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Abstract: Protein and nucleic acid binding site prediction is a critical computational task that benefits
a wide range of biological processes. Previous studies have shown that feature selection holds
particular significance for this prediction task, making the generation of more discriminative features
a key area of interest for many researchers. Recent progress has shown the power of protein language
models in handling protein sequences, in leveraging the strengths of attention networks, and in
successful applications to tasks such as protein structure prediction. This naturally raises the question
of the applicability of protein language models in predicting protein and nucleic acid binding sites.
Various approaches have explored this potential. This paper first describes the development of protein
language models. Then, a systematic review of the latest methods for predicting protein and nucleic
acid binding sites is conducted by covering benchmark sets, feature generation methods, performance
comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein
language models for the prediction task. Finally, the paper discusses the challenges of protein and
nucleic acid binding site prediction and proposes possible research directions and future trends.
The purpose of this survey is to furnish researchers with actionable suggestions for comprehending
the methodologies used in predicting protein–nucleic acid binding sites, fostering the creation of
protein-centric language models, and tackling real-world obstacles encountered in this field.

Keywords: protein language model; nucleic acid binding site prediction; feature extraction

1. Introduction

The interactions between proteins and nucleic acids form the cornerstone of the func-
tionality of numerous proteins across diverse biological activities and processes, including
gene expression, DNA replication, signal transduction, chromatin remodeling, DNA repair,
and cellular metabolism, all of which are essential for living organisms [1–4]. Identifying
the nucleic acid binding sites of proteins is vital for comprehending biomolecular mecha-
nisms, elucidating protein functionalities, and facilitating the research into and design of
innovative drugs. This effort supports advancements in understanding cellular processes
and developing targeted therapies [5]. Contemporary experimental methodologies like
X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, Cryo-EM [6], and
laser Raman spectroscopy have been adapted to decode the complex structures of biomolec-
ular assemblies. These methods excel at resolving intricate molecular structures, each
offering unique advantages in understanding complex assemblies. However, experimen-
tally identifying nucleic acid–protein binding sites is labor-intensive and time-consuming.
In addition, studies in recent years have emphasized the key role of intrinsically disordered
protein (IDP) or region (IDR) in protein–nucleic acid interactions. This includes RNA
maturation, ribosome assembly, etc. [7,8]. Unlike structural proteins, IDPs and IDRs lack
a fixed three-dimensional structure under physiological conditions. This is also difficult
to study by means of experimental assays. Despite the generation of extensive protein
data through next-generation sequencing, many proteins still lack nucleic acid binding site
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annotations. Thus, developing novel, fast, and accurate computational methods for the
large-scale identification of nucleic acid-binding residues in proteins is highly desirable [9].

Computational methods for protein–nucleic acid binding site prediction (PNBP) can
generally be categorized into two major types: sequence-based and structure-based ap-
proaches. In the early stage, sequence-based methods encompass a variety of tools, includ-
ing NCBRPred [10], DNAPred [11], DNAgenie [12], RNABindRPlus [13], ProNA2020 [14],
ConSurf [15], TargetDNA [16], SCRIBER [17], and TargetS [18], which predict residues at
nucleic acid binding sites using information solely from protein sequences. While sequence
data are abundant, binding sites, despite some spatial configuration conservation, are not
always easily identifiable at the sequence level, limiting prediction accuracy [19]. Con-
versely, structure-based methods, including COACH-D [20], NucBind [21], DNABind [22],
DeepSite [23], aaRNA [24], NucleicNet [25], GraphBind [9], and GraphSite [26], tend to
achieve higher prediction accuracy by incorporating structural information [27].

Despite many attempts and some progress in computational methods, there are still
constraints in the utilization of protein information. First, structure-based methods rely on
the Protein Data Bank (PDB) [28], which contains the crystal structures of target proteins.
However, many protein structures remain unknown, making structural data much scarcer
than sequence data. Moreover, the process of experimentally determining protein struc-
tures is both time-intensive and labor-intensive. Sequence-based methods heavily rely on
evolutionary insights, requiring extensive comparison and alignment with large protein
databases. However, these methods perform poorly when predicting orphan proteins that
lack similar entries in the database. The extraction of evolutionary features from proteins
necessitates a substantial investment of time. IDP and IDR bring unique challenges for
PNBP due to their lack of stable structure and high sequence variability [7]. Lastly, it
is crucial to note that current methodologies heavily rely on manually curated features
to encapsulate structural information and construct predictive models. This approach
requires extensive domain knowledge and may fail to capture essential biological features
for specific tasks [24].

