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Abstract—Accurately identifying the protein-ligand binding sites or pockets is of significant importance for both protein function

analysis and drug design. Although much progress has been made, challenges remain, especially when the 3D structures of target

proteins are not available or no homology templates can be found in the library, where the template-based methods are hard to be

applied. In this paper, we report a new ligand-specific template-free predictor called TargetS for targeting protein-ligand binding sites

from primary sequences. TargetS first predicts the binding residues along the sequence with ligand-specific strategy and then further

identifies the binding sites from the predicted binding residues through a recursive spatial clustering algorithm. Protein evolutionary

information, predicted protein secondary structure, and ligand-specific binding propensities of residues are combined to construct

discriminative features; an improved AdaBoost classifier ensemble scheme based on random undersampling is proposed to deal with

the serious imbalance problem between positive (binding) and negative (nonbinding) samples. Experimental results demonstrate that

TargetS achieves high performances and outperforms many existing predictors. TargetS web server and data sets are freely available

at: http://www.csbio.sjtu.edu.cn/bioinf/TargetS/ for academic use.

Index Terms—Protein-ligand binding sites, ligand-specific prediction model, template-free, classifier ensemble, spatial clustering
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1 INTRODUCTION

PROTEIN-LIGAND interactions are indispensable for biolo-
gical activities and play important roles in virtually all

biological processes [1], [2], [3]. Hence, accurately identify-
ing the protein-ligand binding sites or pockets is of
significant importance for both protein function analysis
and drug design [4]. Much effort has been made to reveal
the intrinsic mechanism of protein-ligand interactions and
thousands of protein-ligand complexes have been depos-
ited into protein data bank (PDB) [5]. Due to the
importance of protein-ligand interactions and the difficulty
of experimentally identifying of protein-ligand binding
sites, developing computational methods for the prediction
of protein-ligand binding sites using sequence and/or
structural information has become a hot spot in recent
bioinformatics research [6], [7], [8].

There have emerged many computational methods for
predicting protein-ligand binding sites during the past
decades [8], [9], [10], [11] and various algorithms for
identifying protein-ligand binding sites in proteins have
been comprehensively reviewed and explained in detail by
Leis et al. [8] and Laurie and Jackson [11]. Roughly speaking,

these existing methods can be grouped into three categories
according to the features they used [12]: structure-based
methods, sequence-based methods, and hybrid methods that
utilize both the structural and sequence information.

In the early stage, structure-based methods dominate
in the fields of protein-ligand binding sites prediction. To
name a few: LIGSITE [13], CASTp [14], SURFNET [15],
POCKET [16], fpocket [17], Q-SiteFinder [18], SITEHOUND
[19], and so on. Often, these structure-based predictors try
to utilize the protein 3D information and appropriate
geometry measurements to locate the potential binding
sites (pockets). For example, in LIGSITE [13], a regular 3D
grid is placed around the protein; then, lines are drawn
from each grid point along the x-, y-, z-axis as well as the
cubic diagonals of the grid; segments of lines that are
enclosed by protein from both sides are considered as
pockets [8]. In the CASTp [14], alpha shape theory and
triangulation methods are used to predict pockets: a
Delaunay triangulation of the protein is first performed;
then, based on the direction of norm vectors associated with
triangles for a set of neighboring triangles, a potential
pocket can be detected. Most structure-based methods relay
on the assumption that proteins binding similar ligands
have similar overall structural or biochemical properties.
However, researchers have found proteins that do not
display any overall sequence or structure similarity may
also present similar binding sites [20]. Therefore, local
comparison of binding pockets is a more appropriate
approach to predict if two proteins bind similar ligands
[21]. For example, Hoffmann et al. [20] proposed a method
to quantify the similarity between binding pockets, based
on which they can predict binding ligands for a given target
pocket by comparing it to an ensemble of pockets with
known ligands.
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Whereafter, researchers found that features derived
from protein sequences can also be effectively used for
protein-protein interfaces and protein-ligand binding sites
prediction. For example, ConSurf [22] and Rate4Site [23]
use the evolutionary data derived from multiple-sequence
alignment technique to identify hot spots and surface
patches that are likely to be in contact with other proteins,
domains, peptides, DNA, RNA, or other ligands; L1pred
[24] predicts catalytic residues in enzymes by using the
L1-logreg classifier to integrate eight sequence-based
scoring functions.

Recently, considerable attention has been paid to the
methods that combine both the structural and sequential
information to further improve prediction accuracy of
protein-ligand binding sites. For example, LIGSITEcsc [25]
extends the LIGSITE [13] by incorporating the degree of
conservation of the involved surface residues, ConCavity
[26] integrates evolutionary sequence conservation estimates
with structure-based methods for identifying protein surface
cavities, and SURFNET-ConSurf [27] also incorporates
residue evolutionary conservation into pocket detection.

Although much progress has been made in computa-
tional methods for protein-ligand binding sites prediction
and many applications based on these methods have
emerged, there still exist several issues deserved to be
further investigated:

First, many structure-based methods are template-based
that require tertiary protein structures as inputs to search
for existing well-characterized proteins as templates for
homology comparative prediction [9], [10], [28], [29].
However, on the one hand, it is very common in many
realistic scenarios (e.g., drug design project) where a given
protein target only has sequence information and no
corresponding 3D structure is available [8], thus the
applicability of these structure-based methods will be
limited. On the other hand, these template-based methods
will also fail to perform novel predictions for features
absent in the template library [2]. These are two of the major
reasons that motivate researchers in this field to develop
useful methods for predicting protein-ligand binding sites
from the protein sequence information alone.

Second, a common drawback of most existing sequence-
based protein-ligand binding prediction methods (e.g.,
ATPsite [7] and NsitePred [30] for ATP binding residue
prediction; DiANNA [31] for ternary cysteine prediction:
discriminating between free, metal binding, disulphide
binding for cysteines [32], etc.) is that they are bonding
state prediction [33], i.e., they can only predict the protein-
ligand binding residues from sequences and cannot tell
which residues may potentially form the binding sites
(pockets). It is believed that a deep understanding of the
mechanism of protein-ligand interaction requires more than
this simple two-state or three-state prediction and thus
developing effective methods for further identify the
binding sites (pockets) from the predicted binding residues
is necessary.

