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Abstract—Protein-DNA interactions are ubiquitous in a wide variety of biological processes. Correctly locating DNA-binding residues

solely from protein sequences is an important but challenging task for protein function annotations and drug discovery, especially in the

post-genomic era where large volumes of protein sequences have quickly accumulated. In this study, we report a new predictor, named

TargetDNA, for targeting protein-DNA binding residues from primary sequences. TargetDNA uses a protein’s evolutionary information

and its predicted solvent accessibility as two base features and employs a centered linear kernel alignment algorithm to learn the weights

for weightedly combining the two features. Based on the weightedly combined feature, multiple initial predictors with SVMas classifiers

are trained by applying a randomunder-sampling technique to the original dataset, the purpose of which is to cope with the severe

imbalance phenomenon that exists between the number of DNA-binding and non-binding residues. The final ensembled predictor is

obtained by boosting themultiple initially trained predictors. Experimental simulation results demonstrate that the proposed TargetDNA

achieves a high prediction performance and outperformsmany existing sequence-based protein-DNA binding residue predictors. The

TargetDNAweb server and datasets are freely available at http://csbio.njust.edu.cn/bioinf/TargetDNA/ for academic use.

Index Terms—Protein-DNA binding residues, kernel alignment, feature weighting, classifier ensemble, imbalance learning
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1 INTRODUCTION

INTERACTIONS between proteins and DNA are indispens-
able for biological activities and play important roles in a

wide variety of biological processes [1], [2], [3], such as DNA
replication, transcription, splicing, and repair. Hence, accu-
rately locating the protein-DNA binding residues is of great
importance for both analyzing protein function and design-
ing novel drugs [4]. Much effort has been made to uncover
the intrinsic mechanism of protein-DNA interactions [5], [6],
and a number of high-throughput experimental technologies
have been developed to confirm the interactions between

DNAand proteins, such as protein bindingmicroarray (PBM)
[7], ChIP-Seq [8], and proteinmicroarray assays [9]. However,
the identification of protein-DNAbinding residues via experi-
mental technologies is often cost-intensive and time-consum-
ing. Due to the importance of protein-DNA interactions and
the difficulty in experimentally identifying DNA-binding
residues, together with the fact that a huge number of unan-
notated protein sequences have quickly accumulated, the
development of computational methods for the fast predic-
tion of protein-DNA binding residues solely from sequences
has become a hot topic in bioinformatics [1], [5], [10].

In the last decade, a series of computational methods
have emerged for predicting DNA-binding residues, which
have been well characterized by Si et al. [1] and Miao et al.
[11]. These existing methods can be grouped into the follow-
ing three main categories according to the base features
used: sequence-based methods [10], [12], structure-based
methods [13], [14], and hybrid methods [15] that utilize
both the sequence and structural information.

It is undeniable that the prediction accuracies of structure-
based and hybrid methods often outperform those of
sequence-basedmethods [15], likely because structure-based
features are more effective than sequence-based features at
expressing the differences between DNA-binding and non-
binding residues [15]. Many structure-based features, such
as the B-factor, surface curvature and depth index (DPX),
have been successfully exploited to characterize DNA-bind-
ing residues [15]. However, the applicability of structure-
based and hybridmethods is limited in the common scenario
where only the sequence of a given protein target is known
and no corresponding 3D structure is available. Although
several homology modeling tools, such as MODELLER [16]
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and I-TASSER [17], have been developed and demonstrated
as feasible tools for modeling 3D structure from a given pro-
tein sequence, discrepancies between the predicted structure
and the actual structure still exist, particularly for proteins
that do not fit a structural template [18]. Furthermore, with
ever-evolving gene-sequencing technologies, the gap
between protein sequences and structures continues to
widen. Therefore, sequence-based computational methods
for predictingDNA-binding residues aremore practical, eco-
nomic, and in urgent need.

Compared to structure-based methods, sequence-based
methods can quickly predict DNA-binding residues with-
out using protein structure information. During the past
decade, a number of machine-learning algorithms have
been used to predict DNA-binding residues from protein
sequences, and a series of sequence-based predictors have
been developed, including BindN [10], DP-Bind [12],
BindNþ [19], MetaDBsite [6], and DNABR [20], among
others. These sequence-based predictors often utilize only
protein sequence information and recognize DNA-binding
residues with one or more machine-learning algorithms,
such as support vector machine (SVM) [21] or random forest
(RF) [22]. For example, in BindN [10], the prediction models
are constructed by SVM with three sequence features,
including the pKa value of the side chain, the hydrophobic-
ity index, and the molecular mass of an amino acid. In DP-
Bind [12], three machine-learning algorithms, including
SVM, kernel logistic regression, and penalized logistic
regression, are integrated to predict DNA-binding residues
based on the profile of evolutionary conservation of a query
protein sequence in the form of a position-specific scoring
matrix (PSSM) [23]. Wong et al. [24] proposed and described
a computational approach, which takes into account both
protein sequence and DNA information, for learning the
specificity-determining residue-nucleotide interactions of
different known DNA-binding domain families. In addi-
tion, Wong et al. [25] developed a HMM-based approach
using belief propagations (named kmerHMM), which
accepts and pre-processes PBM raw data into median-bind-
ing intensities of individual k-mers to identify DNA motifs.
Despite the promising results of these methods, there
remains room for further improvements in accurately pre-
dicting DNA-binding residues from protein sequences.

Another important issue that warrants careful consider-
ation for developing machine-learning-based predictors of
protein-DNA binding residues is the severe intrinsic class
imbalance: the number of DNA-binding residues (minority
class) is significantly fewer than that of non-binding residues
(majority class). Sample rescaling is the most straightforward
strategy for dealingwith the issue of class imbalance [26], [27].
In this strategy, over-sampling and under-sampling are the
twomost commonly used implementations. As demonstrated
in previous work [26], [27], [28], over-sampling will obtain an
enlarged training dataset and thuswill inevitably increase the
training and predicting time. In addition, over-sampling may
also lead to a potential over-fitting problem. On the other
hand, under-sampling can obtain a more compact training
dataset but comes with the risk of losing data. In view of this,
in this study, we address the class imbalance by integrating
under-sampling with an appropriate boosting ensemble algo-
rithm. More specifically, we trained multiple different classi-
fiers on balanced datasets obtained by applying random

under-sampling (RUS); then, these trained classifiers are
ensembledwith a boosting procedure.

In view of the issues mentioned above, we propose a
sequence-based predictor, named “TargetDNA”, for the
computational identification of DNA-binding residues.
First, we employed the protein evolutionary information
and the predicted solvent accessibility, which are deter-
mined solely from protein sequences, as two base features
(refer to Section 2.2 for details). Next, to further quantify the
difference between DNA-binding and non-binding resi-
dues, we utilized a centered linear kernel target alignment
algorithm to learn the weights for weightedly combining
the two features. Then, based on the weightedly combined
feature, we trained multiple DNA-binding residue predic-
tors with SVM as a base classifier by applying a RUS tech-
nique on the original imbalanced dataset. Finally, we
obtained the ensembled predictor by using a boosting
ensemble algorithm. We also created an online web server
of TargetDNA, which is freely accessible for academic use
at http://csbio.njust.edu.cn/bioinf/TargetDNA/.

