic acid-binding residue networks, hBiGRU−NAB

j
is input into the feature integration module of the DNA-
binding residue network and RNA-binding residue net-
work. Feature transfer is performed through more spe-
cific task training signals. For DNA-binding residue net-
work and RNA-binding residue network, hBiGRU−DB

j and

hBiGRU−RB
j are respectively input into the fully connected

layer for classification to calculate the final prediction
results.

Implementation and training

In this study, we used Pytorch (https://pytorch.org/)
to implement iDRNA-ITF. The Adam optimization
algorithm [32, 33] was used to optimize parameters
during the training process. To avoid network over-
fitting, we used Dropout algorithm [34, 35] during the
training process. We used the weighted cross-entropy
loss function to measure loss and solve the problem of
imbalance in the datasets. The early stopping strategy
was employed to control the training process based
on the model’s performance on the validation set.
The hyperparameters were optimized based on the
grid search strategy according to the maximum AUC
(see section ‘Performance evaluation metrics’). The grid
search parameter range and the detailed parameters of
the three networks of iDRNA-ITF were listed in Tables S1–
S4, (see supplementary Data available online).

Performance evaluation metrics
The iDRNA-ITF and the other compared methods were
evaluated by the following five evaluation metrics [8,
36–40], including the area under the ROC curve (AUC),
Matthews correlation coefficient (MCC), F1-score (F1),
recall (REC) and precision (PRE), which can be calculated
by:

AUC = The area under the ROC curve (14)

MCC = TP × TN − FN × FP√
(TP + FN) (TP + FP) (TN + FN) (TN + FP)

(15)

F1 = 2 × REC × PRE
REC + PRE

(16)

REC = TP
TP + FN

(17)
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Table 2. The influence of different inputs of the feature integration module in DNA-binding residue network on the performance of
iDRNA-ITF

Model Feature extraction
tool modulea

DNA-binding
convolutional
attention moduleb

Nucleic acid-binding
modulec

AUC 1-AURC MCC F1 REC PRE

A_DB √ 0.857 0.707 0.268 0.273 0.440 0.198
B_DB √ 0.850 0.665 0.262 0.261 0.471 0.180
C_DB √ 0.868 0.641 0.279 0.272 0.511 0.185
D_DB √ √ 0.866 0.683 0.279 0.279 0.479 0.197
E_DB √ √ 0.878 0.666 0.279 0.258 0.584 0.165
F_DB √ √ 0.881 0.711 0.302 0.302 0.492 0.218
iDRNA-ITF_DBd √ √ √ 0.886 0.722 0.320 0.329 0.454 0.258

aFeature extraction tool module provides empirical features. bDNA-binding convolutional attention module provides DNA-binding residue local features.
cNucleic acid-binding module provides task-transfer features transferred from nucleic acid-binding residue features. diDRNA-ITF_DB represents DNA-binding
residue network in iDRNA-ITF.

Table 3. The influence of different inputs of the feature integration module in RNA-binding residue network on the performance of
iDRNA-ITF

Model Feature extraction
tool modulea

RNA-binding
convolutional
attention moduleb

Nucleic acid-binding
Modulec

AUC 1-AURC MCC F1 REC PRE

A_RB √ 0.711 0.417 0.124 0.131 0.469 0.076
B_RB √ 0.741 0.430 0.111 0.136 0.124 0.152
C_RB √ 0.772 0.356 0.176 0.176 0.488 0.107
D_RB √ √ 0.750 0.590 0.158 0.187 0.253 0.148
E_RB √ √ 0.779 0.362 0.191 0.191 0.482 0.119
F_RB √ √ 0.785 0.597 0.193 0.221 0.249 0.198
iDRNA-ITF_RBd √ √ √ 0.799 0.642 0.208 0.233 0.306 0.188

aFeature extraction tool module provides empirical features. bRNA-binding convolutional attention module provides RNA-binding residue local features.
cNucleic acid-binding module provides task-transfer features transferred from nucleic acid-binding residue features. diDRNA-ITF_RB represents RNA-binding
residue network in iDRNA-ITF.

PRE = TP
TP + FP

(18)

where TP is true positive, TN is true negative, FP is false
positive, FN is false negative. In addition, the 1 − the
area under the CPR-TPR curve (1 − AURC) [1] was used
to evaluate the cross-prediction problem in the hybrid
dataset.