Third, most of the aforementioned methods focused on
predicting general-purpose ligand binding sites without care-
fully considering the differences between various ligands. In
fact, protein binding sites vary significantly in their roles,
sizes, and distributions for different types of protein-ligand
interactions and different ligands tend to binding to
different residues with specificities [34], [35]. Considering

the significant difference between different types of ligands,
developing ligand-specific binding sites predictor has
attracted considerable attentions to obtain much more
accurate predictions, and many ligand-specific binding sites
predictors have emerged recently [36]. For example, Liu
et al. developed HemeNet [37] and HemeBIND [12] for
specifically predicting HEME binding residues based on
structural and sequential information, Sodhi et al. [38]
exploited neural network methods to predict metal ions
binding sites, Brylinski and Skolnick [39] extended the
FINDSITE software to FINDSITE-metal for specifically
predicting metal ions binding sites, and Kumar et al. [40]
developed Pprint, an RNA binding site predictor using SVM
and PSSM profile; several predictors specifically designed
for Adenosine-5’-triphosphate (ATP) binding residues pre-
diction have also been released [6], [7], [30] recently. In this
study, we will experimentally demonstrate that ligand-
specific binding sites predictor is better than general-purpose
ligand binding sites predictor and really helps to further
improve prediction accuracy.

In view of the above-mentioned three important issues,
we thus developed a ligand-specific template-free protein-
ligand binding sites predictor, called TargetS, which
currently can predict binding sites for 12 types of ligands
and is flexible to incorporate prediction modules for other
new types of ligands. Protein conservation matrix, pre-
dicted protein secondary structure matrix, and ligand-
specific binding propensities of residues are combined to
extract discriminative features; classifier ensemble with
SVM [41], [42] as base classifier and random undersampling
technique are integrated to tackle the serious imbalance
phenomenon between negative and positive samples (i.e.,
nonbinding and binding residues). TargetS performs pre-
diction task with a two-stage scheme: In the first stage, it
predicts which residues are protein-ligand binding residues
with ligand-specific prediction modules, while in the
second stage, the predicted binding residues are spatially
clustered into the binding sites (pockets) according to the
protein 3D structures either provided by the user or
modeled by the MODELLER software [43]. The TargetS is
freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/
TargetS/ for academic use.

2 MATERIALS AND METHODS

2.1 Benchmark Data Sets

Most ligand-binding sites prediction methods use the protein
structures from the PDB [44] as templates [45]. However, not
all ligands present in the PDB are biologically relevant, as
small molecules are often used as additives for solving the
protein structures [46], [47]. Much effort has been made to
filter out the biologically ligand-protein interaction from the
PDB and several purified ligand-protein interaction data sets
have appeared, such as FireDB [47], LigASite [46], PDBbind
[48], and BioLip [45], among which BioLip is the most
recently released semimanually curated database for biolo-
gically relevant ligand-protein interactions. BioLip was
constructed by a four-step biological feature filtering
procedure followed by careful manual verifications [45]:
First, an automated four-step hierarchical procedure is used
to verify the biological relevance of a ligand. After the
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automated procedure is completed, a careful manual check is
performed to eliminate possible false positives, which can
occur for entries with the commonly used crystallization
additives. By doing so, it is believed with high confidence
that the ligand-protein interactions collected from PDB are
real biologically relevant. Details for constructing BioLip can
be found in [45].

To evaluate the effectiveness of the proposed TargetS, we
thus constructed training data sets and independent
validation data sets based on the BioLip [45] rather than
on PDB. Twelve different types of ligands, i.e., five types of
metal ions, five types of nucleotides, DNA, and HEME,
were considered in this study. For each of the 12 types of
the considered ligands, we constructed its training data set
and independent validation data set as follows:

Training data sets. We extracted all the protein sequences,
which interact with the given ligand and were released into
PDB before 10 March 2010, from BioLip, and then the
maximal pairwise sequence identity of the extracted protein
sequences was culled to 40 percent with PISCES software
[49] and the resulting sequences constitute the training data
set for that ligand.

Independent validation data sets. We extracted all the protein
sequences that interact with the ligand and were deposited
into PDB after 10 March 2010 from BioLip. Again, the
maximal pairwise sequence identity of the extracted protein
sequences was reduced to 40 percent and the resulting
sequences constitute the validation data set. Moreover, if a
given sequence in the validation data set shares >40%
identity to a sequence in the training data set, then we remove
the sequence from the validation data set. This assures that
the sequences in validation data set are independent of those
in training data set. Table 1 summarizes the detailed
compositions of the training data sets and the independent
validation data sets for the 12 types of ligands.

To further demonstrate the effectiveness of the proposed
TargetS, CASP9 data set was used for blind test. The ninth

community-wide critical assessment of techniques for
protein structure prediction (CASP9) released 129 target
protein sequences for blind test of protein structure and
function prediction methods. Among the 129 sequences,
31 were used for evaluating the ligand binding-site
predictions, where the predictors were asked to identify
ligand binding residues in the sequences. As one sequence
(Target ID: T0533) was canceled on 26 May 2010, the
remaining 30 sequences were, thus, taken as targets for
our consideration.

It has not escaped from our notice that the percentages of
binding residues in training and validation data sets for a
given ligand are different. However, this difference will not
affect the objective evaluation procedure of the proposed
method as we performed both the cross-validation evalua-
tion on training data set and the independent test on the
testing data set. The purpose of the cross-validation is to
evaluate the overall performance of the proposed method
on a given data set. While independent test is often used to
evaluate the generalization capability of the proposed
method, which has been widely accepted in this field.

2.2 Feature Extraction

2.2.1 Position Specific Scoring Matrix Feature

Position specific scoring matrix (PSSM) well encodes the
evolutionary information of a protein sequence. Tremendous
previous studies have shown its prominent discriminative
capability for many prediction problems in bioinformatics,
such as protein function prediction [50], protein-ATP
binding sites prediction [51], transmembrane helices predic-
tion [52], protein secondary structure prediction [53],
subcellular localization prediction [54], [55], [56], and so on.