Notably, the realm of protein structure prediction has undergone significant advance-
ments, largely fueled by the groundbreaking application of deep learning techniques.
For example, in the structure prediction competition CASP 14 [29], AlphaFold2 [30], and
RoseTTAFold [31] made a major breakthrough in protein tertiary structure prediction,
providing raw structural data for large-scale PNBP as a reliable alternative to experimental
methods. In addition to understanding protein structure, nucleic acid structure is equally
critical for elucidating the mechanisms of protein–nucleic acid interactions. Accurate
nucleic acid structures can reveal important binding sites and conformational changes
that occur upon binding. Significant progress has been made in structure prediction by
deploying large-scale pre-trained biological language models through the attention-based
Transformer network. Traditional computational methods for nucleic acid structure predic-
tion play a crucial role in this field. Thermodynamic models predict the secondary structure
of nucleic acids based on sequence information, calculate the minimum free energy of
possible structures, and determine the most stable conformation. Physics-based modeling
methods, on the other hand, use fragment assembly and energy minimization to predict nu-
cleic acid structures with high accuracy. The conformational space of nucleic acid molecules
can be explored through Monte Carlo simulations, thus enabling the modeling of large and
complex nucleic acid structures [32–35]. In CASP 15 [36], which focuses more on protein
complex and RNA structure prediction, Alchemy RNA learns richer sequence information
through pre-trained RNA language models (RNA-FM [37]), ranking first among all AI
methods. In addition, protein language modeling (pLM) has also achieved great results.
ESMFold [38], for example, differs from previous methods by generating position-specific
scoring matrices (PSSMs) from multiple sequence alignments (MSAs) using only protein
sequences as inputs. This improves the speed of prediction while maintaining high accu-
racy at the atomic level. In summary, ESMFold [38] surpasses other methods in handling
proteins with limited homologous sequences. Besides protein structure prediction, there
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is evidence that pLMs also perform well in various other predictive modeling tasks, in-
cluding protein function annotation [39,40], protein design [41,42], and ligand binding
prediction [43,44]. This undoubtedly indicates that pLMs have significant potential in the
downstream study of protein function and structure. Consequently, numerous researchers
are now devoting their efforts to leveraging the capabilities of pLMs for the large-scale and
accurate prediction of protein–nucleic acid binding sites.

PLM has demonstrated numerous advantages over traditional methodologies in PNBP.
In pLM, self-supervised learning is utilized to obtain protein representations capable
of resolving long-range sequence dependencies and better capturing protein structural
information [45]. Moreover, these models can learn rich feature representations directly
from large-scale protein sequences, eliminating the need for manual feature extraction.
Through sequence-level pre-training, pLMs can capture correlations and binding patterns
among nucleic acid binding residues in proteins, encoding them as distinctive feature
embeddings. To date, several pre-trained pLMs have been proposed, including ESM [38],
TAPE [46], ProtTrans [47], SeqVec [48], and ESM-MSA [49]. These models construct a
generalizable architecture through large-scale pre-training on protein sequences and extract
diverse and complementary features as embeddings. Numerous prediction models utilizing
pLM embeddings have been reported in current literature, such as bindEmbed21DL [39],
DeepProSite [50], EquiPNAS [27], ULDNA [51], ESM-NBR [52], and CLAPE [53]. These
models consistently outperform those without language model embeddings. Furthermore,
extensive studies have demonstrated the robustness of pLM embeddings, their ability to
reduce dependence on evolutionary information, and their significant improvement in
PNBP accuracy. The inclusion of pLM embeddings in feature combinations significantly
enhances overall model performance.