2 METHODS

2.1 Benchmark Datasets

We constructed a dataset of 7,186 DNA-binding protein
chains, which had clear target annotations in the Protein
Data Bank (PDB) [29] before October 10, 2015. After remov-
ing the redundant sequences using CD-hit software [30], a
total of 584 non-redundant protein sequences were obtained
such that no two sequences had more than 30 percent iden-
tity. Then, we divided the non-redundant sequences into
two parts, the training dataset (PDNA-543) and the inde-
pendent test dataset (PDNA-TEST). PDNA-543 consists of
543 protein sequences, which were all released into the PDB
before October 10, 2014. PDNA-TEST includes 41 protein
chains, which were all released into the PDB after October
10, 2014. More specifically, there are 9,549 DNA-binding
residues (i.e., positive samples) and 134,995 non-binding
residues (i.e., negative samples) in PDNA-543. PDNA-TEST
consists of 734 positive samples and 14,021 negative sam-
ples. Table 1 summarizes the detailed compositions of
PDNA-543 and PDNA-TEST.

2.2 Feature Representation

From the point of view of machine learning, the prediction
of protein-DNA binding residues is a traditional binary
classification problem. Thus, training a machine-learning-
based prediction model on how to encode protein-DNA
binding residues with discriminative features is one of the
most crucial steps. Various effective sequence-based fea-
tures, such as PSSM [12], predicted secondary structure [5],

TABLE 1
Composition of the Training and Independent

Validation Datasets

Dataset No. of Sequences numP a numN b Ratio c

PDNA-543 543 9,549 134,995 14.137
PDNA-TEST 41 734 14,021 19.102

a numP represents the number of positive samples.
b numN represents the number of negative samples.
c Ratio ¼ numN / numP.
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predicted solvent accessibility [5], [14], and physicochemical
properties [24], have been explored for predicting protein-
DNA binding residues. In this study, we only employed
two typical features for predicting protein-DNA binding
residues, as follows:

2.2.1 Position Specific Scoring Matrix

PSSM profiles have been demonstrated to be an effective fea-
ture for expressing residue conservations and have been
applied tomany bioinformatics problems, such as the predic-
tion of protein function [31], protein secondary structure [32],
and protein-nucleotide binding residues [33], [34]. In this
study, we employed the PSSM feature for predicting DNA-
binding residues. The PSSM profile of a sequence is gener-
ated by using the PSI-BLAST [23] to search against the Swiss-
Prot database [35] through three iterations, with 10�3 as the
E-value cutoff formultiple sequence alignment. The standard
logistic function was used to rescale the score of each ele-
ment, denoted as x, in a PSSMprofile in the interval (0,1):

f xð Þ ¼ 1

1þ e�x
; (1)

After obtaining the rescaled PSSM, the sliding window tech-
nique was utilized to extract the PSSM feature of each resi-
due [36]. We used the sliding-window technique because we
hypothesize that the DNA-binding ability of a residue
depends on its own PSSM scores as well as the PSSM scores
of its neighboring residues. In this study, we evaluated dif-
ferent window sizes (from 1 to 25, with a step size of 1) on
the training dataset PDNA-543 over a ten-fold cross-valida-
tion and found that 9 is the best choice. This causes the
dimensionality of the PSSM feature to be 9� 20 ¼ 180.

2.2.2 Predicted Solvent Accessibility

The concept of solvent accessibility has been widely studies
since it was first introduced by Lee and Richards [37] because
surface residues can be delineated by solvent accessibility
information and are directly involved in interactions with
other biological molecules [38]. Solvent accessibility is partic-
ularly significant in that it is closely related to the spatial
arrangement and the packing of residues during the process
of protein folding [38].Moreover, there is an inseparable rela-
tionship between solvent accessibility and protein-ligand
interactions, suggesting that solvent accessibility information
can be used to determine protein functions. Ahmad et al. [39]
demonstrated the important role of solvent accessibility to
amino acid residues in predicting protein-DNA binding.
Therefore, in this study, we also employed solvent accessibil-
ity information for predicting protein-DNA binding resi-
dues. We obtained the predicted solvent accessibility (PSA)
characteristics of each residue by feeding the corresponding
sequence to the standalone SANN program [38], which can
be downloaded at http://lee.kias.re.kr/�newton/sann/.
For each protein sequence, SANN precisely predicts its PSA
matrix (L rows and 3 columns, where L is the length of the
protein sequence), which includes the probabilities of three
solvent accessibility classes (i.e., buried (B), intermediate (I),
and exposed (E)) of each residue. In this study, the sliding
window of size 9 was employed to construct the PSA feature
of each residue. Accordingly, the dimensionality of the PSA
feature is 9� 3 ¼ 27.

2.3 Learning the Weights for Combining the
Two Features

It is believed that the PSSM and the PSA features potentially
contain complementary discriminative information for pre-
dicting protein-DNA binding residues because these two
features are extracted from different views (the evolution-
ary view and the physicochemical view). The most straight-
forward and convenient method is to serially combine the
two features and obtain a super feature (i.e., PSSMþPSA) to
use for training a prediction model. However, this simple
combination method neglects the relative importance of the
two features and thus is not guaranteed to obtain an optimal
discriminative capability. Hence, developing an effective
method to measure the relative importance of the two fea-
tures for predicting DNA-binding residues would be espe-
cially useful. In this section, inspired by centered kernel
target alignment [40], we developed a centered linear kernel
target alignment (CLKTA) algorithm to learn the weights of
the two features. Then, a more discriminative feature could
be obtained by weightedly combining the two features.

Let B and C be two feature spaces (e.g., PSSM and PSA in
this study) defined in the training sample space V. The
dimensionalities of B and C are n and m, respectively.