The position specific scoring matrix for protein sequence
is built by using the PSI-BLAST [57] to search the Swiss-Prot
database through three iterations with 0.001 as the e-value
cutoff for multiple sequence alignment against the query
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sequence. The obtained PSSM is further normalized with
the logistic function:

fðxÞ ¼ 1

1þ expð�xÞ ; ð1Þ

where x is the original score in PSSM matrix. Then, a sliding
window of size W is applied to each residue to extract its
PSSM feature vector. In this study, we have tested different
values of W and found that W ¼ 17 is a better choice. Thus,
the dimensionality of PSSM feature vector is 17� 20 ¼ 340.

2.2.2 Predicted Protein Secondary Structure Feature

Previous studies have shown that there exists close relation-
ship between protein structures and functionalities. Many
structural characteristics related to identification of critical
residues (e.g., ligand-binding residues) have been inten-
sively investigated, such as the secondary structure informa-
tion and so on. [51], [58]. The predicted secondary structure
information of a protein sequence is obtained by applying
PSIPRED [59] software, which predicts the probabilities of
belonging to three secondary structure classes (coil (C),
helix (H), and strand (E)) for each residue in a protein
sequence. More specifically, for a protein sequence with
L residues, the PSIPRED outputs anL� 3 probability matrix,
which represents the predicted secondary structure informa-
tion of the protein. Again, a sliding window of size 17 was
used to extract protein secondary structure feature, denoted
as PSS, of each reside and the dimensionality of the extracted
PSS feature is 17� 3 ¼ 51.

2.2.3 Ligand-Specific Binding Propensity Feature

Previous studies have shown that different ligands tend to
bind different types of residues and this binding propensity
may potentially help to improve the binding sites prediction
accuracy [34], [35]. For example, Gromiha and Fukui [60]
analyzed the binding propensity among protein-DNA com-
plexes and found that positively charged, polar, and aromatic
residues are important for binding. In light of this, we will
also incorporate binding propensity feature in our method.

We calculated the frequencies of the 20 native amino
acids among binding residues for each type of ligands and
found that the ligands clearly has binding propensity.
Taking metal ion ligands as example, for each of the five
considered metal ion ligands, we calculated and plotted the
frequencies of the 20 native amino acids among binding
and nonbinding residues, as shown in Fig. 1. By observing
Fig. 1, several observations can be drawn:

First, each type of metal ion ligands favors to bind some
specific types of residues. For example, ASP (D), GLU (E),
ASN (N), and GLY (G) are the top four types of residues to
which Ca2þ tends to bind, while HIS (H), CYS (C), ASP (D),
and GLU (E) are the top four types of residues which
will more often coordinate the Zn2þ. This observation agrees
with the arguments obtained by other researchers such
as Lu et al. [61]. Second, some types of residues will always
appear with high frequencies for different types of metal
ion-binding residues. It is easy to find that the resiude
ASP (D), and GLU (E) consistently appear with high
frequencies among all the five types of metal ion-binding
residues. These statistical results inspired us that the
binding propensities of residues can be utilized as effective
indexes to guide the identification process of protein-ligand
binding. Together with the fact that the binding propen-
sities of a same residue differ significantly for different
ligands, we thus extract ligand-specific 17D binding
propensity feature vector for each residue in a protein
sequence by concatenating the binding propensities of its
neighboring residues within the window of size 17 centered
at the residue.

2.3 Application of Machine Learning Methods

Protein-ligand binding prediction is a typical imbalanced
learning problem, i.e., the numbers of samples in different
classes (binding or nonbinding) differ significantly. Directly
applying the traditional statistical machine learning algo-
rithms, which assume that samples in different classes are
balanced, to imbalanced problems often leads to a poor
performance [62]. To circumvent this problem, random
undersampling technique is taken [63] to alter the size of the
majority class by randomly removing samples from the
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majority class. Random undersampling can provide a

parsimonious training data set because it removes samples

from the original data set. However, part of the important

information buried in the removed samples may also be lost

simultaneously. We, thus, exploited the method of combing

multiple undersamplings with classifier ensemble to per-

form protein-ligand binding prediction: first, we sample

L different majority training subsets by random under-

sampling the majority class L times; then, we train a base

classifier on each of the majority training subsets plus the

minority training set. By doing so, on the one hand, merits

derived from undersampling such as sample balance can be

retained. On the other hand, multiple samplings can reduce

the loss of information caused by random undersampling to

some extent, thus may potentially provide better prediction

performance. Finally, the trained base classifiers are

ensembled by an appropriate ensemble scheme to perform

the final decision. Fig. 2 illustrates the architecture of the

classifier ensemble procedure based on random under-

sampling technique. In this study, support vector machine

(SVM) [41], [42] was used as base classifier.
The next key problem is how to achieve best final

decision from the outputs of the L base classifiers with an

effective ensemble scheme. Classifier ensemble has been

widely applied in bioinformatics, such as prediction of all-

alpha membrane proteins [64], protein fold prediction [65],

[66], protein subcellular localization prediction [54], and

protein structural class prediction [67] and so on. However,

ensemble scheme are problem-dependent and the theore-

tical justification for choosing is still unavailable. In view of

this, in this study, we have tested several popular ensemble

schemes including Maximum ensemble, Minimum ensemble,

Mean ensemble, Dempster-Shafer ensemble [68], AdaBoost

ensemble [69], and Decision Template ensemble [70]. The best

one, i.e., AdaBoost, was finally chosen.
The idea of AdaBoost ensemble is to develop the classifier

team SE ¼ fSE1 ; SE2 ; . . . ; SEk ; . . . ; SEKg by incrementally select-

ing one base classifier each time from the base classifier

pool S ¼ fS1; S2; . . . ; Si; . . . ; SLg, K � L and SEk 2 S. The

base classifier Si that joins the ensemble at step i is trained

on a training subset selectively sampled from the training

data set XTr ¼ fxTrt g
N
t¼1 by applying a sample-distribution-

based sampling technique. Details for AdaBoost could be

found in [69] or [70].

