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Abstract—While protein-DNA interactions are crucial for a wide range of cellular functions, only a small fraction of these interactions

was annotated to date. One solution to close this annotation gap is to employ computational methods that accurately predict

protein-DNA interactions from widely available protein sequences. We present and empirically test first-of-its-kind predictor of

DNA-binding residues in local segments of protein sequences that relies on the Fuzzy Cognitive Map (FCM) model. The FCMmodel

uses information about putative solvent accessibility, evolutionary conservation, and relative propensities of amino acid to interact with

DNA to generate putative DNA-binding residues. Empirical tests on a benchmark dataset reveal that the FCM model secures

AUC ¼ 0:72 and outperforms recently released hybridNAP predictor and several popular machine learning methods including Support

Vector Machines, Na€ıve Bayes, and k-Nearest Neighbor. The improvements in the predictive performance result from an intrinsic

feature of FCMs that incorporate relations between the input features, besides the relations between the inputs and output that are

modelled by other algorithms. We also empirically demonstrate that use of a short sliding window results in further improvements in the

predictive quality. The funDNApred webserver that implements the FCM predictor is available at http://biomine.cs.vcu.edu/servers/

funDNApred/.

Index Terms—Proteins, DNA, protein-DNA interactions, DNA-binding residues, fuzzy cognitive maps
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1 INTRODUCTION

PROTEINS carry out many cellular functions by interacting
with a wide range of ligands, including DNA [1], [2],

[3], [4], [5]. Molecular-level analysis of the protein-DNA
interactions facilitates their classification, decoding of the
underlying physics, and discovery of patterns that define
specificity of the protein-DNA recognition [3], [6], [7]. The
number of DNA-binding proteins was recently estimated
to be on average at 3 percent of proteins in eukaryotic
organisms and 5 percent in the animals species [8]. Given
that we already sequenced 27 million eukaryotic proteins
(source: UniProt resource [9], [10] as of March 2, 2018)
and assuming conservative estimates we should expect to
know 3 percent of 27 million ¼ 810 thousand DNA-bind-
ing eukaryotic proteins. Unfortunately, UniProt annotates
only about 45 thousand proteins that interact with DNA,
even when we include both experimental and computa-
tional, homology-derived results. This reveals that a sig-
nificant majority of these interactions remains to be
discovered. One solution is to use the available data on
the protein-DNA interactions to devise computational

models that accurately predict DNA interactions from
protein structures and sequences [11].

Prediction of the protein-DNA interactions can be done
at three levels: whole protein, residue and at the atomic
scale [12]. At the coarsest whole protein level we predict
whether or not a given protein binds DNA. At the residue
level we predict which residues in the protein sequence
interact with DNA. At the highest resolution level, we con-
sider interactions between individual atoms of proteins and
DNA. The resolution of the prediction is typically deter-
mined based on the available data, i.e., whether or not both
protein structure and sequence or only the sequence are
available. Predictions that rely on the protein structure are
limited to a relatively small number of proteins for which
the three-dimensional structures are available. Protein Data
Bank (PDB) [13], [14], the worldwide database of protein
structures, includes 128 thousand structures for 42 thou-
sand distinct proteins (as of March 2, 2018). This is a small
fraction of the 109 million currently sequenced proteins that
can be obtained from UniProt (as of March 2, 2018).
Although a high-quality predicted structure could be used
instead of the native structure, this would reduce quality of
the predictions and, more importantly, would not solve the
problem of the low coverage. Recent works found that the
overall structural coverage that includes native and pre-
dicted structures ranges between a few and 30 percent,
depending on the considered organisms [15]. The total cov-
erage for the human proteins is at about 28 percent [16]. On
the other hand, sequence only-based approaches can be
applied to all available protein sequences. These methods
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can be used to make predictions at the residue and whole
protein levels. We focus on the sequence-based predictors
that provide results at the finer, residue level.

The sequence-based predictors are empirically designed
and tested using datasets of protein sequences with the anno-
tated DNA-binding residues. The annotations of the DNA-
binding residues are primarily extracted from the structures
of the protein-DNA complexes. As of March 2, 2018, PDB
includes structures for 4,475 protein-DNA complexes, allow-
ing us to derive sufficiently large and diverse datasets to
build and test predictive tools. A few reviews have summa-
rized and compared the sequence-based predictors of DNA-
binding residues [11], [17], [18], [19]. These predictors include
(in chronological order) DBS-Pred [20], DBS-PSSM [21],
BindN [22], DNABindR [23], [24], DP-Bind [25], [26], DISIS
[27], ProteDNA [28], BindNþ [29], NAPS [30], MetaDBSite
[31], DisoRDPbind [32], [33], DRNApred [34] and hybrid-
NAP [12].

Virtually all of these methods predict DNA binding resi-
dues from the whole protein sequence. A recently released
exception is hybridNAP that can be used to predict the
interacting residues in local segments of at least three conse-
cutive residues in the input protein chain. Such approach
allows prediction of the DNA binding for fragments of
protein sequence and parts of the whole sequence. This
latter option is particularly useful when inputs that are
required for these predictors cannot be produced for the
entire sequence. An example scenario where these inputs
may not be available for the whole sequence is when mul-
tiple sequence alignment does not provide sufficiently
deep profile to generate position specific scoring matrix
(PSSM) for some of the residues. Recent review reveals
that PSSM is commonly used to make predictions. More
specifically, 9 out of out of 14 predictors (including the
four newest methods) surveyed in a recent review utilize
PSSM [12].