For a given sample r 2 V, its corresponding feature vec-
tors are b 2 B and c 2 C. Our goal is to learn two optimal
weights, wb � 0 and wc � 0, for the B and C feature spaces,

respectively, such that the super feature z ¼ ðwbb
T ; wcc

T ÞT
in the feature space Z has a better discriminative capability.
Here, we utilize CLKTA for achieving this goal and define
CLKTA as follows:

Definition 1 (CLKTA). Let L 2 RN�N be the kernel matrix

derived from the linear kernel klðzi; zjÞ ¼ zTi zj based on a
sample feature set S ¼ fz1; . . . ; zNgwith the corresponding

label vector y 2 f�1; 1gN , and let yyT be the ideal kernel
matrix for the target. The centered alignment between the
linear kernel and the target on S is defined as

CA L; yyT
� � ¼ <UNLUN; yy

T> F

jjUNLUN jjF jjyyT jjF
¼ <UNLUN; yy

T> F

NjjUNLUN jjF
;

(2)

where UN ¼ IN � ð1=NÞ1N1TN is the centering matrix,
< �; �>F denotes the Frobenius inner product and jj � jjF
represents the Frobenius norm, which are defined as fol-
lows:

8X;Y 2 RN�N; < X;Y>F ¼ TraceðXTYÞ; jjXjjF
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< X;X>F

p
; (3)

Let Lb, Lc, and L be the base linear kernel matrices built
from the B, C, and Z feature spaces, respectively, for training
sample space V with the corresponding label vector y 2
f�1; 1gN (N denotes the number of samples in the training

dataset). Then, we argue that the equation Lij ¼ w2
bðLbÞij þ

w2
cðLcÞij holds.We prove this argument as follows:

Lij ¼ klðzi; zjÞ ¼ zTi zj

¼ wbb
T
i ; wcc

T
i

� �
wbbjwccj
� � ¼ w2

bb
T
i bj þ w2

cc
T
i cj

¼ w2
bklðbi;bjÞ þ w2

cklðci; cjÞ ¼ w2
bðLbÞij þ w2

cðLcÞij
; (4)
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where zi, bi, and ci are three feature vectors of the ith sam-
ple from Z, B, and C feature spaces, respectively. According

to Eq. (4), we easily conclude that L ¼ w2
bLb þ w2

cLc.
Inspired by centered-alignment-based kernel learning

[40], we maximize the centered alignment between L and

yyT to obtain the optimal weights wb and wc in CLKTA. It
can be formulated as the following optimization problem:

max
wb;wc�0

CAðL; yyT Þ ¼ max
wb;wc�0

< UNLUN; yy
T > F

jjUNLUN jjF
; (5)

Let w ¼ ðw2
b ; w

2
cÞT , a be the vector ð< UNLbUN; yy

T > F ;

< UNLcUN; yy
T > F ÞT , andM be thematrix as follows:

M ¼ < UNLbUN;UNLbUN > F < UNLbUN;UNLcUN > F

< UNLcUN;UNLbUN > F < UNLcUN;UNLcUN > F

� �
;

(6)

Then, Eq. (5) can be rewritten as

max
wb;wc�0

wTaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTMw

p ; (7)

The solution to Eq. (7) can be obtained by solving a qua-
dratic programming (QP) problem, as follows [40]:

min
wb;wc�0

1

2
wTMw�wTa; (8)

After obtaining the optimal weights, wb and wc, the final

super feature z ¼ ðwbb
T ; wcc

T ÞT , which contains more dis-
criminative ability to represent the sample, can be used to
train a high-performance prediction model.

It is worth noting that we can easily extend CLKTA to
learn the weights of >2 feature spaces. Because we
employed the linear kernel, according to Eq. (9), the final
kernel matrix (L), which corresponds to the final feature,
can be represented as the weighted sum of all single-fea-

ture-based kernel matrixes (fLmgMm¼1), i.e., L ¼ PM
m¼1 w

2
mLm.

Lij ¼ w2
1ðL1Þij þ � � � þ w2

MðLMÞij ¼
XM
m¼1

w2
mðLmÞij; (9)

where wm � 0 represents the weight of the mth feature space
and M � 2 is the feature space number. Then, we let

w ¼ ðw2
1; . . . ; w

2
MÞT , a ¼ ð< UNL1UN; yy

T> F ; . . . ; <UNLMUN;

yyT>F ÞT , and M ¼ fMijgi¼M;j¼M
i¼1;j¼1 , where Mij ¼< UNLiUN;

UNLjUN >F , andwe can use the same solution (8) to solve the

Eq. (5) for obtaining the optimal weights fwmgMm¼1.

2.4 Boosting Multiple SVMs Trained with Random
Under-Sampling

The prediction of protein-DNA binding residues is a stan-
dard imbalanced-learning problem. By revisiting Table 1,
we see that the ratio between the number of non-binding
residues and that of binding residues is larger than 14. As
a severe imbalance phenomenon exists between the
majority class and the minority class, traditional statistical
machine-learning algorithms will be biased toward the
majority class [28].

In this study, we employed the RUS technique to facili-
tate subsequent statistical machine learning methods. RUS
can effectively change the sample distributions of different
classes to obtain a newly balanced training dataset. Further-
more, it can decrease the size of the training dataset, conse-
quently accelerating the training and prediction processes
[26]. However, RUS comes with the disadvantage of poten-
tially losing useful information [26]. Thus, the prediction
accuracy of the final prediction model may be decreased.

To circumvent this problem, we utilized an ensemble
method by boosting multiple classifiers trained with RUS,
termed B-RUS. More specifically, B-RUS first trains T base
classifiers, denoted as fftgTt¼1, with RUS on the original
imbalanced training dataset; then, these trained base classi-
fiers are ensembled by applying the boosting framework
described in [41] to obtain the final classifier, denoted as
F ðzÞ, as follows:

F ðzÞ ¼
XT
t¼1

btftðzÞ; (10)

where bt (1 � t � T ) is the weight of the tth base classifier
calculated by

bt ¼
1

2
log

1� "t
"t

; (11)

where "t is the weighted classification error of the tth base
classifier defined as follows:

"t ¼
PN

i¼1 wðiÞ � jftðziÞj � Uð�yiftðziÞÞPN
i¼1 wðiÞ � jftðziÞj

; (12)

where UðxÞ is a function that equals 1 when x > 0 and 0
otherwise, wðiÞ is the weight of the ith sample in the training
dataset, N is the size of training dataset, and ftðziÞ is the
real-valued classification output of the tth base classifier on
the input zi [41].

Algorithm 1 summarizes the main steps of the proposed
B-RUS, which is a customized implementation of the boost-
ing framework described in [41] obtained by replacing the
multiple-kernel base classifiers with RUS base classifiers.
The purpose of using multiple-kernel base classifiers in [41]
is to more effectively fuse multiple features, while that of
using RUS base classifiers in B-RUS is to better cope with
the class imbalance problem.

As described in Algorithm 1, we first initialize equal
weights for all training samples. During each iteration k, the
weight of the base classifier that owns the smallest weighted
classification error is calculated. If the classifier weight is
> 0, the base classifier is selected; otherwise, the procedure
terminates because the performance of the currently best
non-selected base classifier is worse than guessing, and we
actively set the weight of each non-selected base classifier to
be 0 (i.e., the non-selected base classifiers do not work for
the final decision classifier). Then, in the next iteration, we
assign a larger weight to each training sample, which is
incorrectly classified by the newly selected based classifier.
Finally, the boosting algorithm outputs a strong classifier
consisting of a number of single weighted base classifiers.
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In this study, the SVM [42] is utilized to train base classi-
fiers. We use LIBSVM [21], which is freely available at
http://www.csie.ntu.edu.tw/�cjlin/libsvm/, to implement
the SVM function. Here, a radial basis function is chosen
as the kernel function. The two most important parameters,
i.e., the kernel width parameter s and the regularization
parameter g, are optimized over a five-fold cross-validation
using a grid search strategy in the LIBSVM tool.