However, two reasons motivate us to develop a modified
AdaBoost ensemble scheme, denoted as MAdaBoost, rather
than utilizing the traditional AdaBoost ensemble directly:

1. In the traditional AdaBoost, samples (binding resi-
dues and nonbinding residues in this study) in the
whole training data set are used as evaluation
samples to calculate the ensemble error of each base
classifier. In other words, evaluation samples and
training samples originate from the same protein
sequence thus having high homology, which will
lead to an overoptimistic performance on training
data while having poor generalization performance
on the testing data. In view of this, we will utilize
and independent evaluation data set, among which
samples have low homology with those in training
data set, to facilitate the ensemble procedure. How to
choose the independent evaluation data set will be
described subsequently.

2. To reduce the impact of the serious imbalance
between positive (binding) and negative (nonbind-
ing) samples, we will still use random undersam-
pling technique to balance samples for training the
base classifiers during the ensemble procedure.

Let � ¼ f!1; !2; . . . ; !Cg be the set of classes, S ¼
fS1; S2; . . . ; SLg be the set of L base classifiers which

are trained on a corresponding data set randomly under-

sampled from training data set XTr ¼ fxTrt g
N
t¼1. For a

given input sample x, the ith base classifier Si outputs a

C-dimensional vector SiðxÞ ¼ ðsi;1ðxÞ; si;2ðxÞ; . . . ; si;jðxÞ; . . . ;

si;CðxÞÞT , where si;jðxÞ measures the probability of x being

classified into class j, 1 � j � C. Let XEval ¼ fxEvalt gMt¼1 be

the independent evaluation data set, the two-tuple ðSE;
f"Ek g

K
k¼1Þ be the ensembled results, where SE ¼ fSE1 ;

SE2 ; . . . ; SEk ; . . . ; SEKg consists of the base classifiers selected

from the base classifier pool and "Ek is the corresponding

weighted ensemble error of the kth selected base classifier.

Then, the flowchart of the proposed modified AdaBoost

(MAdaBoost) procedure can be illustrated in Fig. 3.
We use V -fold cross-validation to evaluate the perfor-

mance of the proposed MAdaBoost ensemble as follows:
First, we randomly partition the sequences rather than

the residues of sequences in the original training data set
into V disjoint subsets. By partitioning the original training
data set on sequence rather than residue level, the low
homology between evaluation samples and training sam-
ples during ensemble procedure can be guaranteed.

Second, residues of sequences in one subset constitute

the testing data set XT in the current round of cross

validation, residues of sequences in one subset are used

to construct independent evaluation data set XEval, and the

residues of sequences in the remaining V -2 subsets are

used as training data set XTr. XTr and XEval are then used

for classifier ensemble with the MAdaBoost ensemble

scheme (see Fig. 3). After classifier ensemble, samples in

XT are fed to the ensembled classifier ðSE; f"Ek g
K
k¼1Þ

to obtain their probability outputs: for a sample x in XT ,

its support for class !j (1 � j � C) obtained from the

ensembled classifier ðE; f"Ek g
K
k¼1Þ is formulated as
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Fig. 2. Architecture of the classifier ensemble procedure based on
random undersampling technique. “þ” denotes a sample in the minority
class, while “�” denotes a sample in the majority class.
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�jðxÞ ¼
X

1�k�K; labelðSE
k
ðxÞÞ¼!j

�
1� "Ek

�
� sEk;jðxÞ

þ
X

1�k�K; labelðSE
k
ðxÞÞ6¼!j

"Ek � sEk;jðxÞ;
ð2Þ

where "Ek is the weighted ensemble error of the base
classifier k in the ensembled classifier team, SEk ðxÞ ¼
ðsEk;1ðxÞ; sEk;2ðxÞ; . . . ; sEk;iðxÞ; . . . ; sEk;CðxÞÞ

T , labelðSEk ðxÞÞ ¼ !j
means that the input x is classified into class !j by the
kth base classifier SEk ðxÞ in the ensembled classifier team,
i.e., the jth component of the output of the classifier SEk
under the input x is maximal:

j ¼ arg max
i

sEk;iðxÞ; 1 � i � C: ð3Þ

Third, this practice continued until all the V subsets of
the original training data set are traversed over for testing.

After V -fold cross-validation, the probabilities of being
binding residues of all the residues in the original training
data set can be obtained. Further, the prediction perfor-
mance of proposed method on training data set over V -fold
cross-validation can be calculated by setting a threshold,
i.e., residues with probabilities above the threshold are
marked as ligand binding residues, while those ones with
probabilities less than the threshold are marked as non-
binding residues. How to choose the threshold T for
reporting the performance will be described in the experi-
mental results section.

2.4 Clustering Binding Residues to Binding Site(s)

As stated in Section 1, most of the existing sequence-based
protein-ligand binding predictors can only perform bonding
state prediction, i.e., they can only predict protein-ligand
binding residues rather than binding sites from sequences.
In fact, it will be more useful for biologists and users if the

predictor can tell which binding residues actually form a
binding site (pocket), especially in the situation where
there exist more than one binding sites (pockets) in one
protein sequence.

Previous studies have shown that residues located in
protein-ligand binding interfaces tend to form spatial clusters
[71]. Taking chain A of protein 1L2T (interacts with ligand
ATP) and chain A of protein 1A29 (interacts with ligand
Ca2þ) as examples, we drew their 3D structures with cartoon
representation as shown in Fig. 4, where the blue and red
residues are observed ligand-binding residues, and ligands
(ATP and Ca2þ) are highlighted in yellow color. From Fig. 4,
it is easy to find that the residues colored in blue and red
are spatially clustered and form binding sites 01 and 02,
respectively, for both proteins.

Based on this observation, we thus have developed a
recursive spatial clustering procedure, denoted as RSCP,
which has been demonstrated effective in our recent work
for protein-ATP binding site prediction [72], to further
identify which of the predicted binding residues may
potentially form binding site(s).

Let PBR be the set of the predicted binding residues for a
given protein, Tligand be the ligand-specific threshold for
spatial clustering, and P3D be the 3D structure (predicted or
observed) of the protein. Then, the predicted binding
residues in PBR can be clustered into predicted binding
sites, denoted as PBS, using the following recursive spatial
clustering procedure, as shown in Fig. 5.