Results and discussion
The induction and transfer framework can
improve predictive performance and weaken the
cross-prediction problem
In order to analyze the importance of different compo-
nents in the proposed method, and explore the interac-
tion among different tasks and modules, we conducted
an ablation experiment on DRNA-106_Valid set. Differ-
ent components were processed by the feature integra-
tion module, which includes three parts: empirical fea-
tures, local-specific features and task-transfer features.
Tables 2 and 3 listed the influence of different parts on
the final prediction results.

Experiments A_DB-C_DB and A_RB-C_RB evaluate the
impact of using only one module feature on prediction
performance. A_DB and A_RB show that the empirical
features used in traditional methods can only achieve
the most basic predictive performance. Compared with
empirical features, the local-specific features extracted

by the convolutional attention module improve the per-
formance of RNA-binding residue prediction (see B_RB).
This indicates that RNA-binding residues have more con-
servative local patterns. Compared with A_DB and B_DB
(A_RB and B_RB), C_DB (C_RB) achieved the best pre-
diction performance, which shows the characteristics of
nucleic acid-binding residue network induction are more
comprehensive and generalized, and they can extract
effective features to achieve better performance in down-
stream tasks by task-transfer. Especially for the task
of RNA-binding residue recognition, the AUC of C_RB
is 6 points higher than that of A_RB. Because nucleic
acid-binding residue features describe both RNA-binding
residue characteristics and DNA-binding residue charac-
teristics, task-transfer had limitations in distinguishing
between two types of residues, leading to the lowest 1-
AURC.

Experiments D_DB-F_DB and D_RB-F_RB evaluate the
contributions of the pairwise concatenation features for
different modules. It can be seen that the prediction
performance of the models based on pairwise concate-
nation is better than models based on a single module.
This shows that the features of different modules are
complementary. When combining local-specific features
and task-transfer features, the prediction results are
greatly improved (see F_DB, F_RB), because task infor-
mation and generalization information are considered
in the features. iDRNA-ITF_DB and iDRNA-ITF_RB
used the features of the three modules in the feature
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Table 4. Performance comparison of different methods on two test datasets

Dataset Method AUC MCC F1 Rec Pre

DNA-129_Test TargetSa N/A 0.262 0.291 0.239 0.370
TargetDNAa 0.825 0.291 0.335 0.417 0.280
DNAPreda 0.845 0.332 0.373 0.396 0.353
COACH-Da 0.761 0.302 0.341 0.324 0.360
NucBinda 0.797 0.309 0.346 0.323 0.373
SVMnuca 0.812 0.304 0.341 0.316 0.371
NCBRPredb 0.823 0.313 0.348 0.312 0.392
Graphbinda 0.816 0.320 0.362 0.439 0.310
Graphbind∗c 0.855 0.292 0.295 0.567 0.200
iDRNA-ITF 0.883 0.401 0.438 0.500 0.389

RNA-117_Test RNABindRPlusa 0.717 0.202 0.248 0.273 0.227
COACH-Da 0.663 0.195 0.235 0.221 0.252
NucBinda 0.715 0.189 0.233 0.231 0.235
SVMnuca 0.729 0.192 0.235 0.231 0.240
NCBRPredb 0.667 0.172 0.187 0.135 0.300
Graphbinda 0.718 0.168 0.218 0.303 0.171
Graphbind∗c 0.738 0.164 0.177 0.439 0.111
iDRNA-ITF 0.760 0.236 0.281 0.349 0.235

aResults were reported in [2]. bResults were calculated by using the webserver of NCBRPred [6]. cResults were calculated by using the source code of GraphBind
[2] based on the proteins whose structures were predicted by MODELLER [19].

integration module to get the best prediction per-
formance, indicating that the induction and transfer
framework can improve predictive performance and
weaken the cross-prediction problem.

Comparison of different methods on test datasets
iDRNA-ITF and the other sequence-based methods
were evaluated and compared on two test datasets
(see Table 4). Furthermore, the structure-based method
GraphBind [2] used the predicted protein structures of
the two test sets to predict binding residues, and its
performance was also compared with iDRNA-ITF.

Compared with the sequence-based methods, the AUC
and MCC of iDRNA-ITF were increased by 0.038–0.122
and 0.069–0.139 on the DNA-129_Test dataset, the AUC
and MCC of iDRNA-ITF were improved by 0.031–0.097
and 0.034–0.072 on the RNA-117_Test dataset. The rea-
son is that the introduced nucleic acid-binding residue
prediction task can provide additional sequence infor-
mation for identifying DNA- and RNA-binding residues.
Compared with GraphBind, iDRNA-ITF performed better
in both test datasets, indicating that iDRNA-ITF is even
better than the structure-based method for predicting
the proteins without known structures.