Algorithm 1. Boosting multiple classifiers trained with
RUS (B-RUS)

Input: fðzi; yiÞgNi¼1: training dataset;
T: the number of base classifiers.

Output: The final ensembled classifier F ðzÞ
1 Training T base classifiers with RUS on original training

dataset:
Sf ¼ fftgTt¼1

2 Initialize the sample weights and the classifier weights as
follows:

w1ðiÞ ¼ 1=N , 1 � i � N
bt ¼ 0, 1 � t � T

3 FOR k ¼ 1 to T
1) For each non-selected ft, compute weighted classifi-

cation error "t using Eq. (12);
2) Set the weighted classification errors of all selected

ft to be þ1;
3) Obtain the index t	 of the smallest weighted classifi-

cation error t	 ¼ argminft2Sf "t;
4) Compute weight bt	 ¼ 1

2 log
1�"t	
"t	

for ft	 ;
5) IF bt	 < 0
6) Break;
7) ELSE
8) The base classifier ft	 is selected;
9) END IF
10) Update the weights of samples:

wkþ1ðiÞ ¼ wkðiÞ
Lk

e�bt	 yift	 ðziÞ

where Lk is a normalization factor and ft	 ðziÞ is the
prediction output (1 or -1) of the t	th base classifier
on the ith sample.

4 END FOR
Return The final ensembled classifier F ðzÞ ¼ PT

t¼1 btftðzÞ

2.5 Assessing Predictive Ability

In this study, five evaluation indexes routinely used in this
field, i.e., Sensitivity (Sen), Specificity (Spe), Accuracy (Acc),
Precision (Pre), and the Mathew’s Correlation Coefficient
(MCC) are utilized to evaluate predictive ability, as follows:

Sen ¼ TP

TP þ FN
; (13)

Spe ¼ TN

TN þ FP
; (14)

Acc ¼ TP þ TN

TP þ FN þ TN þ FP
; (15)

Pre ¼ TP

TP þ FP
; (16)

MCC ¼ TP � TN � FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FNÞ � ðTP þ FP Þ � ðTN þ FNÞ � ðTN þ FP Þp ;

(17)

where TN, TP, FN, and FP are abbreviations for true nega-
tives, true positives, false negatives, and false positives,
respectively.

However, these five indexes are threshold-dependent.
Hence, the method chosen for reporting these evaluation
indexes is critical for making a fair comparison between dif-
ferent predictors. In this study, we use two strategies for
selecting thresholds: 1) we select the threshold that makes
Sen 
 Spe (i.e., the balanced evaluation described in [43]),
and 2) we select the threshold that makes FPR 
 5%
(FPR ¼ 1� Spe). Furthermore, the area under the receiver
operating characteristic (ROC) curve (termed AUC), which
is threshold-independent and increases in direct proportion
to the overall prediction performance, is used to assess the
overall predictive abilities.

3 EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Performance Comparisons between Different
Features

In this section, the discriminative performances of the three
sequence-based features, including PSSM, PSSMþPSA (sim-
ple serial combination), and CLKTA (the weighted combina-
tion described in Section 2.3), will be investigated. Each
feature was evaluated by performing ten-fold cross-valida-
tion on the training dataset PDNA-543 with a single SVM
classifier. In each training phase of cross-validation, we first
use RUS to make the number of the majority samples equal
to that of the minority samples, and we then utilize LIBSVM
[21] to train a single SVM model under the balanced sample
distribution. Tables 2 and 3 summarize the discriminative
performance comparison between the three features on
PDNA-543 over a ten-fold cross-validation test with a single
SVM classifier under Sen 
 Spe andFPR 
 5%, respectively.

From Tables 2 and 3, we observe that the PSSMþPSA fea-
ture consistently outperforms the PSSM feature in terms of
all six evaluation indexes. Using Table 3 as an example, the
Sen, Pre,MCC, and AUC of the PSSMþPSA feature are 36.19,

TABLE 2
Performance Comparison Between PSSM, PSA, and CLKTA
Features on PDNA-543 over a Ten-Fold Cross-Validation Test

with a Single SVM Classifier Under Sen 
 Spe

Feature Type Sen (%) Spe (%) Acc (%) Pre (%) MCC AUC

PSSM 74.73 75.15 75.12 17.54 0.276 0.824
PSSMþPSA 75.71 75.75 75.75 18.09 0.285 0.835
CLKTA 76.69 76.64 76.42 18.69 0.297 0.839

TABLE 3
Performance Comparison Between PSSM, PSA, and CLKTA
Features on PDNA-543 over a Ten-Fold Cross-Validation Test

with a Single SVM Classifier Under FPR 
 5%

Feature Type Sen (%) Spe (%) Acc (%) Pre (%) MCC AUC

PSSM 33.79 94.91 90.88 31.98 0.280 0.824
PSSM þPSA 36.19 95.00 91.11 33.86 0.302 0.835
CLKTA 39.21 95.00 91.31 35.67 0.327 0.839
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33.86 percent, 0.302, and 0.835, respectively, which are
improvements of approximately 2.40, 1.88, 2.20, and 1.10 per-
cent, respectively, over the PSSM feature. As for the remain-
ing two evaluation indexes, the PSSMþPSA feature also
slightly outperforms the PSSM feature.

As for the CLKTA and PSSMþPSA features, Tables 2 and
3 show that the discriminative performance of the CLKTA
feature is consistently better than that of the PSSMþPSA fea-
ture. In Table 2, the six evaluation index values of the CLKTA
feature are all slightly higher than those of the PSSMþPSA
feature. Table 3 shows that the Sen, Pre, and MCC of the
CLKTA feature are 39.21, 35.67 percent, and 0.327, respec-
tively, which represent improvements of approximately
3.02, 1.81, and 2.5 percent, respectively, over the PSSMþPSA
feature. Furthermore, to directly show the overall prediction
performance of the three features, Fig. 1 illustrates the ROC
curves of the three features on PDNA-543 over a ten-fold
cross-validation test.

From the comparison results between the three features
listed in Tables 2, 3, and Fig. 1, we empirically demonstrate
that the three features are highly useful, and the CLKTA
feature is the best method for effectively predicting protein-
DNA binding residues.

3.2 Selecting the Number of Base Classifiers
in B-RUS

In this section, we attempt to empirically demonstrate how
to choose the number of base classifiers (T) for training an
ensembled classifier with B-RUS. Under the two threshold
selection strategies (i.e., Sen 
 Spe and FPR 
 5%), we eval-
uated the MCC performance variations of an ensembled
classifier on the training dataset (i.e., PDNA-543) over a ten-
fold cross-validation by gradually varying the value of T
from 2 to 16, with a step size of 2.

Fig. 2 plots the performance variation curves ofMCC ver-
sus T under the two threshold selection strategies. Table 4
summarizes the detailed values of MCC under each thresh-
old selection strategy for different values of T.