Note that in the spatial clustering procedure, the
clustering threshold Tligand is ligand-dependent and dom-
inates how many clusters (binding sites) will be obtained
after spatial clustering. Obviously, a large Tligand will
produce small number of clusters, while a small Tligand
will lead to a large number of clusters. Thus, how to set an
appropriate Tligand is crucial for the spatial clustering
procedure. In this study, the ligand-dependent clustering
threshold Tligand was obtained as follows: For each type of
ligand, we performed spatial clustering procedures on the
observed binging residues in the corresponding training
data set for that ligand with different clustering thresholds
(Tligand) by varying the values of Tligand from 10 (�A) to
100 (�A) with a step size of 0.5 (�A), and the one which
maximizes the clustering accuracy was chosen as the final
threshold for that ligand.

Two measures were used to evaluate the performance of
clustering algorithm and optimize the clustering parameters
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Fig. 4. Visualization of protein-ligand binding sites. (a) illustrates the
protein 1L2TA, which interacts with two ATP ligands; while (b) illustrates
the protein 1A29A, which interacts with two Ca2þ ligands.

Fig. 3. Flowchart of the proposed modified AdaBoost (MAdaBoost).
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on the training data sets. The first measure is Vsite, which
measures the percentage of the observed binding sites that
have been correctly clustered. In this study, an observed
binding site is considered to be correctly clustered if its
90 percent binding residues are included in the clustered
binding site. The second measure is Vp, which measures the
percentage of proteins in the training data set that have been
correctly clustered. A protein is considered being correctly
clustered if all the binding sites in this protein are correctly
clustered and the number of the clustered binding sites is
equal to the number of the observed binding sites in the
protein. Table 2 lists the optimal clustering thresholds for the
12 types of ligands after performing the above-mentioned
empirical evaluations on their corresponding training data
sets. As we can see that generally the larger of the ligand, the
bigger of the threshold will be.

2.5 Designing Ligand-Specific Prediction Model

Many existing protein-ligand prediction methods focused
on predicting general ligand binding sites without carefully
considering the differences in various ligands [12]. In fact,
protein-ligand binding sites vary significantly in their roles,
sizes, and distributions for different types of protein-ligand
interactions [34]. For example, we calculated that the
averaged diameter of nucleotide ligands is about 22 �A,
while the averaged diameter of metal ion ligands is only
about 2 �A. We also calculated the averaged size of binding
site (averaged number of residues in each binding site/
pocket) for the 12 types of considered ligands as listed in

Table 3. It is easy to find that the averaged size of binding
site differs significantly between different ligand categories.
For example, the averaged size of binding site for nucleo-
tide category (ATP, AMP, ADP, GDP, and GTP) is about
12, while the averaged size of binding site for metal ion
category (Ca2þ, Mg2þ, Mn2þ, Fe3þ, and Zn2þ) is only about 3,
the difference between them is approximately 9; on the
other hand, the averaged sizes are similar among the same
ligand category. Taking metal ion category as an example,
the maximal and minimal averaged sizes of the five
considered ligands are 2.95 and 3.80, respectively, and the
difference is only about 0.85. Similar phenomenon can also
be found in nucleotide category. In addition, different
ligands (e.g., Ca2þ, Mg2þ, Mn2þ, Fe3þ, and Zn2þ) are also
found to tend to bind different residues even if they belong
to the same ligand category (e.g., metal ion) which we have
discussed in Section 2.2.

In view of the above observations, we believe and will
demonstrate that developing ligand-specific protein-ligand
binding sites predictor, i.e., designing a specific model for
each type of ligands, may help to further improve the
prediction accuracy.

2.6 Workflow of the Proposed Predictor

We designed and implemented a ligand-specific template-
free predictor for targeting protein-ligand binding sites,
called TargetS, with modular design strategy to facilitate it
with good flexibility and scalability. Fig. 6 illustrates the
workflow of the proposed TargetS.

The TargetS server accepts two different types of query
protein information for protein-ligand binding sites predic-
tion: one is protein sequence in FASTA format; the other is
standard PDB file format, which contains 3D structure
information of a protein. Note that if the user inputs a PDB
file, corresponding sequence will be picked out from the PDB
file for subsequent sequence-based feature extraction (e.g.,
PSSM and PSS). For each protein (sequence or PDB file)
submitted from the client, the server performs binding sites
predictions for different types of ligands the user designated
by using corresponding ligand-specific prediction models.
Note that if the user designate “I don’t know the ligand
types,” the TargetS will perform predictions for all the
12 types of ligands, respectively. For each type of ligand,
TargetS accomplishes the prediction task with a two-stage
scheme: In the first stage, the server predicts which residues
are binding residues, while in the second stage, the server
further identifies binding sites from the predicted binding
residues with spatial clustering algorithm.

Note that if the user submits a PDB file, then the
residues’ 3D coordinates contained in the PDB file can be
directly utilized for spatial clustering. If the user only
submits a protein sequence, the 3D structure of the query
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TABLE 2
Thresholds for Spatial Clustering

Procedure of the 12 Types of Ligands

TABLE 3
Averaged Size of Binding Site for the 12 Types of Ligands

Fig. 5. Spatial clustering procedure for clustering binding residues to
binding sites.
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sequence will be first modeled by applying MODELLER
[43] software package, and then the predicted 3D structure
is used for spatial clustering.

After the two-stage prediction, TargetS returns the
prediction results back to the client in two different ways:
online real-time feed back with 3D illustrations and text
descriptions, and an independent e-mail notification to the
e-mail address (optional) provided by the user.

3 EXPERIMENTAL RESULTS AND DISCUSSIONS

Specificity (Spe), Sensitivity (Sen), Accuracy (Acc), and the
Matthews correlation coefficient (MCC) were used to evaluate
the performance of the proposed methods as follows:

Specificity ¼ TN

TN þ FP ; ð4Þ

Sensitivity ¼ TP

TP þ FN ; ð5Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN ; ð6Þ

MCC

¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FP Þ � ðTP þ FNÞ � ðTN þ FP Þ � ðTN þ FNÞ

p ;

ð7Þ

where TP , FP , TN , and FN denote true positive, false
positive, true negative, and false negative, respectively.
However, the above four evaluation indexes are threshold
dependent and it is well known that Accuracy is not an
appropriate evaluation criterion under the imbalanced
learning scenario. In view of this, we also exploited AUC,
which is the area under the receiver operating characteristic
(ROC) curve and has been proved to be a reliable
performance measure for imbalanced problems [62], as
evaluation index. The AUC is threshold independent and is
often used to evaluate the overall prediction quality of a
prediction model.