The authors of the abovementioned predictors have used
a wide range of machine learning algorithms to empirically
generate their predictive models. Predictive models for Pro-
teDNA [28], BindNþ[29], DP-Bind [25], [26] were derived
with the Support Vector Machine (SVM) algorithm. The k-
Nearest Neighbor (kNN) algorithm was used to derive
models for DISIS [27], DBS-Pred [20], and DBS-PSSM [21].
Another popular algorithm is regression which was utilized
for DRNApred [34] DisoRDPbind [32], [33], and hybridNAP
[12]. One common characteristic of these predictive models
is that they map predictive inputs (typically in the form of
numerical features extracted from the sequence) into
the annotation of DNA-binding residues. However, they do
not exploit the fact that some of these inputs can be mutu-
ally related.

To this end, we develop a novel tool that provides accu-
rate prediction of DNA-binding residues for full protein
sequences and local sequence fragments by utilizing
mutual relations between inputs. We apply fuzzy cognitive
map (FCM) model [35] to address this goal. This model
was used only once on the past to perform computations
of protein sequences at the residue level. This was the con-
text of content of secondary protein structure [36]. FCMs
express relations between inputs and output as well as
relations between inputs. They are a powerful predictive

tool [37], [38] which is extensively used to build predictive
models in medicine [39], [40], [41], [42] and in numerous
other fields [43], [44], [45]. To the best of our knowledge,
we are the first to apply FCMs to predict protein-ligand
interactions.

2 MATERIALS AND METHODS

2.1 Datasets

We develop and test our predictive tool using datasets of
proteins with the annotated DNA-binding residues. We
rely on the datasets that were published recently alongside
the hybridNAP method [12] and the recent assessment of
tools that predict the DNA-binding residues [19]. The train-
ing and validation datasets, which we use to empirically
design our predictor, are sourced from [12] and were
extracted based on the annotated proteins from the BioLiP
database [46]. BioLiP is a semi-manually curated database
of protein-ligand interactions that are extracted from PDB.
This database labels a residue as a DNA-binding if the dis-
tance between an atom of this residue and an atom of DNA
in the protein-DNA complex < 0:5A

�
plus the sum of the

Van der Waals radii of the two atoms.
We borrowed the DNA_T test dataset from [19] to evalu-

ate and compare predictive performance of our tool. This
benchmark dataset was developed specifically to compare
predictors of the DNA-binding residues. It contains 47
DNA-binding proteins and 9106 residues including 875
DNA-binding residues and 8231 non-DNA-binding resi-
dues, resulting in the 1 to 9.4 ratio of DNA-binding to
non-DNA-binding residues. Importantly, we ensure that
the protein sequences in the DNA_T dataset are dissimi-
lar to the proteins in the training and validation datasets.
We use BLASTCLUST [47] to remove the training and
validation proteins that share sequence similarity > 30
percent with the proteins in TEST_T. This ensures a fair
comparison with other methods, such as the recently
released hybridNAP.

After removing similarity to DNA_T, the dataset extracted
from BioLiP includes 18,995 protein sequences with a total of
32,055 DNA-binding residues. We balanced the number of
DNA-binding and non-DNA-binding residues in this dataset
to ease computational learning of the predictive model. We
include all native DNA-binding residues and we randomly
subsample the same number of the non-DNA-binding resi-
dues. We randomly split the resulting set of 64,110 residues
into two subsets: 70 percent is used for the training dataset
and the remaining 30 percent for the validation dataset. Only
the final model, which we optimize bymaximizing its predic-
tive performance on the validation set, is used to perform
predictions on the TEST_T dataset. The training and test data-
sets are available at http://biomine.cs.vcu.edu/servers/
funDNApred/.

We emphasize that the training, validation and test data-
sets benefit from high-quality annotations of DNA-binding
residues that were performed in [12], [19]. In contrast to
older studies that consider one protein-DNA complex per
protein to annotate binding residues, we combine annota-
tions coming from potentially multiple complexes that
cover the same protein in order to provide a more complete
set of the DNA binding residues. First, we map all protein
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sequences to UniProt with the help of SIFTS [48]. Next, we
transfer the DNA-binding annotations from the multiple
BioLiP/PDB protein chains that are linked to the same
(unique) UniProt protein. As we show in [12], this results in
19.7 percent increase in the number of annotated DNA-
binding residues when compared with the best case sce-
nario that represents the approach that prior works took to
annotate the binding residues, i.e., when chains with the
highest number of the DNA-binding residues are utilized.