From Fig. 2 and Table 4, we find that the value of MCC
first increases with increasing T and then converges. Under
Sen 
 Spe, the first maximum MCC value is achieved when
T ¼ 4. Continually increasing the number of base classifiers
will not further enhance the performance of the ensembled
classifier. Under FPR 
 5%, the first maximum MCC value
is achieved when T ¼ 10, and no improvement can be
observed with larger values of T. Hence, in all the subse-
quent experiments, we set T ¼ 10 to train an ensembled
classifier with B-RUS.

To demonstrate the efficacy of B-RUS, Table 5 and Fig. 3
list the performance comparisons between with B-RUS and
without B-RUS on the PDNA-543 dataset over a ten-fold
cross-validation test under both Sen 
 Spe and FPR 
 5%.
As shown in Table 5, values obtained with B-RUS are con-
sistently better than those obtained without B-RUS under
both evaluation methods and in terms of all six evaluation
indexes. The results shown in Table 5 and Fig. 3 indicate
that the prediction performance is indeed improved after
applying B-RUS.

3.3 Comparisons with Existing Predictors
of Protein-DNA Binding Residues

In this section, we demonstrate the efficacy of the proposed
method, TargetDNA, by comparing it with other common
predictors of protein-DNA binding residues, including
BindN [10], BindNþ [19], ProteDNA [44], DP-Bind [12],

Fig. 1. ROC curves for PSSM, PSSMþPSA, and CLKTA features on
PDNA-543 over ten-fold cross-validation.

Fig. 2. The performance variation curves of MCC versus T under
Sen 
 Spe and FPR 
 5%.

TABLE 4
The DetailedMCC Values Under Sen 
 Spe
and FPR 
 5% for Different Values of T

T 2 4 6 8 10 12 14 16

MCC under Sen 
 Spe 0.301 0.304 0.304 0.304 0.304 0.304 0.304 0.304

MCC under FPR 
 5% 0.334 0.335 0.337 0.338 0.339 0.339 0.339 0.339

TABLE 5
Performance Comparisons Between with and Without
B-RUS on PDNA-543 over Ten-Fold Cross-Validation

Under Sen 
 Spe and FPR 
 5%

Evaluation
methods

with/without
B-RUS

Sen
(%)

Spe
(%)

Acc
(%)

Pre
(%) MCC AUC

Sen 
 Spe
without 76.69 76.64 76.42 18.69 0.297 0.839
with 76.98 77.05 77.04 19.18 0.304 0.845

FPR 
 5%
without 39.21 95.00 91.31 35.67 0.327 0.839
with 40.60 95.00 91.40 36.47 0.339 0.845
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MetaDBSite [6], and DNABind [15], by performing indepen-
dent validation tests on PDNA-TEST, the results of which
are listed in Table 6.

By observing Table 6, we see that TargetDNA achieves
satisfactory results with the best and second-best MCC val-
ues of 0.300 and 0.269 under FPR 
 5% and Sen 
 Spe,
respectively. Compared with BindNþ, which is an updated
version of BindN, TargetDNA achieves an improvement of
12.2 percent on MCC under FPR 
 5%. Additionally, Tar-
getDNA under Sen 
 Spe consistently outperforms
BindNþ under Spe 
 85% (default setting of BindNþ) for
all of the five evaluation indexes. As for MetaDBSite, a meta
approach for predicting sequence-specific protein-DNA
binding residues, the proposed TargetDNA also achieves
improvements of 11.30, 4.91, 0.48, and 7.9 percent on Sen,
Pre, Acc, and MCC, respectively, under FPR 
 5%. We note
that there are four base predictors (or web servers) of Meta-
DBSite, i.e., BindN-RF [45], DBS-PRED [5], DISIS [46], and
DNABindR [47], which cannot normally be used to predict
protein-DNA binding residues. We have not failed to notice

that ProteDNA achieves the highest Pre value (60.30 per-
cent). However, the corresponding Sen value is the lowest
(4.77 percent), denoting too many false negatives are
incurred during prediction with this method. On the other
hand, DNABind [15], which uses both protein sequence
information and structural information, achieves the best
performance on Sen (70.16 percent) but a much lower Spe
value, implying too many false positives are incurred dur-
ing prediction with this method.

3.4 Performance Comparison on a Dataset Used
with Other Predictors

In addition to the ten-fold cross-validation test and indepen-
dent test performed above, to fairly evaluate the prediction
performance of the proposed TargetDNA, we also com-
pared it with other protein-DNA predictors using the same
datasets employed by the compared predictors. In this sec-
tion, the PDNA-316 dataset, which was constructed by Si
et al. [6], is employed to further demonstrate the efficacy of
TargetDNA. The details of PDNA-316 can be found in [6].

We compare TargetDNA with DP-Bind [12], DNABindR
[47], DISIS [46], DBS-PRED [5], BindN-rf [45], BindN [10],
and MetaDBSite [6] on PDNA-316 over a ten-fold cross-vali-
dation as performed in [6], and the comparison results are
listed in Table 7. The results shown in Table 7 clearly dem-
onstrate that TargetDNA outperforms the other predictors
in terms of the MCC, which is an overall index for evaluat-
ing the quality of binary prediction. Compared with the sec-
ond-best performer MetaDBSite [6], the Sen, Spe, Acc, and
MCC values of TargetDNA under Sen 
 Spe evaluation
method are 77.96, 78.03, 78.02 percent, and 0.339, respec-
tively, which are improvements of approximately 0.96, 1.03,
1.02, and 1.9 percent over MetaDBSite [6], respectively. To
further demonstrate the performance of TargetDNA on the
PDNA-316 dataset, we also calculated the prediction results
of TargetDNA under the FPR 
 5% evaluation method,
and the highest MCC value 0.375 is obtained with a satisfac-
tory sensitivity value of 43.02 percent. It is noted that DISIS
[46] gained the highest specificity and accuracy but comes
with the lowest sensitivity (19.00 percent). However, sensi-
tivity is a measure of DNA-binding residue prediction,
which is of the most interest for many researchers [6]. The
low sensitivity value of DISIS indicates that this method is
most likely to mistakenly predict DNA-binding residues as
non-binding residues, leading to a lowMCC.

Fig. 3. ROC curves of with and without B-RUS predictors on PDNA-543
over a ten-fold cross-validation test.

TABLE 6
Performance Comparisons Between the Proposed
TargetDNA and Other Predictors of Protein-DNA

Binding Residues on PDNA-TEST

Predictor Sen (%) Spe (%) Acc (%) Pre (%) MCC

BindN a 45.64 80.90 79.15 11.12 0.143
ProteDNA b 4.77 99.84 95.11 60.30 0.160
BindNþ (FPR 
 5%) c 24.11 95.11 91.58 20.51 0.178
BindNþ (Spe 
 85%) c 50.81 85.41 83.69 15.42 0.213
MetaDBSite a 34.20 93.35 90.41 21.22 0.221
DP-Bind a 61.72 82.43 81.40 15.53 0.241
DNABind d 70.16 80.28 79.78 15.70 0.264
TargetDNA (Sen 
 Spe) 60.22 85.79 84.52 18.16 0.269
TargetDNA (FPR 
 5%) 45.50 93.27 90.89 26.13 0.300

aResults computed using the MetaDBSite server at http://projects.biotec.tu-
dresden.de/metadbsite/.
bResults computed using the ProteDNA server at http://serv.csbb.ntu.edu.tw/
ProteDNA/service.php.
cResults computed using the BindNþ server at http://bioinfo.ggc.org/bindnþ/.
dResults computed using the DNABind server at http://mleg.cse.sc.edu/
DNABind/.