Comparison of different methods on the hybrid
test dataset
iDRNA-ITF and the other methods that can predict both
DBRs and RBRs were evaluated and compared on the
hybrid test dataset (see Table 5 and Figure 3). The results
showed that iDRNA-ITF achieves the best results in terms
of all the four evaluation metrics (AUC, 1-AURC, MCC and
F1) when identifying DBRs and RBRs. This is because the
feature integration module uses three complementary
features to represent residues, taking into account not

only the specificity characteristics of the residues but
also the generalization characteristics of the residues.

Analysis of the predicted DNA- and RNA-binding
residues
Residues located closer to the binding residues in the
protein sequences are more likely to bind with DNA/RNA
[1, 6]. Therefore, we analyzed the false positives predicted
by the three best predictors by calculating the fraction
of predicted DBRs and RBRs within the range of true
DBRs and RBRs. The fractions of the three predictors at
different ranges were depicted in Figure 4, which shows
that iDRNA-ITF outperforms the compared predictors
when the distance range is <2 for predicting DBRs, and it
outperforms the compared predictors when the distance
range is <6 for predicting RBRs. Although the other two
predictors showed higher scores at longer distances, this
was because iDRNA-ITF predicted fewer false positives
and the convolutional attention module in the inductive
transfer framework learned local features, making the
predicted false positives closer to true binding residues.

Predictive result visualization
The DNA-binding protein chain 5k7z_A was selected
from DNA-129_Test, the RNA-binding protein chain
5z9x_A was selected from RNA-117_Test. Pymol (https://
pymol.org/2/) was used to visualize the prediction results
of the top three predictors for these two protein chains
(see Figure 5). We can see the following: (i) compared
with GraphBind∗ and SVMNuc, iDRNA-ITF predicted
the most true positive samples and the fewest false
positive samples, indicating that iDRNA-ITF learns the
differences between positive samples and negative
samples benefited from the multi-level features provided
by the induction and transfer framework. (ii) GraphBind∗

tends to predict residues as binding residues, indicating
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Table 5. Performance comparison of different methods on the hybrid test dataset

Class Method AUC 1-AURC MCC F1 Rec Pre

DNA-binding
residue

SVMnuca 0.824 0.623 0.227 0.247 0.340 0.195
NucBinda 0.812 0.624 0.223 0.245 0.326 0.196
NCBRPredb 0.819 0.648 0.231 0.254 0.312 0.214
Graphbind∗c 0.851 0.636 0.252 0.238 0.567 0.150
iDRNA-ITF 0.881 0.711 0.324 0.331 0.500 0.247

RNA-binding
residue

SVMnuca 0.743 0.490 0.148 0.172 0.235 0.136
NucBinda 0.712 0.490 0.149 0.172 0.238 0.135
NCBRPredb 0.695 0.631 0.155 0.168 0.135 0.220
Graphbind∗c 0.739 0.418 0.143 0.141 0.439 0.084
iDRNA-ITF 0.790 0.643 0.203 0.217 0.349 0.158

aResults were calculated by using the webserver of NucBind [13]. bResults were calculated by using the YK17 trained model accessed from in the webserver of
NCBRPred [6]. cResults were calculated by using the source code of GraphBind [2] based on the proteins whose structures were predicted by MODELLER [19].

Figure 3. The performance of different methods on DRNA-246_Test. (A) ROC curves of different methods for DNA-binding residue. (B) CPR-TPR curves
of different methods for DNA-binding residue. (C) ROC curves of different methods for RNA-binding residue. (D) CPR-TPR curves of different methods
for RNA-binding residue.
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Figure 4. Analyze the predicted binding residues within a certain range of true binding residues. (A) Analysis of DNA-binding residue positions predicted
by different methods in protein sequences. (B) Analysis of RNA-binding residue positions predicted by different methods in protein sequences.

Figure 5. Visualization of prediction results by different methods. The results for identifying the DNA/RNA-binding residues in protein chain 5k7z_A
and 5z9x_A predicted by iDRNA-ITF, GraphBind∗, SVMNuc are shown in (A) and (B), respectively.

that the judgment conditions for binding residues were
looser, leading to more false positives.