2.2 Overview for the Predictive Model

Our method makes predictions for individual residues in an
input protein sequence. It can be used to predict all residues
in the given chain as well as a selected subset of residues,
i.e., a local segment of adjacent residues in the input protein
sequence. The prediction process consists of three steps:

� The ith input residue is represented by a small set of
numeric features (concepts)

� The values of these features are input into the FCM
model

� The FCM model computes the prediction and out-
puts propensity for DNA-binding P ðiÞ, i.e., higher
value suggests a higher likelihood that ith residue
interacts with DNA

Several studies investigated sequence-derived features
that are commonly used to characterize and predict DNA-
binding residues [12], [49], [50], [51], [52]. A recent article
that summarized these studies concludes that the most fre-
quently used features are evolutionary conservation (ECO),
relative solvent accessibility (RSA), and relative propensity
of specific amino acids (AAs) for the DNA-binding (RAA)
[12]. ECO is relevant since residues that interact with DNA
are typically conserved across homologous protein sequen-
ces [53]. RSA quantifies accessibility of residues to the sol-
vent that surrounds proteins that is normalized to the size
of specific AAs. The use of RSA stems from the fact that
protein-DNA interaction occurs on the protein surface.
Finally, these studies also suggest that the type of the inter-
acting AAs and their immediate neighbours in the protein
sequence can be also used to determine relative propensity
for the DNA binding. Consequently, we use these three fea-
tures as inputs for the FCM.

RAA is quantified with relative difference in abundance of
a given AA type between the DNA-binding residues and the
corresponding non-DNA-binding residues on the protein
surface.We consider only the surface to eliminate a confound-
ing factor related to a bias in composition of AAs in the pro-
tein core; these residues typically do not bind DNA and can
be identified with RSA. RAA is defined as the difference
between fractions of a given AA type among the DNA-bind-
ing residues and among the surface non-DNA-binding resi-
dues divided by the fraction among the non-DNA-binding
residues. The positive (negative) RAA values denote enrich-
ment (depletion) among the DNA-binding residues com-
pared to the non-DNA-binding residues on the surface. We
compute the relative differences using Composition Profiler
program [54]. Motivated by [12], we use a weighted average
of the RAA values for the residue that is predicted (with
weight ¼ 0:5) and its two neighbors in the sequence (with
weights¼ 0:25) as one of the inputs for the FCMmodel.

RSA values are derived from the protein structure, typi-
cally using the DSSP program [55]. However, since our sole
input is the protein sequence we have to substitute the
native RSA with putative RS. We generate the putative RSA
directly from the sequence with a very fast and accurate
ASAquick program [56]. More precisely, we divide the
absolute surface area predicted with ASAquick by the maxi-
mal value of surface area of a given AA, which we obtain
from [57], to compute the putative RSA values.

ECO is computed from the multiple sequence alignment
generated with HHBlits [58] against the redundancy
reduced UniProt20 database ver. 2015_06 using the default
parameters. We use the alignment to produce n� 20 matrix
of position-specific frequencies pAAi where AAi represents
the 20 AA types and n is the protein sequence length. Next,
we used this matrix to calculate evolutionary conservation
based on formula from [59]:

ECO ¼ log
P20

i¼1 p
2
c ið Þ=p0 ið Þ

log
P20

i¼1 pc ið Þ=p0 ið Þ (1)

where i is position in the sequence and p0ðiÞ is the BLOSUM62
background distribution for the ith position [60]. Like in [12],
we use the hidden Markov model-based position-specific
frequencies generated with HHblits rather than the PSSM-
based scores since they provide a faster to compute and better
measure of evolutionary conservation [61].

We empirically analyze whether these three features can
differentiate between DNA-binding and non-DNA-binding
residues. Fig. 1 compares distributions of the values of these
features between the native DNA binding residues (black
curves) and native non-DNA binding residues (gray curves)
in the training dataset. As expected, we observe that the RAA
values are much higher for the native DNA-binding residues
when compared to the non-DNA-binding residues (solid lines
in Fig. 1). The Mann-Whitney test reveals that the two dis-
tributions are significantly different ðp� value < 0:0001Þ.
Similarly, the RSA values (dashed lines) and ECOvalues (dot-
ted lines) for the residues that interact with DNA are sub-
stantially larger. Again, the Mann-Whitney test shows that

Fig. 1. Distributions of the values of the three features (RAA, RSA, and
ECO) for the DNA-binding residues (black curves) and non-DNA-binding
residues (gray curves) in the training dataset.
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the differences between the corresponding distributions for
the DNA-binding and non-DNA-binding residues are statisti-
cally significant ðp� value < 0:0001Þ. These results agree
with the analysis in [12], and they justify the use of these three
features in our FCMmodel.

2.3 Assessment of the Predictive Model

The predictions generated by our model are real-values that
quantify propensity for the DNA binding. The predictive
quality of these propensities is measured with the area
under the ROC curve (AUC). The curve is obtained by plot-
ting TPrate ¼ sensitivity ¼ TP=ðTPþ FNÞ versus FPrate ¼
1� specificity ¼ 1� TN=ðTNþ FPÞ, where TP (TN) is the
count of the correctly predicted DNA-binding (non-DNA-
binding) residues, FP is the number of the native non-DNA-
binding residues that have been incorrectly predicted as
DNA-binding residues, and FN is the number of the native
DNA-binding residues that have been incorrectly predicted
as non-DNA-binding. The TPrate and FPrate values are
established by thresholding the propensities using every
unique value of the output propensity. For each threshold,
we assume the residues with propensities > threshold as
DNA binding and the remaining residues as non-DNA
binding. We use the AUC value as a criterion that we opti-
mize (maximize) in the process of learning the FCM model
from the training dataset.

