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Abstract—Numerous life-sustaining processes such as tran-
scription, replication, and splicing, regulate the biological systems
in a complex way. Therefore, it is important to recognize
the pivotal role of crucial protein and DNA interactions for
understand the above life sustaining processes. Hence, Protein-
DNA binding residues is essential to identify as mentioned above.
However, the classical experimental methods are tedious and
labor-intensive. The recent research address these challenges and
focused on predicting binding residues from sequence data. This
present model utilizes a protein language model to transform
protein sequence data into vector formats, enabling efficient
computation. The model comprises three main components: an
embedding layer that provide conversion of protein sequences
into continuous vectors in the form of feature embedding using
Protein-Bert model and a four-layer residual based convolutional
neural network (CNN) trained on these vectors for prediction.
The Binary Cross Entropy and contrastive loss function is used
for loss computation. The same model, then reformatted, could
be used to predict binding residues of RNA and antibodies. the
present model achieves 0.884 AUC score and 0.795 specificity as
compare to previous models.

Index Terms—Protein-DNA binding site, ProtBert, Convolu-
tional Neural Networks(CNN), Binary Cross Entropy, contrastive
Loss function

I. INTRODUCTION

There are many tiny cellular machines that may control
activation of human genes through interacting DNA, RNA
and proteins. These machines are DNA-binding proteins that
are crucial players in functions like copying DNA, making
RNA blueprints, and fixing DNA damage. The human’s DNA
blueprint actually contains instructions for making a whop-
ping 6-7% of proteins into these DNA-binding machines.
Surprisingly, despite their vast numbers, these proteins come in
surprisingly diverse structures, falling into 54 distinct families
with little resemblance to each other. Because understanding
these proteins is so important, scientists are constantly looking
for better ways to identify and classify them [1], [2].Hence,
the Identification of interaction regions of a protein with DNA
is crucial for understanding gene regulation, including DNA
transcription, replication, expression, signal transduction and
metabolism [3].

Over the past decade, researchers have explored various
methods for predicting DNA-binding proteins (DBPs). These
methods can be fall into two categorizes based on techniques

i.e. experimental techniques and computational models such as
machine learning models [4]. Based on data and information
utilization, various methods are further classified as structure
based and sequence based models.

The recognition of DNA-binding proteins (DBPs) has gotten
a lot easier in recent years due to involvement of computational
and experimental approach [5]. There are various experimen-
tal techniques developed by researchers. These experimental
techniques includes in-vivo and in-vitro researches such as
systematic evolution of ligands by exponential enrichment
and chromatin immunoprecipitation [6], [7]. However, ex-
perimental methods for prediction are time-consuming and
expensive. Scientists used to rely on laborious and structure
based experiments like filter binding tests, genetic analysis,
nuclear magnetic resonance and X-ray crystallography [8].
However, with the technological advancements and a boom
in protein sequence data, researchers are turning to machine
learning for faster and more accurate DBP classification [9].

Machine learning now provides powerful ways of carry-
ing out the analysis of large datasets for the identification
of patterns that can be of help in the prediction of these
interactions. At the core of predicting DNA-binding proteins
is extracting features from the respective sequences. In this
case, much credit goes to machine learning algorithms, from
linear regression [10] to deep learning models [11].

In particular, deep learning models are capable to capture
intricate patterns embedded in protein sequences, which help
revolutionize the power of detecting DNA-binding proteins.
All this has allowed progress toward more accurate and effec-
tive ways to predict DNA binding proteins. These deep learn-
ing models have succeeded in the identification of new protein-
DNA interactions, enabled fundamental discoveries across
a spectrum of scientific disciplines, and offered new ways
forward toward drug discovery. Therefore, machine learning
has revolutionized the prediction ability of DNA-binding pro-
teins to understand the intricate relationship between proteins
and DNA. The enormous number of potential interactions,
as well as the imperfections in the available information,
predicts DNA binding proteins a formidable challenge. With
the fast growth of datasets and technology, such predictions
are becoming even more accurate, thereby permitting new
possibilities in healthcare. On the contrary, the traditional
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methods dependent on protein structure are limited by the
scarcity of accurate 3D data and the computationally expensive
time needed for training [12]. Therefore, Protein sequence
based learning methods are alternative way to predict the
protein-DNA binding residue. A model developed through the
algorithm can pick out distinct patterns in protein sequences,
resulting in overall efficacy in the prediction of bindings while
maintaining accuracy [11], [13], [14].