TABLE 7
Performance Comparison Between the Proposed TargetDNA
and Other Predictors of Protein-DNA Binding Residues on

PDNA-316 [6] over a Ten-Fold Cross-Validation Test

Predictor Sen (%) Spe (%) Acc (%) MCC

DBS-PRED 	 53.00 76.00 75.00 0.170
BindN 	 54.00 80.00 78.00 0.210
DNABindR 	 66.00 74.00 73.00 0.230
DISIS 	 19.00 98.00 92.00 0.250
DP-Bind 	 69.00 79.00 78.00 0.290
BindN-rf 	 67.00 83.00 82.00 0.320
MetaDBSite 	 77.00 77.00 77.00 0.320
TargetDNA (Sen 
 Spe) 77.96 78.03 78.02 0.339
TargetDNA (FPR 
 5%) 43.02 95.00 90.99 0.375

	Data excerpted from [6].
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4 CONCLUSIONS

In this study, we have designed and implemented a new
sequence-based predictor of protein-DNA binding residues,
named TargetDNA. TargetDNA is trained on the DNA-
binding protein dataset collected from the most recently
released PDB [48] with a CLKTA method, RUS technique,
SVM, and the boosting classifier ensemble strategy. Experi-
mental results with a training dataset and an independent
validation dataset have demonstrated the efficacy of the
proposed TargetDNA. The superior performances of Tar-
getDNA are due to several reasons, including an appropri-
ate benchmark dataset, more discriminative feature design,
and careful construction of the prediction model. Currently,
the TargetDNA prediction server has already been made
available online and can predict DNA-binding residues for
each query protein sequence.

We note that the current CLKTA method has two poten-
tial disadvantages. First, CLKTA may lack the ability to
remove noisy features or information. Second, CLKTA lacks
a non-linear learning ability, which means that CLKTA can-
not effectively learn the dataset features with non-linear dis-
tributions. In our future work, to use CLKTA to process the
prediction tasks with noisy information, we will employ
effective denoising methods, such as sparse learning [49]
and deep learning [50], to remove the noise contained in the
original features before applying CLKTA. We will also
update CLKTA with a non-linear kernel trick to cope with
the non-linear learning issue.

Another point of concern is the relatively long computa-
tion time of TargetDNA (approximately 450 s for a sequence
of 300 residues). This long computation time stems from the
fact that TargetDNA has to perform PSI-BLAST [23], SANN
[38] and LIBSVM [21] to extract features and predict pro-
tein-DNA binding residues. In the future, we will attempt
to accelerate the computation speed by using several servers
to concurrently perform these computations.

Molecules binding motifs mining is a long-term chal-
lenge for understanding their functions. The failure of form-
ing correct interactions between some critical molecules has
been revealed as one of the important causes for diseases
like cancer [51]. The TargetDNA model developed in this
study is specifically for identifying the protein-DNA bind-
ing residues, and in the future work, we will further investi-
gate the applicability of our model to other types of
molecules binding residues prediction problems, e.g., ATP-
protein bindings [52], RNA-protein bindings [53], and the
sequence specificities of DNA- and RNA-binding proteins
prediction [54]. The current model is also expected to be
applied on topics of cancer research regarding protein-
DNA binding residues mining [55], genome-scale sequence
analysis [56], and human single-nucleotide polymorphisms
(SNPs) predictions [57].

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61373062, 61671288, and 61572242),
the Natural Science Foundation of Jiangsu (No. BK20141403),
the Fundamental Research Funds for the Central Universities
(No. 30916011327), “The Six Top Talents” of Jiangsu Province
(No. 2013-XXRJ-022), Science and Technology Commission of

Shanghai Municipality (No. 16JC1404300), China Scholarship
Council (No. 201606840087), National Key Research and
Development Program: Key Projects of International Scien-
tific and Technological Innovation Cooperation between
Governments (No. S2016G9070), and the Open Project Pro-
gramof Key Laboratory of Intelligent Perception and Systems
for High-Dimensional Information of Ministry of Education
(No. JYB201603). Dong-Jun Yu is the corresponding author
for this paper.

REFERENCES

[1] J. N. Si, R. Zhao, and R. L. Wu, “An overview of the prediction of
protein DNA-binding sites,” Int. J. Mol. Sci., vol. 16, no. 3,
pp. 5194–5215, 2015.

[2] K. A. Aeling, N. R. Steffen, M. Johnson, G. W. Hatfield, R. H. Lath-
rop, and D. F. Senear, “DNA deformation energy as an indirect
recognition mechanism in protein-DNA interactions,” IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 4, no. 1, pp. 117–125,
Jan.-Mar. 2007.

[3] K. C. Wong, Y. Li, C. Peng, H. S. Wong, “A comparison study
for DNA motif modeling on protein binding microarray,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13, no. 2, pp. 1–1,
Mar./Apr. 2016.

[4] P. Schmidtke, and X. Barril, “Understanding and predicting
druggability. A high-throughput method for detection of
drug binding sites,” J. Medicinal Chemistry, vol. 53, no. 15,
pp. 5858–5867, 2010.

[5] S. Ahmad, M. M. Gromiha, and A. Sarai, “Analysis and prediction
of DNA-binding proteins and their binding residues based on
composition, sequence and structural information,” Bioinf.,
vol. 20, no. 4, pp. 477–486, 2004.

[6] J. Si, Z. Zhang, B. Lin, M. Schroeder, and B. Huang, “MetaDBSite:
A meta approach to improve protein DNA-binding sites
prediction,” BMC Syst. Biol., vol. 5, no. Suppl 1, 2011, Art. no. S7.

[7] M. F. Berger, A. A. Philippakis, A. M. Qureshi, F. S. He, P. W. 3rd
Estep, and M. L. Bulyk, “Compact, universal DNA microarrays to
comprehensively determine transcription-factor binding site
specificities,” Nature Biotechnol., vol. 24, no. 11, pp. 1429–1435,
Nov. 2006.

[8] A. Valouev, et al., “Genome-wide analysis of transcription factor
binding sites based on ChIP-Seq data,” Nature Methods, vol. 5,
no. 9, pp. 829–834, Sep. 2008.

[9] S. W. Ho, G. Jona, C. T. L. Chen, M. Johnston, and M. Snyder,
“Linking DNA-binding proteins to their recognition sequences by
using protein microarrays,” Proc. Nat. Academy Sci. United States
Amer., vol. 103, no. 26, pp. 9940–9945, Jun. 27, 2006.