We also evaluate and compare binary predictions on the
TEST_T dataset. We generate these predictions from the real-
value propensities. Residues that are predicted with propen-
sities > a given threshold are predicted as DNA binding
while the remaining residues as set as non-DNA-binding.We
set the threshold value such that the resulting binary predic-
tions have FPrate ¼ 10 percent. This corresponds to the pre-
diction where the FPrate is similar to the rate of native DNA
binding residues in the TEST_T dataset. Ensuring that the
methods evaluated on TEST_T are set to the same FPrate
allows for a robust side-by-side comparison of their binary
measures of predictive performance. We assess the binary
predictions with four measures: sensitivity, specificity, accu-
racy andMatthews correlation coefficient (MCC):

sensitivity ¼ TPrate ¼ TP

TP þ FN
(2)

specificity ¼ 1� FPrate ¼ TN

TN þ FP
(3)

accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(4)

MCC ¼ TN�TP � FN�FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ� TP þ FNð Þ� TN þ FNð Þ� TN þ FPð Þ

p :

(5)

Sensitivity determines the predictive quality for the
native DNA-binding residues, specificity for the native non-
DNA-binding residues, while accuracy measures the overall
predictive quality. MCC is suitable to evaluate imbalanced
datasets, such as TEST_T set where 9.4 percent of residues
are DNA-binding. Values of MCC range between �1 and 1
and should be interpreted like other correlation coefficients.
The same measures were used in the past to assess predic-
tors of the DNA-binding residues [11], [12], [18], [19].

2.4 Fuzzy Cognitive Maps

FCMswere first proposed byKosko [35]. The FCMmodel is a
graph composed of nodes and edges. The nodes are used to
model features (concepts) relevant to a given application
area. In our case these are the three predictive features (ECO,
RSA and RAA) and the output feature that denotes propen-
sity for DNA-binding. The edges express causal relation-
ships between features. For our project, they quantify
relations between the predictive features and output as well
as relations between the three predictive features. The causal
relations between features are determined either by special-
ists or bymeans of learning fromdata [62], [63], [64], [65].

The values of features in the FCM are determined by a
vector F ¼ ½F1; F2; . . . ; FN � where Fi 2 ½0 1�; i ¼ 1 . . .N ,
and N is the number of features. N ¼ 4 for our FCM model.
The causal relationships between nodes are defined with an
N �N dimensional matrixW:

W ¼
0 w12 . . . w1N

w21 0 . . . w2N

..

. ..
. . .

. ..
.

wN1 wN2 . . . 0

2
6664

3
7775 ; (6)

where wij 2 ½�1 1� is a weight that quantifies strength and
direction of a relation for an edge from ith to jth feature.
These causal relations are defined as follows:

� If wij > 0 then an increase in value of feature Fi

leads to an increase in value of feature Fj that is pro-
portional to jwijj

� If wij < 0 then an increase in value of feature Fi

leads to reduction in value of feature Fj that is pro-
portional to jwijj

� If wij ¼ 0 then there is no causal relationship
between feature Fi and Fj

The entries on the diagonal of W are zero since inclusion
of relations of a feature with itself can lead to instability.
Fig. 2 shows a sample FCM with 3 features and 4 edges
together with its weight matrixW.

FCMs are executed iteratively to update values of the fea-
tures. The value of each feature in the ðtþ 1Þth iteration is
determined based on the weight matrix W and the values in
the tth iteration for the features connected to that feature as
follows:

Fi tþ 1ð Þ ¼ ’ðFi tð Þ þ
XN

j ¼ 1;j6¼i

Fj tð ÞwjiÞ: (7)

In Eq. (7), FiðtÞ is the value of the ith feature (node in the
FCM graph) in the tth iteration and ’ðÞ is a transfer function

Fig. 2. A sample FCM with three features and the corresponding weight
matrixW.

AMIRKHANI ET AL.: PREDICTION OF DNA-BINDING RESIDUES IN LOCAL SEGMENTS OF PROTEIN SEQUENCESWITH FUZZY COGNITIVE... 1375

Authorized licensed use limited to: Nanjing Agricultural University. Downloaded on September 24,2023 at 09:09:17 UTC from IEEE Xplore.  Restrictions apply. 



for which the values are limited to ½0; 1� interval. While sev-
eral different transfer functions were proposed, the sigmoid
transfer function are preferred [66]. Thus, we also apply the
sigmoid function:

’ xð Þ ¼ 1

1þ e�ax
: (8)

with a typically used value of parameter a ¼ 5 [67].