Various motivations have continued to drive the use of NLP
based language models. Due to providing resource efficiency
and better protein sequence representation,researchers have
turned to pre-trained protein language models like ProtBert.
The models, being highly efficient due to training on large
datasets, can capture vital patterns in protein sequences, there-
fore enhancing the representation of the protein structures
and enabling the making of interaction predictions with DNA.
On the other hand, pre-trained protein language models can
quickly help extract features from prior knowledge in large
amounts of data, leading to reduced training time with more
effective prediction models. These possible applications range
from DNA binding to protein structure and drug discovery.
Further benefits include that it is resthe presentce-efficient,
allows for accurate feature extraction, and may even lead to
generalization in the prediction of interaction beyond DNA to
RNA to even antibody-protein binding [15].

II. RELATED WORK

Traditionally, DNA-binding protein (DBP) prediction heav-
ily relied on structural analysis methods, presumed to offer
superior accuracy. However, the challenge of obtaining high-
resolution protein crystal structures limited their practicality,
prompting a shift towards sequence-based approaches [16].
These methods, gaining traction for their simplicity and con-
venience, extract features directly from protein sequences.
These features encompass profile-based, composition-based,
and autocorrelation-based categories, with profile-based fea-
tures, notably Position-Specific Scoring Matrix (PSSM) and
Hidden Markov Model (HMM), emerging as the most effective
for DBP prediction. Research underscores the superiority of
PSSM-based features in enhancing prediction accuracy, as
evidenced by various innovative approaches integrating evo-
lutionary information from PSSM profiles. As a result, recent
years have witnessed the emergence of DBP prediction as a
supervised learning problem. Support Vector Machines, Ran-
dom Forests, classifiers based on the Naive Bayes approach,
and ensemble classifiers, including Stacking, and Deep Learn-
ing, among others have been used. Stacking is an ensemble
learning method for the optimization of predictions based
on combining outputs from base classifiers. We have shown
the successful prediction of DBPs using derived features
from PSSM profiles effectively in this novel stacking-based
approach [17].

A prevalent sequence-based approach involves leveraging
Position-Specific Scoring Matrix (PSSM) or Position Spe-
cific Feature Matrix (PSFM) data [11], transforming protein
sequences into feature vectors through various conversion

techniques. Alternatively, models may exploit amino acid
properties within the sequence, often employing Support Vec-
tor Machines (SVMs) for classification, a strategy further
enhanced by the integration of PSSM data [13].

Recent advancements in DBP prediction have seen the
emergence of sophisticated algorithms employing Convolu-
tional Neural Networks (CNNs) or Recurrent Neural Networks
(RNNs) as classifiers, enabling the capture of intricate relation-
ships within protein sequence data [11], [18]. However, each
method has its drawbacks. Some experimental techniques are
time-consuming and resthe presentce-intensive, while others
may have limitations in their accuracy.

One of the key challenges in this field is the difficulty of
accurately representing protein structures. Traditionally, this
required complex calculations and data manipulation. This
research proposes a solution to this problem by leveraging
pre-trained models. These models can effectively represent
protein structures while preserving the important sequence-
specific information.

Various models like single-supervised models, unsuper-
vised models, CNNs, or RNNs, have been explored for both
structure-based and sequence-based predictions. However, the
primary benefit of using machine learning models in sequence-
based approaches is their ability to function even without
detailed structural data for the protein. This allows researchers
to analyze proteins where obtaining structural data might
be difficult or impractical. Nonetheless, enhancing accuracy
necessitates models adept at portraying protein characteristics
solely from sequences, along with algorithms capable of learn-
ing from these portrayals to discern DNA-binding proteins.