2. Biological Language Model

Language models (LMs) excel in content-aware data representation, from sequential
databases, making them widely utilized in machine translation, question-answering sys-
tems, and even extended to applications in computer vision [54]. Encoder architectures for
LMs are typically categorized into two main types: examples of recurrent neural networks
(RNNs) encompass the long short-term memory (LSTM) architecture [55], while attention-
based mechanisms, exemplified by Transformers [56], offer an alternative approach, both
renowned for their powerful capabilities. The Hidden Markov Model (HMM), a corner-
stone linguistic framework, is widely utilized in the realms of protein homology modeling
and searching. Given the parallels between human language and biological languages,
LMs have evolved into biological language models. Through transfer learning, biological
language models are effectively applied to characterize the downstream structure and
function of biological substances [57].

2.1. RNNs and LSTM

RNNs use a cyclic structure as compared to the traditional model where the nodes are
not connected within the network layer and hence can handle temporal data. This was first
applied in natural language modeling to capture language context and dependencies. RNNs
allow the previously hidden layer to be used as an input and will share the parameters of
each step and hence can be used to process variable-length sequences of inputs [58]. The
fundamental architecture of a neural network comprises distinct layers: input, hidden, and
output, as depicted in Figure 1a, offering a structured approach to data processing. At each
timestep t, the input xt ∈ Rl, the hidden state ht ∈ Rd, and the output state vector ot ∈ Rd

are formulated as follows, with superscripts l and d representing the dimensions of input
features and hidden units, respectively, as outlined in [57]:

ht = f (Uxt + Wht−1) (1)

ot = g(Vht) (2)
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Equation (1) represents the formula for the recurrent hidden layer, where U denotes the
input weight matrix, W represents the weight matrix for the feedback connection from the
previous hidden state, and f serves as the activation function that introduces nonlinearity
into the model. Equation (2) represents the formula for the output layer, where V represents
the output weight matrix and g is the activation function applied to the layer. The hidden
layer has two inputs, the first is the product of U and the xt vector, and the second is the
product of the states ht−1 and W output by the previous hidden layer, and finally together
they output the final ot. By iteratively substituting Equation (1) into Equation (2), we derive
an expression:

ot = g(Vht) (3)

= V f (Uxt + Wht−1) (4)

= V f (Uxt + W f (Uxt−1 + Wht−2)) (5)

= V f (Uxt + W f (Uxt−1 + W( f (Uxt−2 + Wht−3)))) (6)

= V f (Uxt + W f (Uxt−1 + W( f (Uxt−2 + W( f (Uxt−3 + . . .))))) (7)

From the aforementioned, it becomes evident that the output value ot of the recurrent
neural network is intricately influenced by the sequence of preceding input values xt−1,
xt−2, xt−3, xt−4, and so on, for successive input values. This is the reason why the RNN can
consider any number of input values in its computations.

For many language models, bi-directional sequence information is required, and a
bi-directional recurrent neural network is needed. As shown in Figure 1c, the hidden layer
of a bidirectional neural network maintains two distinct values: A, which participates in the
forward computation, and A′, which contributes to the reverse computation. The ultimate
output value ot is a synthesis of both At and A′

t. Its calculation is:

ot = g
(
Vht + V’h′

t
)

(8)

h = f (Uxt + Wht−1) (9)

h′ = f (U’xt + W’h’t+1) (10)

From the three formulas mentioned above, it is evident that the forward and reverse
calculations do not share weights, indicating that U and U′, V and V′, as well as V and V′

are all distinct weight matrices.
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However, in practice, RNNs do not handle longer sequences well, and the training
process is susceptible to issues such as gradient explosion and gradient vanishing. These
problems can prevent the gradient from being successfully propagated through longer se-
quences, ultimately hindering the RNNs’ ability to capture information over long distances.
Therefore, LSTM networks was developed to solve this problem [55].