2.5 Learning Fuzzy Cognitive Maps

The task of training an FCM determines the weight matrix
W from the training dataset. The coefficients in the matrix
are typically learned using an algorithm [68]. While earlier
methods relied on Hebbian [69], [70] and genetic algorithms
[62], [63], [71], [72], newer methods apply other strategies
including ant colony optimization [73] and particle swarm
optimization (PSO) [74] algorithms. We apply the PSO algo-
rithm motivated by its successful applications in several
recent studies [75], [76], [77].

PSO is an evolutionary algorithm based on social interac-
tions between particles that possess swarm intelligence,
which was proposed by Kennedy and Eberhart [78]. In PSO,
every particle is represented by a vector in d dimensional
problem space. The initial population of particles in this
space is initialized by a random position vector Xi ¼ ðxi1;
xi2; . . . ; xidÞ and velocity vector Vi ¼ ðvi1; vi2; . . . ; vidÞ.
The algorithm uses a fitness function to find out whether
the particles are close to an optimal solution. We define the
optimal solution as such that produces maximal AUC value
on the training dataset based on the values of the output fea-
ture. Each particle is associated with two vectors: pbesti (the
best position of the ith particle in the course of its displace-
ments) and gbest (the best vector for all particles). The Eqs.
(9) and (10) are used to modify the two vectors in the course
of the optimization performed by the PSO algorithm:

vi tþ 1ð Þ ¼ vvi tð Þ þ c1r1 pbesti tð Þ � xi tð Þð Þ
þ c2r2 gbesti tð Þ � xi tð Þð Þ (9)

xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ; (10)

where v is the learning coefficient, c1; c2 2 ½1:5; 2� (with uni-
form distribution) are used to guide a trade-off between the
positions of the best particle solution and the best global
solution, and r1 and r2 are randomnumbers in the [0, 1] inter-
val [79]. Use of a large learning coefficient value results in a
more global search while a smaller value makes the search
more local. Based on [80], we gradually reduce the learning
coefficient value in subsequent iterations using Eq. (11):

v ¼ vmax � t
vmax � vmin

T
; (11)

where vmin and vmax are the minimal and maximal value of
the learning coefficient, respectively, and T is the total num-
ber of iterations. We set the values of the parameters as fol-
lows: vmin ¼ 0:2; vmax ¼ �0:3, and T ¼ 2000.

To sum up, we use PSO to optimize values in matrix W.
In each iteration of this optimization the FCM model and
Eq. (7) are used to produce the value of the output feature
(propensity for the DNA binding) from the values of the
three input features (RSA, RAA and ECO) for each residue
in the training dataset. The resulting predictions (values of

the output feature generated by FCM) are utilized to com-
pute AUC. Next, the AUC value is used to update the PSO
search using Eqs. (9) and (10) and the process iteratively
repeats until convergence. We define convergence as either
of the following two conditions: 1) AUC value on the valida-
tion dataset decreases over 30 consecutive iterations, which
suggests overfitting into the training dataset; and 2) AUC
value on the training dataset does not increase over 30 con-
secutive iterations. The solution is the matrix W that results
in the maximal AUC value.

We also study impact of neighboring residues on the pre-
dictive performance of the FCM-based prediction. To
accomplish that we use a sliding window, where the predic-
tions for the residues that are adjacent to the currently pre-
dicted residue are used together with the predictions for
this residue to compute the final propensities for the DNA
binding. The FCM predictions for the residues inside the
window are combined using a weighted sum where the val-
ues of these weights ck 2 ½0; 1� are included into the PSO
optimization (along with the matrixW):

DNA binding propensity ¼ ck
�FCMout k; (12)

where k ¼ 1; 2::; K is the index of a residue in the window,
K ¼ f3; 5; 7; . . .g is the window size, and FCMout k is the
value of the output feature in FCM for the kth residue in the
window. The window with K ¼ 3 includes the predicted
residue in the center þ one immediate neighbor on each
side in the sequence, withK ¼ 5 includes residue in the cen-
ter þ two neighbors on each side, etc. The process of predic-
tion with the FCMmodel forK ¼ 3 is depicted in Fig. 3.

The PSO optimization generated the following sets of
weights: ½0:3456; 0:9981; 0:2843� for K ¼ 3; ½0:2095; 0:1790;
0:9997; 0:05; 0:3150� for K ¼ 5; and ½0:3637; 0:0505; 0:2750;
0:9965; 0:0766; 0:1476; 0:3648� for K ¼ 7. As expected, the
weight for the residue in the center of the window is the
largest. This is the residue for which the DNA-binding pro-
pensity is ultimately predicted. The flanking residues are
associated with lower weight value. The cumulative values
of these weights are similar on the left and right side of the
window. This again is an anticipated result since protein
sequence has no particular direction.

Fig. 3. Flow of prediction with the FCM-based predictive model.
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3 RESULTS AND DISCUSSION

3.1 Selection of Window Size

We empirically compare the FCM that makes predictions for
a single residue with the FCM models that use windows.
Black lines and markers in Fig. 4 summarize the results on
the validation dataset and compares them with the corre-
sponding results on the test dataset. The FCM that does not
utilize the window secures AUC ¼ 0:70 on the validation
dataset and 0.69 on the TEST_T dataset. Use of the window
to process the FCM’s outputs increases the predictive perfor-
mance to 0.72 for window size 3 and to 0.73 for window sizes
5 and 7, when tested on the validation dataset. We do not
consider longer windows since the FCM model already did
not register improvements between sizes 5 and 7. The same
FCMs on the TEST_T dataset obtains AUC values equal
0:71 ðK ¼ 3Þ; 0:72 ðK ¼ 5Þ and 0:71 ðK ¼ 7Þ. Altogether, the
results reveal that window sizeK ¼ 5 is the best choice.