Comparison of different methods on the MW15
dataset
The MW15 dataset [41] is a commonly used test set for
evaluating the performance of the methods for identify-
ing both DBRs and RBRs. There are 46 protein sequences
in this dataset with 760 DBRs, 368 RBRs and 9447 non-
NABRs. In addition, we removed proteins that share over

25% sequence similarity with any protein in MW15 from
the training dataset, and then retrained the model to pre-
dict the protein sequences in MW15. The performance of
different methods on the MW15 test dataset was shown
in Table 6 and Figure 6, from which we can see that
iDRNA-ITF outperforms the other competing methods
for identifying both DBRs and RBRs. These results further
demonstrate that iDRNA-ITF has good generalization
ability and can achieve stable performance on different
test sets.
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Table 6. Performance comparison of different methods on the MW15 dataset

Class Method AUC 1-AURC MCC F1 Rec Pre

DNA-binding
residue

DRNApreda 0.725 0.521 0.164 0.226 0.236 0.217
SVMnucb 0.808 0.546 0.343 0.380 0.332 0.444
NucBindb 0.819 0.598 0.368 0.403 0.354 0.468
NCBRPredd 0.810 0.695 0.407 0.450 0.450 0.450
iDRNA-ITF 0.870 0.743 0.460 0.500 0.549 0.460

RNA-binding
residue

DRNApreda 0.467 0.499 0.006 0.027 0.019 0.044
SVMnucb 0.777 0.595 0.190 0.220 0.255 0.193
NucBindb 0.780 0.660 0.293 0.317 0.386 0.269
NCBRPredd 0.799 0.800 0.236 0.263 0.264 0.262
iDRNA-ITF 0.839 0.760 0.270 0.280 0.478 0.198

aResults were calculated by using the webserver of DRNApred [1]. bResults were calculated by using the webserver of NucBind [13]. cResults were calculated by
using the YK16-5 trained model accessed from the webserver of NCBRPred [6].

Figure 6. The performance of different methods on the MW15 dataset. (A) ROC curves of different methods for DNA-binding residue. (B) CPR-TPR curves
of different methods for DNA-binding residue. (C) ROC curves of different methods for RNA-binding residue. (D) CPR-TPR curves of different methods
for RNA-binding residue.
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Discussion
DNA- and RNA-binding residues in proteins are essen-
tial for gene expression, signal transduction, etc. In this
regard, several predictors were proposed to predict DBR
and RBR in proteins. However, those methods fail to use
the functional properties of the residues to assist in the
identification of DNA- and RNA-binding residues. The
nucleic acid-binding function is associated with both
DNA-binding function and RNA-binding function, and
nucleic acid-binding features can provide more general-
ized features for DNA-binding residue recognition tasks
and RNA-binding residue recognition tasks. Therefore, we
use the idea of transfer learning to design an induction
and transfer framework to induct nucleic acid-binding
features, and perform task transfer. The experimental
results show that the features obtained by induction and
transfer framework can provide effective information
and are complementary to the empirical features. In
addition, the proposed method also has some limitations.
For example, iDRNA-ITF fails to distinguish between DBR
and RBR from some specific species. In the future, we
will construct a more suitable sequence analysis model
to predict the species specific DNA- and RNA-binding
residues.

Conclusion
Feature extraction of protein sequences is critical for
constructing the sequence-based methods, traditional
methods do not fully utilize the functional properties of
residues in feature extraction. In this study, a sequence-
based method iDRNA-ITF was proposed to incorporate
the functional properties in residue representation by
using an induction and transfer framework. The charac-
teristics of the method can be summarized as follows:
(i) The independent networks for the DBRs identifica-
tion task and the RBRs identification task were designed
respectively, and learn specific parameters during the
training process; (ii) The nucleic acid-binding features of
the residues were summarized and input into the DNA-
binding residue network and the RNA-binding residue
network for improving prediction performance and (iii)
The feature integration module in two networks con-
catenates three complementary features to represent
residue, which ensures the balance between prediction
accuracy and cross-prediction problems. It can be antic-
ipated that the induction and transfer framework has
potential applications in many fiels, such as functional
sites in protein disordered regions prediction [42], thera-
peutic peptide recognition [43, 44], etc.

Key Points

• In this study, we proposed a sequence-based method
called iDRNA-ITF to identify DNA- and RNA-binding
residues in proteins.

• iDRNA-ITF summarizes the nucleic acid-binding residue
features and inputs them into the DNA-binding residue
recognition network and the RNA-binding residue recog-
nition network for feature transfer.

• A feature integration module was designed in the net-
work structure, concatenating three types of features as
the input of the downstream network. This enhances the
spread of features and reduces overfitting problems.

• Experimental results on the four independent datasets
showed that iDRNA-ITF outperforms the other compet-
ing sequence-based methods. The web server of iDRNA-
ITF is accessible at http://bliulab.net/iDRBP-ITF.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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