The LSTM network has three primary inputs: the current input value xt, the output
value ht-1 from the previous timestep, and the vector of memory cells ct−1 from the preced-
ing moment. The LSTM has two outputs: the vector of hidden states at the current moment,
ht, and the vector of states of the memory cells at the current moment, ct. Furthermore,
Figure 1b illustrates the utilization of σ and tanh, which signify the sigmoid and hyperbolic
tanh layers, respectively, within the neural network architecture. The forget gate layer plays
a pivotal role in determining which information from the cell state at timestep t should be
discarded, and the remaining features are used to calculate ct. xt ∈ Rl, ht ∈ (−1,1)d, and
ft ∈ (0,1)d, and sigmoid is usually used as the activation function.

ft = σ
(

Ux
( f )xt + Wh−1

( f )h(t−1) + b( f )
)

(11)

The input gate decides which values to update. This decision is made based on the
input data xt and the hidden state ht−1, which are processed through a neural network

layer.
∼
Ct ∈ (−1,1)d represents the candidate cell state update, and it ∈ (0,1)d is the input

gate’s activation vector

it = σ
(

Ux
(i)xt + Wh−1ht−1

(i) + b(i)
)

(12)

∼
Ct = tanh

(
Ux

(
∼
Ct)xt + Wh−1

(
∼
Ct)ht−1 + b(

∼
Ct)

)
(13)

Compared to traditional RNNs, LSTM networks incorporate a unique gate mechanism,
known as the cell state, which enables precise control over the flow and retention of features.
This cell state is represented by the horizontal line at the top of Figure 1b, which runs
through the entire chain-like system. To update the cell state Ct to its new value, we
combine the old cell state Ct-1 with the new candidate state.

Ct = ft ⊙ Ct−1 + it ⊙
∼
Ct (14)

To obtain the prediction value and prepare the input for the subsequent time step,
the hidden state’s output ht is computed by passing it through the output gate, where
ot ∈ (0,1)d.

ot = σ
(

Ux
(o)xt + Wh−1

(o)ht−1 + b(o)
)

(15)

ht = ot ⊙ tanh(Ct) (16)

2.2. Attention Mechanism and Transformer

The traditional Sequence-to-Sequence (Seq2Seq) model uses RNN or LSTM as an
encoder or decoder to process the sequence and extract features [59]. However, it is difficult
for RNN or LSTM as an encoder to fully retain input sequence information in their final
state. In addition, the computation of RNN and LSTM is time-dependent and therefore
difficult to compute in parallel, which leads to very slow computation. Vaswani et al. [56]
proposed the Transformer model to compensate for these shortcomings. The Transformer
model utilizes self-attention, enabling it to individually access and weight all prior states.
Furthermore, the Transformer abandons the traditional horizontal RNN transmission and
only transmits vertically, requiring only the stacking of self-attention layers. This approach
enables parallel computation within each layer and can be accelerated using a GPU. The
proposed BERT [60] and GPT [61,62] models based on this perform exceptionally well
in natural language processing tasks. Unlike RNNs, the Transformer simultaneously
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processes the entire input sequence using stacked self-attentive layers in both its encoder
and decoder. Each layer includes a multi-head attention module, allowing a residual
connection for preventing network degradation, and layer normalization modules for
normalizing the activation values of each layer (Figure 2). Within the Transformer, the
fundamental single-head attention mechanism is termed “Scaled Dot-Product Attention”,
where the self-attention output is derived through a specific computational process.

Attention(Q, K, V) = so f tmax
(

QKT
√

dK

)
V (17)
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Self-Attention is a fundamental component of the Transformer, as illustrated in
Figure 3a. The inputs Q (queries), K (keys), and V (values) for self-attention are linearly
transformed from the input matrix X, which comprises vectors x or the output from the pre-
ceding encoder layer. Multiple attention consists of combinations of multiple self-attention
and allows parallel attention to information from different subspaces (Figure 3b). By di-
recting X through h distinct self-attention layers, h output matrices Z are generated. These
matrices are then concatenated and further processed by a linear layer, yielding the final
output matrix Z, which mirrors the input matrix X’s dimensions.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (18)

where headi = Attention
(

QWi
QKWi

KVWi
V
)

(19)
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In the context of multi-head attention, projections are executed utilizing specific
parameter matrices Wi

Q ∈ Rd×di , Wi
K∈ Rd×di , Wi

V ∈Rd×di , and WO ∈Rhdi×d, di = d/h.
This configuration comprises h parallel attention layers, or ‘heads’, each independently
processing the input data.