3.2 Comparison of Protein-Fragment Based
Predictors of DNA-Binding Residues

We focus comparative assessment on the methods that pre-
dict DNA-binding residues in protein fragments. We com-
pare the predictive quality of the FCM-based predictor with
a selection of machine learning algorithms and the recent
predictor of DNA-binding residues in local sequence seg-
ments, hybridNAP [12]. The selection of the machine learn-
ing algorithms is motivated by their use to implement the
whole-sequence predictors of the DNA-binding residues.
We include SVM that was used to implement three whole-
sequence predictors: ProteDNA [28], BindNþ [29], DP-Bind
[25, 26]; kNN that was utilized by another three whole-
sequence predictors: DISIS [27], DBS-Pred [20], and DBS-
PSSM [21]; and Na€ıve Bayes that was used to develop DNA-
BindR [23], [24]. These three algorithms are used with the
same inputs that are available to the FCM-based predictor:
ECO, RAA and RSA. For each algorithm, we compute the
predictive model on the training dataset and make predic-
tions on the TEST_T dataset.

Similar to FCM, we selected the best window size for
each of the three other algorithms. Fig. 4 shows that trends
in the AUC values for SVM, kNN and Na€ıve Bayes are sim-
ilar to the trend for FCM. Namely, the AUCs improve
when increasing the window size from 1 to 3, and from 3 to
5. However, the results on the validation dataset for the
window size 7 (solid lines in Fig. 4) are either lower (for
Na€ıve Bayes and kNN) or similar (for SVM) to the results
for the window size 5. Moreover, the results on the TEST_T
dataset (dashed lined in Fig. 4) follow the same pattern, i.e.,
the AUCs for window size 7 are either the same or worse
when compared to the results for window size 5. We con-
clude that the considered predictors provide the best results
for the window size equal 5. Consequently, Table 1 com-
pares results on the TEST_T dataset for the window size
¼ 5 and compares them to the results based on a single res-
idue and window size ¼ 3. Moreover, we compare with the
results of the regression-based hybridNAP. Inclusion of this

Fig. 4. Comparison of predictive performance measured with AUC for
FCM, SVM, Na€ıve Bayes, and kNN models that make predictions for a
single residue and using short residue windows.

TABLE 1
Comparison of the Predictive Performance of the FCM Predictor with Machine Learning Models and the Recent

Relevant Predictor, HybridNAP, on the TEST_T Dataset

Inputs Algorithm AUC Accuracy [%]
at FPrate ¼ 10%

Sensitivity [%]
at FPrate ¼ 10%

MCC at
FPrate ¼ 10%

Single residue (no window)

FCM 0.693 84.5 30.5 0.189
SVM 0.683 83.8 25.5 0.143

Na€ıve Bayes 0.683 83.7 24.6 0.135
kNN 0.673 83.9 25.3 0.144

Window size ¼ 3

FCM 0.713 84.3 31.0 0.190
SVM 0.692 84.1 28.5 0.169

Na€ıve Bayes 0.692 83.8 25.7 0.145
kNN 0.681 83.8 25.4 0.142

Window size ¼ 5

FCM 0.717 84.5 32.6 0.203
SVM 0.698 84.0 28.0 0.165

Na€ıve Bayes 0.695 83.9 26.5 0.152
kNN 0.683 83.7 25.3 0.140

hybridNAP (no window) 0.685 84.2 28.8 0.170

Baseline (random predictor) 0.494 82.3 9.8 -0.001

The last line shows baseline results produced with a random predictor. Specificity of all methods is set to 90% (FPrate ¼ 10%).
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model covers two regression-based whole-sequence tools:
DRNApred [34] and DisoRDPbind [32], [33]. Finally, we
compare these methods to a baseline predictor which gener-
ates random numbers. The binary assessment (accuracy,
sensitivity and MCC) is performed at a fixed FPrate ¼ 10
percent to facilitate side-by-side comparison of these values.
We note that specificity of all methods ¼ 90 percent given
the fixed value of the FPrate. This FPrate was selected to
mimic the rate of the native DNA-binding residues in the
TEST_T dataset.

Table 1 reveals that the FCM-based solution outperforms
all other consideredmachine learning algorithms.When pre-
dicting using a single residue, FCM model secures
AUC ¼ 0:693 and sensitivity¼ 30.5 percent. To compare, the
other machine learning algorithms obtain AUC � 0:683
and sensitivity � 25.5 percent. The differences in accuracy
are relatively small due to the imbalanced nature of the data-
set. The substantial increase by 5 percent in sensitivity pro-
duced by our solution translates to 0.5 percent increase in
accuracy since positive instances (DNA-binding residues)
constitute about 10 percent of the TEST_T dataset. We also
observe a visible increase in the MCC, which equals 0.19 for
the FCM compared to 0.14 for the second best machine learn-
ing algorithm. When compared to hybridNAP, the FCM-
based predictor features higher AUC (0.693 vs. 0.685), sensi-
tivity (30.5 vs. 28.8 percent) and MCC (0.19 vs. 0.17). The
improvements of FCM over the other methods stem from the
intrinsic to the FCMmodel use of relations between the pre-
dictive inputs. The other algorithms rely solely on the rela-
tions between the inputs and the output.