[10] L. Wang and S. J. Brown, “BindN: A web-based tool for efficient
prediction of DNA and RNA binding sites in amino
acid sequences,” Nucleic Acids Res., vol. 34, no. Suppl 2,
pp. W243–W248, 2006.

[11] Z. Miao and E. Westhof, “A Large-scale assessment of nucleic
acids binding site prediction programs,” PLoS Comput. Biol.,
vol. 11, no. 12, Dec. 2015.

[12] S. Hwang, Z. Gou, and I. B. Kuznetsov, “DP-Bind: A web server
for sequence-based prediction of DNA-binding residues in DNA-
binding proteins,” Bioinf., vol. 23, no. 5, pp. 634–636, 2007.

[13] S. Jones, J. A. Barker, I. Nobeli, and J. M. Thornton, “Using struc-
tural motif templates to identify proteins with DNA binding
function,” Nucleic Acids Res., vol. 31, no. 11, pp. 2811–2823, 2003.

[14] H. Tjong and H.-X. Zhou, “DISPLAR: An accurate method for pre-
dicting DNA-binding sites on protein surfaces,”Nucleic Acids Res.,
vol. 35, no. 5, pp. 1465–1477, 2007.

[15] B.-Q. Li, K.-Y. Feng, J. Ding, andY.D. Cai, “PredictingDNA-binding
sites of proteins based on sequential and 3D structural information,”
Mol. Genetics Genomics, vol. 289, no. 3, pp. 489–499, 2014.

[16] N. Eswar, B. Webb, and M. A. Marti-Renom, et al., “Comparative
protein structure modeling using MODELLER,” Current Protocols
Bioinf./Editoral Board, pp. 5.6.1–5.6.30, 2006, doi:10.1002/0471250953.
bi0506s15.

[17] Y. Zhang, “I-TASSER server for protein 3D structure prediction,”
BMC Bioinf., vol. 9, no. 1, 2008, Art. no. 40.

[18] C. Kauffman and G. Karypis, “Computational tools for protein-
DNA interactions,”Wiley Interdisciplinary Rev.-Data Mining Knowl.
Discovery, vol. 2, no. 1, pp. 14–28, Jan./Feb., 2012.

1396 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

Authorized licensed use limited to: Nanjing Agricultural University. Downloaded on September 22,2023 at 14:12:26 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1002/0471250953.bi0506s15
http://dx.doi.org/10.1002/0471250953.bi0506s15


[19] L. Wang, C. Huang, M. Q. Yang, and J. Y. Yang, “BindNþ for
accurate prediction of DNA and RNA-binding residues from pro-
tein sequence features,” BMC Syst. Biol., vol. 4, no. Suppl 1, 2010,
Art. no. S3.

[20] X. Ma, J. Guo, H.-D. Liu, J. M. Xie, and X. Sun, “Sequence-based
prediction of DNA-binding residues in proteins with conservation
and correlation information,” IEEE/ACM Trans. Comput. Biol. Bio-
inf., vol. 9, no. 6, pp. 1766–1775, Nov./Dec. 2012.

[21] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

[22] A. Liaw and M. Wiener, “Classification and regression by random
forest,” R News, vol. 2, no. 3, pp. 18–22, 2002.

[23] A. A. Schaffer, et al., “Improving the accuracy of PSI-BLAST pro-
tein database searches with composition-based statistics and other
refinements,” Nucleic Acids Res., vol. 29, no. 14, pp. 2994–3005, Jul.
15, 2001.

[24] K. C. Wong, Y. Li, C. B. Peng, A. M. Moses, and Z. Zhang,
“Computational learning on specificity-determining residue-
nucleotide interactions,” Nucleic Acids Res., vol. 43, no. 21,
pp. 10180–10189, Dec. 2, 2015.

[25] K. C. Wong, T. M. Chan, C. B. Peng, Y. Li, and Z. Zhang, “DNA
motif elucidation using belief propagation,” Nucleic Acids Res.,
vol. 41, no. 16, Sep. 2013, Art. no. e153.

[26] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[27] J. Hu, Y. Li, W. X. Yan, J.-Y. Yanga, H.-B. Shenb, and D.-J. Yua,
“KNN-based dynamic query-driven sample rescaling strategy for
class imbalance learning,” Neurocomputing, vol. 191, pp. 363–373,
May 26, 2016.

[28] D. J. Yu, J. Hu, Z. M. Tang, H.-B. Shen, J. Yang, and J.-Y. Yang,
“Improving protein-ATP binding residues prediction by boosting
SVMs with random under-sampling,” Neurocomputing, vol. 104,
pp. 180–190, Mar. 2013.

[29] P. W. Rose, et al., “The RCSB protein data bank: views of struc-
tural biology for basic and applied research and education,”
Nucleic Acids Res., vol. 43, no. D1, pp. D345–D356, 2015.

[30] W. Li and A. Godzik, “Cd-hit: A fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinf.,
vol. 22, no. 13, pp. 1658–1659, 2006.

[31] J. C. Jeong, X. Lin, and X.-W. Chen, “On position-specific scoring
matrix for protein function prediction,” IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 8, no. 2, pp. 308–315, Mar./Apr. 2011.

[32] M. H. Zangooei and S. Jalili, “Protein secondary structure predic-
tion using DWKF based on SVR-NSGAII,” Neurocomputing,
vol. 94, pp. 87–101, 2012.

[33] D. J. Yu, J. Hu, J. Yang, H. B. Shen, J. Tang, and J. Y. Yang,
“Designing template-free predictor for targeting protein-ligand
binding sites with classifier ensemble and spatial clustering,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 10, no. 4, pp. 994–1008,
Jul./Aug. 2013.

[34] K. Chen, M. J. Mizianty, and L. Kurgan, “Prediction and analysis
of nucleotide-binding residues using sequence and sequence-
derived structural descriptors,” Bioinf., vol. 28, no. 3, pp. 331–41,
Feb. 1, 2012.

[35] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000,” Nucleic Acids Res.,
vol. 28, no. 1, pp. 45–48, 2000.

[36] J. S. Chauhan, N. K. Mishra, and G. P. Raghava, “Identification of
ATP binding residues of a protein from its primary sequence,”
BMC Bioinf., vol. 10, 2009, Art. no. 434.

[37] B. Lee and F. M. Richards, “The interpretation of protein struc-
tures: estimation of static accessibility,” J. Mol. Biol., vol. 55, no. 3,
pp. 379–400, 1971.

[38] K. Joo, S. J. Lee, and J. Lee, “Sann: Solvent accessibility prediction
of proteins by nearest neighbor method,” Proteins-Structure Func-
tion Bioinf., vol. 80, no. 7, pp. 1791–1797, 2012.

[39] S. Ahmad, M. M. Gromiha, and A. Sarai, “Real value prediction of
solvent accessibility from amino acid sequence,” Proteins-Structure
Function Genetics, vol. 50, no. 4, pp. 629–635, Mar. 1, 2003.