3.1 Five-Fold Cross-Validation Results on Training
Data Sets

In this section, we evaluate the performance of the proposed
method by performing fivefold cross-validation on training
data sets of the 12 considered ligands separately.

As stated in Section 2.3, protein-ligand binding sites
prediction is a typical imbalanced learning problem, where
the number of samples in minority class (binding residues)
is significantly less that of samples in majority class
(nonbinding residues). Under the imbalanced learning
scenario, over pursuing the overall accuracy is not appro-
priate and can be deceiving for evaluating the performance
of a predictor. In general, people would expect that a
predictor can provide high accuracy of the minority class
(e.g., binding residues in this study) without severely
jeopardizing the accuracy of the majority class (nonbinding
residues) [62]. In view of this, together with the fact that
the MCC provides the overall measurement of the quality of
the binary predictions, we thus reported the threshold-
dependent evaluation indexes (e.g., Sen, Spe, Acc, and MCC)
by choosing the threshold, denoted as T , which maximizes
the value of MCC of predictions. The performances of the
proposed method together with the identified thresholds on
the training data sets of the 12 considered ligands over
fivefold cross-validation were also listed in Table 4.

Note that since the TargetS is a ligand-specific predictor
where the training data sets differ for 12 ligand types, thus
the thresholds identified by maximizing MCC criteria will
also be different accordingly. However, it is interesting for
us to find that the thresholds are similar for those ligands
belonging to the same category (e.g., ATP, ADP, AMP,
GDP, and GTP belonging to Nucleotide category; Ca2þ,
Mg2þ, Mn2þ, Fe3þ, and Zn2þ belonging to Metal Ion
category) as shown in Table 4.

By observing Table 4, we can find that the proposed
TargetS can generate accurate predictions for all the
12 considered ligands. The Specificity (Spe) varies from 94.5
to 99.8 percent, the Accuracy (Acc) from 89.9 to 99.0 percent,
the Matthews correlation coefficient (MCC) from 0.320 to 0.644,
and the area under the curve (AUC) from 0.784 to 0.938.

We found that for the five types of nucleotide ligands,
i.e., ATP, ADP, AMP, GDP, and GTP, the proposed method
achieves very similar performances, where AUCs varies
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Fig. 6. Workflow of the proposed TargetS. (A) denotes that the user submits protein sequence, and (B) denotes that the user submits a PDB file.
MODELLER [41] is a software package for predicting 3D structure from protein sequence.
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from 0.856 to 0.908. It is easy to understand this phenomenon
as these five types of ligands possess similar sizes, roles, and
distributions. According to this justification, we speculate
that the proposed method will also achieve similar perfor-
mances for the five metal ion ligands. However, among the
five metal ion ligands, Ca2þ and Mg2þ perform much worse
than other three metal ion ligands. The AUCs for Ca2þ and
Mg2þ are less than 0.80, while the AUCs for other three metal
ions are all greater than 0.90. There exists almost 10 percent
gap between them. The potential reasons for this gap will be
investigated in the subsequent section.

3.2 Why Ca2þ and Mg2þ Perform Worse Than
Zn2þ, Mn2þ, and Fe3þ?

As stated in Section 2.2, each type of metal ion favors to
bind some specific types of residues and the metal ion
binding propensity was utilized as indexes to guide the
identification process of prediction. Now, we seek to
explain why Ca2þ and Mg2þ perform much worse
than Zn2þ, Mn2þ, and Fe3þ from the view of metal ion
binding propensity. By revisiting Fig. 1, two observations
can be drawn as follows:

1. For all the five types of metal ion ligands, the
frequencies of the 20 native amino acids, which are
almost the same among nonbinding residues, differ
significantly among binding residues.

2. The difference between frequencies of the 20 native
amino acids among binding residues and that
among nonbinding residues differs significantly for
different types of metal ions. We believe that this
difference will influence the prediction performance.

For the purpose of quantitative analysis, here we define
the frequency difference index, denoted as hdif , for metal ion
ligand as follows:

hdif ¼
X20

i¼1

��fib � finb
��; ð8Þ

where fib and finb are the frequencies of the ith type of the
20 native amino acids among binging and nonbinding
residues, respectively. We calculated that the frequency
difference indexes for Ca2þ, Mg2þ, Mn2þ, Fe3þ, and Zn2þ are
73.06, 77.76, 118.09, 129.76, and 154.31, respectively.

We argue that the larger the frequency difference index, the
better the prediction performance. As the frequency differ-
ence indexes for Ca2þ and Mg2þ are 73.06 and 77.76,
respectively, which are the lowest two among the five
frequency difference indexes, thus it is foreseeable that
the prediction performances for Ca2þ and Mg2þ will also be
the worst as demonstrated in Table 4. To further validate our
argument, let’s take Mn2þ, Fe3þ, and Zn2þ for consideration:
the frequency difference index for Mn2þ is 118.09, which are
less than that for Fe3þ (129.76) and Zn2þ (154.31), we thus
expect that the prediction performance for Mn2þ will be
worse than that for Fe3þ and Zn2þ, and the Zn2þ will perform
best. From Table 4, we found that the AUCs, which are often
used to evaluate the overall prediction quality of models, for
Mn2þ, Fe3þ, and Zn2þ are 0.901, 0.922, and 0.938, respec-
tively. The results obviously support our speculation.

3.3 Ligand-Specific Model Helps to Improve
Prediction Performance

In this section, we will empirically demonstrate that the
proposed ligand-specific prediction model is superior to
general-purpose prediction model which does not distin-
guish the types of ligands.

We carried out general-purpose prediction experiments
as follows: training data sets of the 12 types of considered
ligands were merged to obtain a combined training data set;
then, a fivefold cross-validation procedure was performed
on the combined training data set. Note that in each round
of cross-validation, the positive samples were those binding
residues regardless of the types of ligands they bind to,
while the negative samples were those nonbinding residues
accordingly. In the evaluation stage, performances were
calculated for each type of ligands individually. Note that
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TABLE 4
Performance of the Proposed Method on the Training Data Sets of the 12 Types of Ligands over Fivefold Cross Validation
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as we do not distinguish the ligand types in this experi-
ment, thus the binding propensity feature were obtained
based on the frequencies of the 20 native amino acids
among binding residues regardless of the types of ligands
they bind to.