Table 1 also quantifies improvements due to the use of
the window-based prediction. The predictive quality of the
FCM method improves with the use of the window. In gen-
eral, the results for the window size ¼ 3 are better than
when the window is not used. Similarly, results for the

window size ¼ 5 are better than for the window size ¼ 3.
We note that use of larger windows is not expected to lead
to further improvements (see Fig. 4). The FCM’s AUC grows
from 0.693 (no window) to 0.717 (window size ¼ 5). Simi-
larly, its sensitivity and MCC increase from 30.5 to 32.6
percent and from 0.19 to 0.20, respectively. The other meth-
ods also register increases. The AUC and sensitivity of the
best of the three considered machine learning algorithm,
SVM, improve from 0.683 to 0.698 and from 25.5 to 28 per-
cent, respectively. This reveals that the use of the relevant
information for the adjacent residues is helpful. Moreover,
the lowest predictive performance of kNN could be
explained by the low similarity between the proteins in the
training and TEST_T datasets.

Fig. 5 compares the ROC curves for hybridNAP and the
FCM, SVM, Na€ıve Bayes and kNN predictors that use win-
dow size ¼ 5. The curve for the FCM method is above the
other curves for the entire FPrate range. The inset in the
lower right corner, which focuses on the low FPrate values,
reveals that FCM and hybridNAP provide similar results
for FPrate < 0:06. However, FCM provides a visible
advantage for the FPrates between 0.06 and 0.8. Interest-
ingly, Na€ıve Bayes and kNN-based predictors maintain
similarly low predictive quality when FPrate < 0:1.

A side-by-side comparison of the best FCM model with
window size¼ 5 and hybridNAP shows a substantial advan-
tage for the former model. Table 1 shows that the FCMmodel
secures AUC¼ 0:171 vs. 0.693 for hybridNAP.We also com-
pare sensitivity values for different levels of FPrates. Based on
Fig. 5, we observe that FCM registers 3.8 percent improve-
ment in sensitivity when FPrate ¼ 10 percent (sensitivity ¼
32.6 for FCM vs. 28.8 percent for hybridNAP), 3.9 percent
increase when FPrate ¼ 20 percent (sensitivity ¼ 50.6 vs. 46.7
percent), and 4.6 percent improvement when FPrate ¼ 30
percent (sensitivity¼ 62.2 vs. 57.6 percent). This confirms that
the improvements in sensitivity over hybridNAP are consis-
tent over awide range of the FPrates.

We investigate statistical significance of differences in the
predictive performance between the FCM method and the
other considered predictors.We generate results on a diverse
collection of protein sets to evaluate whether the improve-
ments offered by the FCM model are robust, i.e., whether
they consistent over the considered collection of protein sets.
More specifically, we select half of the proteins in the TEST_T
dataset at random and without replacement, and we evalu-
ate AUC on these proteins. We repeat this 100 times and
report the corresponding averages and standard errors in
Fig. 6. We also run paired t-test to assess whether the differ-
ences between the 100 pairs of results between the FCM pre-
dictor and each of the other four algorithms are statistically
significant. The corresponding p-values are shown at the top
of the Fig. 6. The results demonstrate that the increases in the
AUC provided by the FCM are statistically significant when
compared with hybridNAP and the methods that rely on the
SVM, Na€ıve Bayes and kNN algorithms. This conclusion
holds for every configuration, including approaches with
andwithout the window.

We also assess statistical significance of differences
between different versions of the FCM models. The AUC
of the FCM that uses window size ¼ 5 is significantly bet-
ter than the AUC of the version with shorter window

Fig. 5. ROC curves for the hybridNAP and the FCM, SVM, Na€ıve Bayes,
and kNN predictors that use window size ¼ 5 on the TEST_T dataset.
An inset in the bottom right corner shows an enlarged version of the
ROC curve for the FPrate range between 0 and 0.1.
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ðp� value ¼ 4:41�10�29Þ and without the window ðp�
value ¼ 9:14�10�41Þ. Similarly, the version that applies win-
dow size ¼ 3 obtains significantly higher AUC than the
window-less version ðp� value ¼ 1:54�10�35Þ. We note that
although the magnitude of these improvements is modest
(the averages over the 100 experiments are 0.718 vs. 0.713
vs. 0.695), the significance analysis reveals that the corre-
sponding differences are consistent over many diverse pro-
tein sets, which on average share only 50 percent of data.