[40] Y. Lu, L. Wang, J. Lu, J. Yang, and C. Shen, “Multiple kernel clus-
tering based on centered kernel alignment,” Pattern Recognit.,
vol. 47, no. 11, pp. 3656–3664, 2014.

[41] F. Yang, H. Lu, and M.-H. Yang, “Robust visual tracking via mul-
tiple kernel boosting with affinity constraints,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 24, no. 2, pp. 242–254, Feb. 2014.

[42] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA:
Wiley-Interscience, 1998.

[43] D. J. Yu, et al., “TargetATPsite: A template-free method for ATP-
binding sites prediction with residue evolution image sparse
representation and classifier ensemble,” J. Comput. Chemistry,
vol. 34, no. 11, pp. 974–985, Apr. 2013.

[44] W.-Y. Chu, Y.-F. Huang, C.-C. Huang, Y. S. Cheng, C. K. Huang,
and Y. J. Oyang, “ProteDNA: A sequence-based predictor of
sequence-specific DNA-binding residues in transcription factors,”
Nucleic Acids Res., pp. W396–W401, 2009.

[45] L. Wang, M. Q. Yang, and J. Y. Yang, “Prediction of DNA-binding
residues from protein sequence information using random for-
ests,” BMC Genomics, vol. 10, no. Suppl 1, 2009, Art. no. S1.

[46] Y. Ofran, V. Mysore, and B. Rost, “Prediction of DNA-binding res-
idues from sequence,” Bioinf., vol. 23, no. 13, pp. I347–I353, Jul. 1,
2007.

[47] C. Yan, M. Terribilini, F. Wu, R. L. Jernigan, D. Dobbs, and V.
Honavar, “Predicting DNA-binding sites of proteins from amino
acid sequence,” BMC Bioinf., vol. 7, no. 1, 2006, Art. no. 262.

[48] P. W. Rose, et al., “The RCSB protein data bank: redesigned web
site and web services,” Nucleic Acids Res., vol. 39, pp. D392–D401,
Jan. 2011.

[49] W. Zhang, L. Zhang, Z. Jin, R. Jin, D. Cai, X. Li, R. Liang, and
X. He, “Sparse learning with stochastic composite optimization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PP, no. 99, pp. 1–1,
2016, doi: 10.1109/TPAMI.2016.2578323.

[50] J. Schmidhuber, “Deep learning in neural networks: An over-
view,”Neural Netw., vol. 61, pp. 85–117, 2014.

[51] Y. Y. Xu, F. Yang, Y. Zhang, and H. B. Shen, “An image-based
multi-label human protein subcellular localization predictor (iLo-
cator) reveals protein mislocalizations in cancer tissues,” Bioinf.,
vol. 29, no. 16, pp. 2032–2040, 2013.

[52] K. Chen, M. J. Mizianty, and L. Kurgan, “ATPsite: sequence-based
prediction of ATP-binding residues,” Proteome Sci., vol. 9, Suppl 1,
no. Suppl 1, pp. 295–297, 2011.

[53] H. Ren and Y. Shen, “RNA-binding residues prediction using
structural features,” BMC Bioinf., vol. 16, no. 1, pp. 1–10, 2015.

[54] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey,
“Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning,” Nature Biotechnol., vol. 33, no. 8,
pp. 831–838, 2015.

[55] K. C. Wong, “A novel approach to predict core residues on cancer-
related DNA-binding domains,” Cancer Inf., vol. 15, no. Suppl 2,
pp. 1–7, 2016.

[56] K. C. Wong, Y. Li, C. B. Peng, and Z. Zhang, “SignalSpider: Proba-
bilistic pattern discovery on multiple normalized ChIP-Seq signal
profiles,” Bioinf., vol. 31, no. 1, pp. 17–24, 2015.

[57] K. C. Wong and Z. L. Zhang, “SNPdryad: Predicting deleterious
non-synonymous human SNPs using only orthologous protein
sequences,” Bioinf., vol. 30, no. 8, pp. 1112–1119, 2014.

Jun Hu received the BS degree in computer
science from Anhui Normal University, China, in
2011. Currently, he is working towards the PhD
degree in the School of Computer Science and
Engineering, Nanjing University of Science and
Technology, China. His research interests
include bioinformatics, data mining, and pattern
recognition.

Yang Li received the BS degree in computer sci-
ence from the Nanjing University of Science and
Technology, China, in 2014. He is currently
working toward the PhD degree in the School of
Computer Science and Engineering, Nanjing
University of Science and Technology, China. His
research interests include bioinformatics, data
mining, and pattern recognition.

HU ET AL.: PREDICTING PROTEIN-DNA BINDING RESIDUES BYWEIGHTEDLY COMBINING SEQUENCE-BASED FEATURES AND... 1397

Authorized licensed use limited to: Nanjing Agricultural University. Downloaded on September 22,2023 at 14:12:26 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2016.2578323


Ming Zhang received the BS and MS degrees in
computer science from the Jiangsu University of
Science and Technology in 2002 and 2005,
respectively, and the PhD degree in pattern recog-
nition and machine intelligence from the Nanjing
University of Science and Technology, in 2013. He
is currently an associate professor in the School of
Computer Science and Engineering at the Jiangsu
University of Science and Technology. His current
research interests include granular computing,
pattern recognition, and bioinformatics.

Xibei Yang received the BS degree from Xuzhou
Normal University (XZNU), Xuzhou, China, in
2002, the MS degree from the Jiangsu University
of Science and Technology (JUST), Zhenjiang,
China, in 2006, and the PhD degree from the
Nanjing University of Science and Technology
(NJUST), Nanjing, China, in 2010, both in com-
puter applications. He is currently an associate
professor with JUST, and he is also a postdoc-
toral researcher with NJUST. He has published
more than 100 articles in international journals

and international conferences. His research interests include granular
computing, rough set, and decision making.

Hong-Bin Shen received the PhD degree from
Shanghai Jiaotong University, China, in 2007. He
wasa postdoctoral research fellow of HarvardMed-
ical School from 2007 to 2008. Currently, he is a
professor in the Institute of Image Processing and
PatternRecognition, Shanghai Jiaotong University.
His research interests include data mining, pattern
recognition, and bioinformatics. He has published
more than 60 papers and constructed 20 bioinfor-
matics servers in these areas and he serves the
editorial members of several international journals.

Dong-Jun Yu received the BS degree in com-
puter science and the MS degree in artificial intel-
ligence from the Jiangsu University of Science
and Technology, in 1997 and 2000, respectively,
and the PhD degree in pattern analysis and
machine intelligence from the Nanjing University
of Science and Technology, in 2003. In 2008, he
acted as an academic visitor with the University
of York, UK. He is currently a professor in the
School of Computer Science and Engineering,
Nanjing University of Science and Technology.
His current interests include pattern recognition,
data mining, and bioinformatics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1398 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

Authorized licensed use limited to: Nanjing Agricultural University. Downloaded on September 22,2023 at 14:12:26 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