This study delves into the possibilities offered by sequence-
based strategies, emphasizing pivotal advancements in this
domain. The proposed approach,try to apply a pre-trained
model for feature extraction from protein sequences, offers
several advantages over traditional techniques. Firstly, it can
learn effectively even with limited datasets. Secondly, it can
identify correlations within the protein structure based solely
on the sequence information. Finally, by incorporating deep
machine learning techniques, this approach has the potential
to significantly improve the accuracy of DBP prediction.

the present contributions can be encapsulated as follows:
• To use ProtBert, a pre trained protein language model

which helps in provide embedding of protein sequences.
• To propose a residual based CNN prediction model which

will leverage a large language protein model to efficiently
extract informative features from protein structures, aid-
ing in the prediction of DNA-binding proteins.

• To leverage a loss function during model training which
helps the model become more robust (resistant to errors)
and adaptable (able to handle new data) by focusing
on learning similarities and differences between protein
sequences.

• To assess the model’s effectiveness in identifying DNA-
binding proteins, we will employ several evaluation met-
rics including specificity, precision, recall, F1-score, and
MCC (Matthews correlation coefficient).
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The paper is structured as follows: Section II introduces related
work which have been done in this area. Section III discusses
details of dataset which we are using in the present model.
Section IV introduces methodology of the present model how
we are implementing. Section V covers the results which we
obtained. Section VI described the conclusion of the present
work. Finally, Section VII highlights potential avenues for
future research.

III. DATASET DETAILS

TABLE I
SUMMARY OF DATA SETS USED

Dataset entities count

DNA binding residues 16601
Non binding residues 308414

Percentage of binding residues 6.925

The dataset was formulated during the study of DBPred
model [19] for prediction of protein DNA-binding residues.
The dataset is a combination of two data sources, namely
hybridNAP [20] and ProNA [18]. Dataset, shown in table I,
consisted of data on 646 proteins, where the number of binding
residues was listed as 16601 and the non binding residues were
counted as 308414, the percentage of binding residues came
out to be 6.925%.

IV. METHODOLOGY

This research work aims to find the DNA protein binding
residues through sequence based data. In order to achieve the
goal, the proposed approach considers two modules : an se-
quence embedding module and residual based CNN prediction
module. The sequence embedding module utilize the a protein
language model to get the embedded vector with respect
to protein sequence. Whereas CNN based prediction module
1D Convolutional layer based architecture within the residual
block for DNA protein binding residues prediction, shown in
the figure 1. This section also provide loss computation that
provide improvement in the results.

A. Module for Embedding Sequence

The embedding sequence module utilize a pre-trained pro-
tein language model [15], [21] to handle the complicated
process of encoding protein sequences , thereby the present
model avoid inherent complexities in this encoding task. While
alternative methodologies may opt to refine this model, poten-
tially enhancing accuracy, such endeavors entail heightened
temporal complexity. Hence, in proposed approach, this model
serves solely as a feature extractor. It provide an 1024, dimen-
sion for protein embedding. Noteworthy advantages of this
architecture include its capability to encode protein sequences
of varying lengths into fixed-size vectors, sans the need for
parameter adjustments.

B. Prediction using Residual based CNN Module
This segment of the model employs a sequence of the

present layers belonging to a specialized neural network
architecture known as residual convolutional Neural Network
(ResNet), shown in figure 1. Similar to general architecture,
one residual block includes two 1D convolution layers fol-
lowed by a skip connection that adds the input to the output
shown in figure 2. a combination of 1D CNN layered archi-
tecture and These layers are designed to scrutinize localized
segments of the protein sequence and their surrounding context
to extract pertinent information. Additionally, they facilitate
data compression to enhance computational efficiency.

At each iteration of the residual block, the input parameters
encompass the dimensions of the input data, the longest
protein sequence, and the dimensions of the preceding layer,
while the output parameters encapsulate the dimensions of the
input data, the longest protein sequence, and the dimensions
of the current layer.

This module utilizes the present successive residual blocks
(1024x1, 512x1, 256x1, 128x1) to provide prediction for
discreet segments of the protein sequence, each characterized
by two convolution layers with batch normalization to inspect
the sequence and its neighboring elements. To ensure unifor-
mity across all sequences, a padding technique is employed
to adjust the boundaries. Subsequently, the present model
employs an output layer that outputs 2 channels for binary
classification (per position in the sequence). Ultimately, the
last layer leverages a specialized function, namely Softmax,
to ascertain the likelihood of the protein sequence binding to
DNA.