3.3 Comparison of Whole-Sequence Based
Predictors of DNA-Binding Residues

We also perform comparative assessment for the whole-
sequence methods that predict DNA-binding residues in

complete protein sequences. We compare the FCM method
and hybridNAP that predict at the sequence fragment and
the whole-sequence levels with three popular whole-
sequence predictors of the DNA-binding residues that were
recently evaluated on the same TEST_T dataset in [12], [19].
These three methods include BindNþ [29], DBS-PSSM [21],
and DP-Bind [25], [26]. The results are summarized in
Table 2. The AUC for the FCM model is 0.717 while the
other fragment-based method, hybridNAP, has a lower
AUC ¼ 0:685. Moreover, AUCs for BindNþ, DBS-PSSM,
and DP-Bind are 0.797, 0.796 and 0.797, respectively. The
sensitivity of the whole-sequence based methods, which
equals 48 percent for DBS-PSSM and 44 percent for BindNþ
and DP-Bind, is also higher than the sensitivity for the frag-
ment-based methods that equals 33 percent for the FCM
model. We conclude that, as expected, the whole-sequence
based methods provide more accurate results but at a cost
of forcing the predictions over the entire protein sequence.
The main reason for the higher accuracy is the fact that the
whole-sequence based predictors use more information
(whole sequence vs. a short fragment) and a much higher
number of features. Specifically, BindNþ, DP-Bind, and
DBS-PSSM use 286, 140 and 100 and features, respectively.
To compare, the FCM-based predictor uses an order of
magnitude fewer features, i.e., 15 features when window
size is set to 5. Consequently, the whole-sequence based
methods require substantially longer runtime. They calcu-
late hundreds of features and they also use computationally
demanding PSI-BLAST algorithm [81] to derive PSSM,
which in turn is used to compute some of these features. As
a result, the whole-sequence based methods take several
minutes to generate prediction for an average size protein
sequence. To compare, running the FCM model requires
only several seconds. Moreover, the FCM model can be
used to provide predictions for small segments of the pro-
tein chain (say, segments of five consecutive residues when
using the version with window size ¼ 5). This is useful
when some of the inputs (e.g., evolutionary conservation
that requires well-defined position-specific frequencies or
PSSM scores, which in turns require sufficiently deep multi-
ple sequence alignment) are not available for some of the
residues in the input protein sequence. Importantly, Table 2
demonstrates that the recently released hybridNAP method,
which like FCM can be used to predict small segments [12],
is outperformed by the FCM-based solution.

Fig. 6. Analysis of statistical significance of differences in AUCs between
FCMand the other predictors including hybridNAP, SVM, Na€ıve Bayes, and
kNN on the TEST_T dataset. Solid, dashed, and dotted lines represent
results securedwith window sizes 5, 3, and 1 (nowindow), respectively.

TABLE 2
Comparison of the Predictive Performance of the Segment-Based Predictors (FCM Model and HybridNAP) with the

Whole-Sequence Predictors on the TEST_T Dataset

Type of
algorithms

Algorithm AUC Accuracy [%]
at FPrate ¼ 10%

Sensitivity [%]
at FPrate ¼ 10%

MCC at
FPrate ¼ 10%

Segment and whole-sequence algorithms FCM 0.717 84.5 32.6 0.203
hybridNAP 0.685 84.2 28.8 0.170

Whole-sequence algorithms
BindNþ 0.797 85.5 43.7 0.293

DBS-PSSM 0.796 86.0 48.3 0.329
DP-Bind 0.797 85.6 43.9 0.295

Baseline (random predictor) 0.494 82.3 9.8 -0.001

The last line shows baseline results produced with a random predictor. Specificity of all methods is set to 90% (FPrate ¼ 10%).
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4 SUMMARY AND CONCLUSIONS

We present and empirically test a new FCM-based method
for the prediction of DNA-binding residues in local seg-
ments of protein sequences. This is the first application of the
FCM to model protein-ligand interactions in protein sequen-
ces. The FCM model takes three sequence-derived features
(RAA, putative RSA, and ECO) in a short sliding window to
derive real-valued propensities for the DNA binding. The
model was parametrized using the PSO algorithm.

The empirical tests on a recently published benchmark
dataset reveal that FCM outperforms several other fragment
based approaches that include popular machine learning
algorithms (SVM, Na€ıve Bayes and kNN) and the recently
released predictor of DNA binding residues, hybridNAP.
These improvements stem from an intrinsic feature of the
FCM model which considers not only the relations between
inputs and the output (like the othermodels do) but also rela-
tions between the input features. We also demonstrate that
the best results are achieved for the window size of 5 and
that the improvements offered by our solution are robust.

Although this study focuses on the prediction of DNA-
binding residues, the novel FCM-based architecture can be
extended to predict other types of interactions, such as
protein-protein and protein-RNA interactions. These exten-
sions will be the subject of future work.

Lastly, we make the proposed here predictor available
online as a convenient and free webserver named funD-
NApred (Fuzzy Cognitive Map approach to DNA residues
prediction). The computations are performed on the server
side and the end user only needs to enter the input protein
chain to acquire the predictions. The server accepts up to 10
sequences at the time and it delivers the results via email
and in the web browser window. The funDNApred web-
server is available at http://biomine.cs.vcu.edu/servers/
funDNApred/.
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