The performance comparisons between the general-
purpose and ligand-specific predictions on the training
data sets of the 12 considered ligands are listed in Table S1,
which can be found in the online supplemental material
available on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2013.104. Note
that for the convenience of comparison, we restricted the
false positive rate (FPR) of predictions to be (or most close
to) 5 percent.

By observing Table S1, which is available in the online
supplemental material, it is easy to find that the other four
evaluation indexes, i.e., Sen, Acc, MCC, and AUC, of ligand-
specific predictions are consistently superior to that of
general-purpose predictions under the same Spe (95 percent
or most close to 95 percent) for all the 12 considered ligands.
Particularly, ligand-specific predictions significantly out-
perform general-purpose predictions on the Sen and MCC
and averaged improvements of 14.6 and 10.0 percent were
achieved, respectively. As to AUC, the index for evaluating
the overall prediction quality of predictions, the ligand-
specific method also outperforms general-purpose method
with an averaged improvement of 4.7 percent.

Experimental results listed in Table S1, which is available
in the online supplemental material, demonstrate that
the ligand-specific method is superior to general-purpose
method, at least on the tested benchmark data sets. These
improvements may result from the following two aspects:
On the one hand, ligand-specific method performs predic-
tions for different ligands with corresponding specialized
prediction models, which can accommodate the differences
of roles, sizes, and distributions existed in different types of
ligands much better. On the other hand, in general-purpose
method, binding propensity feature is calculated based on
the frequencies of the 20 native amino acids among binding
residues regardless of the types of ligands they bind to,
while in ligand-specific method, binding propensity feature
is calculated for each type of ligands respectively thus can
characterize the ligand binding propensities of residues
much well. We believe this ligand-specific binding propen-
sity feature possess much better discrimination capability,
which maybe one of the most important factors that account
for the performance improvements.

3.4 Comparison with Existing Predictors

In this section, we will experimentally demonstrate the
efficacy of the proposed TargetS by comparing it with
other popular predictors via independent test and blind
test as follows:

3.4.1 Independent Test on Validation Data Sets

For each type of ligands, we compared TargetS with two
other ligand-specific predictors and one alignment-based
baseline predictor on the independent validation data set.

Ligand-specific predictors for comparison differ for
different types of ligands. More specifically, NsitePred
[30], a most recently developed predictor specifically

designed for predicting nucleotide-binding residues, and
SVMPred [7] were chosen for comparison for the five
types of nucleotide ligands; FunFOLD [73] and CHED [74]
were taken as ligand-specific predictors for comparison for
the five types of metal ion ligands; Note that FunFOLD
was initially designed for general-purpose binding sites
prediction. In this study, we retrained the FunFOLD on
the data set of each type of the five metal ion ligands and
used it as ligand-specific predictor. MetaDBSite [75], a
meta approach for protein-DNA binding sites prediction,
and DNABR [76] were used as ligand-specific predictors
for comparison for the DNA ligand; finally, HemeNet [37]
and HemeBind [12], which are the only two available
predictors (to the best of our knowledge) that were
specifically designed for predicting HEME binding resi-
dues. As the webserver of HemeNet doest not work
currently, thus only HemeBind was taken for comparison
for HEME ligand. Note that when performing compar-
isons between TargetS and the above-mentioned ligand-
specific predictors, we trained our TargetS using training
data set for that ligand and tested it with the correspond-
ing independent validation data set (see Table 1), while
prediction results of other ligand-specific predictors were
obtained by feeding sequences or 3D structures in the
independent validation data set to their corresponding
web servers. As SVMPred does not provide a web server,
we thus locally implemented it based on our training data
sets of the five nucleotide ligands and tested it with the
corresponding independent validation data sets.

Alignment-based predictions were performed as follows:
for each query sequence in a validation data set, we
executed the alignment-based prediction by aligning the
query sequence and all the sequences in the corresponding
training data set. The residues in the query sequence that
were aligned with the binding residues of the best aligned
sequence are predicted as the binding residues.

Table 5 illustrates the performance comparison of
TargetS with NsitePred, SVMPred, and alignment-based
predictor on the independent validation data sets of the five
nucleotide ligands. Considering the page limit, comparison
results for other seven types of ligands, i.e., Ca2þ, Mg2þ,
Mn2þ, Fe3þ, Zn2þ, DNA, and HEME are listed in the
supplemental materials (see Tables S2, S3, and S4, which are
available in the online supplemental material).

From Table 5, we can find that the AUCs for ATP, ADP,
AMP, GDP, and GTP on the corresponding independent
validation data sets are 0.898, 0.896, 0.830, 0.896, and 0.855,
respectively. By revisiting Table 4, it is found that the AUCs
for ATP, ADP, AMP, GDP, and GTP on the training data
sets are 0.887, 0.907, 0.856, 0.908, and 0.858, respectively. In
other words, for all the five nucleotide ligands, TargetS
achieves similar overall prediction performances (measured
by AUCs) on the training data set and independent
validation data set, denoting that the generalization cap-
ability of the TargetS derived from the knowledge buried in
training data sets has not been over- or underestimated.

By observing Table 5, it is found that the alignment-
based predictor achieve very similar performances on Spe
(�97%) to other three machine-learning-based predictors.
However, its performances on Sen are poorest (i.e.,
the alignment-based predictor predicts too many false
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negatives) resulting in low MCCs for all the five types of
nucleotide ligands only except for GTP.

We also find that that the three machine-learning-based
predictors almost always perform better than the align-
ment-based predictor. Among the three machine-learning-
based predictors, the proposed TargetS consistently per-
forms the best on Spe, Acc, and MCC for all the five
nucleotide ligands and acts as the best performance.
Compared with the second-best performer, i.e., NsitePred,
TargetS achieves averaged improvements of 1.2, 1.1, and
7.3 percent on Spe, Acc, and MCC, respectively, while still
possesses almost the equal performance on Sen as NsitePred
at the same time.