C. Loss Computation Module
In order lead to better generalization and improve the

performance for protein-DNA Binding residue prediction, the
contrastive loss function is used. Contrastive loss module
provide an improved learning with respect to learning space by
consider pairs of amino acids within a single protein sequence
[22]. It mathematically formulated as:

L = (y · d2) + ((1− y) · (max(0,m− d))2) (1)

Where, y represents the label indicating whether the pair of
data points is similar (y=1) or dissimilar (y=0). d represents
the Euclidean distance between the representations of the two
data points. m represents a margin parameter that defines the
minimum distance between dissimilar pairs.

The present model also consider binary cross entropy based
loss computation to improve prediction performance as it
use gradient based optimization and effectively handle class
imbalance in case of binary classification.

V. RESULT AND DISCUSSION

This section presents the performance of the proposed
model in terms of the evaluation metrics like specificity,
recall, precision, f1-score, MCC. A tabular comparison is also
presented with the other existing methods in the literature.
Also, other ligands like RNA and antibody’s performance has
been calculated too in terms of similar metrics.
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Fig. 1. Methodology of proposed scheme

Fig. 2. Residual Module Architecture

A. Comparison with Previous work

In the table II, we have elucidated the comparative analysis
conducted between the proposed model and other existing
models that have been engineered for the purpose of predicting
Protein-DNA binding site. It is evident from the compari-
son that the present model exhibits superior performance in
comparison to other sequential methodologies that leverage
machine learning techniques.

B. Model as a general framework

The versatile framework articulated by the present model
holds considerable promise for the nuanced prediction of
binding locales spanning a spectrum of ligand types, including
intricate scenarios such as protein-RNA and antibody-antigen
engagements. In pursuit of this endeavor, we meticulously
curated benchmark datasets tailored to these specific binding
modalities, facilitating the rigorous training and meticulous
evaluation of the present model’s predictive prowess. Here,
the present model also achieves AUC score 0.552 for antibody
and 0.775 for RNA binding residues. The other performance
metric for RNA and anti body based predictions in comparison
to DNA are shown in the figure 3.

Figure 3 depict the Precision, Recall, F1-score and MCC
score, for DNA, RNA and antibodies site prediction for pro-
posed algorithm. These graphical representations offer a visual
depiction of the performance of the present model in discern-
ing binding residues across various nucleic binding proteins.
Additionally, the Precision, Recall, F1-score, and Matthews
correlation coefficient (MCC) metrics are presented for each
nucleic binding protein, providing a comprehensive assessment
of the algorithm’s predictive capabilities. Furthermore, the

Fig. 3. All Metrics of the present model

ROC curve is plotted individually for different nucleic binding
proteins, offering insights into the discriminative power of the
model across diverse protein-ligand interactions.

VI. CONCLUSIONS

Diverse prior investigations exhibit distinctive attributes,
merits, demerits, and, notably, avenues for future exploration.
The present approach utilizes a pre-trained model for feature
extraction followed by a Residual based CNN. The model’s
primary contributions and goals include developing an ef-
ficient framework for DNA-binding protein prediction that
eliminates the computationally expensive process of protein
feature extraction. This research has successfully met all
the objectives using the integration of embedding, predicting
and computational loss modules. Consequently, the proposed
model attained superior AUC scores.

The future scope of above research include expanded feature
representation from larger outputs using protein language
models and incorporating ensemble techniques, fine-tuning
large-scale protein language models for improved performance
and developing a unified framework capable of predicting
residues across all nucleic acids using multi-class classification
techniques. These advancements could further enhance the
accuracy and applicability of DNA-binding protein prediction
models.
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TABLE II
RESULTS OF DIFFERENT METHODS

Models Specificity Recall Precision F1 AUC MCC

DBPred [11] 0.784 0.708 0.243 0.362 0.794 0.320
DNAPred [17] 0.655 0.671 0.157 0.254 0.730 0.194

NCBRPred [23] 0.674 0.677 0.165 0.265 0.713 0.207
DRNAPred [24] 0.692 0.677 0.185 0.291 0.755 0.226

SVMnuc [13] 0.666 0.668 0.154 0.250 0.715 0.192
Proposed Model 0.795 0.717 0.258 0.379 0.884 0.361
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