3.4.2 Blind Test on CASP9 Data Set

As described in Section 2.1, 30 protein sequences in CASP9
data set were used for blind test. Considering that the
sequences in CASP9 interact with many different types of
ligands, we thus compare TargetS with several popular
general-purpose rather than ligand-specific predictors.
ConSeq [77], a webserver for the identification of biologi-
cally important residues in protein sequences, was chosen
as the sequence-based general-purpose predictor for com-
parison, while SITEHOUND [19] and MetaPocket [78] were
chosen as the structure-based general-purpose predictors
for comparison.

The prediction results of ConSeq [77], SITEHOUND
[19], and MetaPocket [78] were obtained by feeding
30 protein sequences or 3D structures to their correspond-
ing webservers, while the prediction results of TargetS

were obtained as follows: For each blind test protein

sequence, we fed it to the 12 ligand-specific prediction

models, respectively, and the predicted binding residues of

the 12 models were then merged as the final prediction

results for that sequence. Table 6 compares the performance

of TargetS with ConSeq [77], SITEHOUND [19], and

MetaPocket [78] for the 30 targets in CASP9.
According to the MCC, which is the overall measurement

of the quality of the binary predictions, listed in Table 6, we

can find that the TargetS acts as the best performer followed

by MetaPocket, SITEHOUND, and ConSeq. TargetS signifi-

cantly outperforms the other sequence-based predictor, i.e.,

ConSeq [77], on all the four evaluation indexes and an

improvement of 20 percent on MCC was achieved. In

addition, TargetS also overwhelms the structure-based

predictor SITEHOUND. The Sen, Acc, and MCC of TargetS

are 38.9, 94.2, and 0.317 percent, respectively, which are 16.4,
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Performance Comparison of TargetS with NsitePred, SVMPred, and Alignment-Based

Predictor on the Independent Validation Data Sets of the Five Nucleotide Ligands

TABLE 6
Performance Comparison of TargetS with ConSeq,

SITEHOUND and MetaPocket for the 30 Targets in CASP9
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1.9, and 16.8 percent higher than that of SITHOUND, which
is the third-best performer. We also found that the second-
best performer, i.e., MetaPocket, achieves the highest Sen
(70.4 percent), which is almost twice that, i.e., 38.9 percent,
of the TargetS. However, the Spe of MetaPocket is only
80.0 percent which is lowest one among the four considered
predictors. In other words, MetaPocket predicts too many
false positives (nonbinding residues are predicted as binding
ones), thus the reliability of the predicted binding residues of
MetaPocket is the lowest among the listed predictors.

Currently, TargetS embraces 12 types of ligands and
most types of ligands contained in CASP9 were in fact not
covered by TargetS. However, by observing Table 6, we
can find that TargetS still achieves satisfactory perfor-
mances for the 30 blind test proteins and acts as the best
performer among the four listed predictors. We speculate
that is due to the multiple ligands coverage of TargetS and
the hypothesis that binding residues for different ligands
can share some common features, TargetS can thus yield
good prediction results for the ligands that not belonging
to the 12 types.

3.4.3 Performing Comparison on Benchmark Data Set

That Has Been Used by Other Predictors

Except for the independent validation test and blind test
performed above, we will try to further demonstrate the
efficacy of the proposed TargetS by comparing it with other
predictors based on the same benchmark data set that has
been used by the compared predictors. Taking protein-
nucleotide binding sites prediction as an example, the data
set 1 constructed by Chen et al. [30] was taken as the
benchmark data set. The data set 1 [30] consists of 227, 321,
140, 56, and 105 sequences that bind to ATP, ADP, AMP,
GTP, and GDP, respectively, and the maximal pairwise
sequence identity of the sequences among each type of the
five nucleotides was less than 40 percent.

We compared TargetS with SVMPred [7], Rate4site [23],
and NsitePred [30] on data set 1 over fivefold cross-
validation as done in [30] and the comparison results were
listed in Table 7. By observing Table 7, we found that the
TargetS obtains AUC >0:85, MCC >0:41 for all the five types
of nucleotide ligands. The AUC and MCC values of TargetS
are consistently superior to that of all the other three
considered predictors, i.e., SVMPred [7], Rate4site [23], and
NsitePred [30] and the averaged improvements of 2.3 and
5.4 percent were achieved, respectively, if compared with
the second-best performer NsitePred [30]. It has not escaped
from our notice that Rate4site [23] achieves highest Sen
values, i.e., 56.2 and 56.9 percent for AMP and GTP,
respectively. However, the corresponding Spe values are
much lower, i.e., 79.9 and 80.6 percent, denoting too many
false positives were incurred during prediction. On the
other hand, SVMPred [7] achieves the best performances
on Spe for several nucleotide ligands (i.e., 99.3, 99.6, and
99.7 percent for ADP, AMP, and GTP, respectively) while
with much lower Sen values implying too many false
negatives were produced during prediction.

4 CONCLUSIONS

We have designed and implemented a ligand-specific
template-free predictor, called TargetS, for predicting

protein-ligand binding sites. TargetS was trained on data
collected from a most recently released protein-ligand
interaction database BioLip [45] with our proposed modified
AdaBoost (MAdaBoost) learning algorithm [79]. Experimental
results on training data sets, independent validation data
sets and blind test on CASP9 data set have demonstrated
the efficacy of the proposed TargetS. The success of TargetS
is due to several reasons include good benchmark data sets,
ligand-specific propensity discriminative feature design,
careful construction of the prediction model and the spatial
clustering algorithm. Currently, the TargetS prediction
server has already been put online and been able to predict
binding sites for 12 types of ligands. Our future woks will
focus on further incorporating binding sites prediction
modules for other new types of ligands into TargetS to
enhance its capability. In addition, we will also continue to
improve the prediction accuracy of TargetS by developing
new effective feature extraction methods and applying
more powerful classifiers.

In the current work, a major problem of TargetS is that
the computation time is relatively long (about 325 s for a
sequence with 300 residues), although it is fast than many
template-based methods such as MetaPocket, because the
TargetS have to perform PSI-BLAST [57], PSIPRED [59], and
MODELLER [43] to extract features and model the 3D
structure from a protein sequence. We will also try to
accelerate the computation speed by using several servers
to parallely perform these computations in the future.
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