The formula for the Add and Norm layer is as follows:

LayerNorm(X + MultiHeadAttention(X)) (20)

LayerNorm(X + FeedForward(X)) (21)

where X signifies the input data fed into either the Multi-Head Attention module or the
Feed Forward module. The respective outputs of these two components are denoted by
MultiHeadAttention(X) and FeedForward(X). The operation add refers to adding the input
X to the output of the Multi-Head Attention module, resulting in X + MultiHeadAtten-
tion(X). This is a form of residual connection, commonly used to address the challenges of
training deep neural networks by allowing the network to focus on learning the differences
in the current layer. Layer Normalization is a technique commonly employed in RNN and
other neural network architectures. It serves to regulate the input to each layer of neurons
by ensuring they share a consistent mean and variance. This standardization process aids
in accelerating the training convergence by mitigating the issue of internal covariate shift,
where the distribution of layer inputs changes during training.

Furthermore, the feed-forward module comprises a two-layer fully connected network.
The first layer employs ReLU as its activation function, while the second layer does not
utilize any activation function. Furthermore, in addition to embedding sequence informa-
tion, the Transformer model requires the embedding of positional information at the start
of both the encoder and decoder to represent the position of each element in the sequence.

2.3. Protein Language Models

DeepCNF, proposed by Wang et al. [63], utilizes a deep neural network architecture,
incorporating LSTM, to predict protein secondary structure (SS). This approach effec-
tively addresses the challenge of long-range dependencies in sequence processing. This
method consistently matches or exceeds state-of-the-art models in SS prediction. SPIDER3-
Single [64] innovatively eliminates the dependency on evolutionary information, enabling
predictions based solely on individual sequences. Other models, such as OCLSTM [65]
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and LSTM-BRNN [66], share similar research objectives and architectural frameworks.
Additionally, models like GLTM [67] and LSTMCNNsucc [68] utilize pre-trained pLM em-
beddings to tackle diverse downstream tasks, including protein polymer motif prediction
and post-translational modification prediction. These studies collectively demonstrate the
efficacy of LSTM within pLMs in capturing the intricate biological features of proteins.

Recent advancements have introduced a range of deep neural language models specif-
ically for protein sequences. Notable examples include ESM [69], TAPE-Transformer [46],
ProtTrans [47], UDSMProt [70], UniRep [71], and ESM-MSA [49], each demonstrating
remarkable progress in the field. ESM2 [38], a key component of the ESM framework
advanced by the DeepMind team (Table 1 details the ESM family of models), builds
upon the powerful Transformer architecture. This unsupervised deep attention neural
network boasts a multi-layered architecture, with each layer integrating multiple atten-
tion heads alongside a feed-forward network (FFN). ESM2, with its 15 billion parameters,
is trained on approximately 43 million protein sequences, leveraging mask pre-training
to learn sequence–structure–function relationships and apply these learned features to
downstream tasks.

ESM-MSA [49], as depicted in Figure 4, excels in unsupervised learning by encoding
input MSA knowledge into feature embedding matrices. Each module integrates row-
attention and column-attention layers to capture co-evolutionary relationships among
amino acids at the sequence and positional levels. Another notable model, ProtTrans [47]
(see Table 2), shares a similar architecture to ESM2. Both models demonstrate the capability
of pLMs to extract syntactic content from large-scale protein sequences, even without
relying on MSA information alone. Furthermore, integrating multiple sources of infor-
mation such as structure, function, MSA, and other biological priors enhances protein
characterization [72].

ProteinBERT [73], another significant model, incorporates Gene Ontology (GO) anno-
tations during pre-training, enriching protein characterization by combining sequence data
with GO annotation information to predict protein functions effectively.

Table 1. ESM family.

Hyperparameter ESM-1b ESM-MSA-1b ESM-1v ESM-2

Dataset UniRef50 UniRef50 MSA UniRef90
Number of layers 33 12 33 48

Params 650 M 100 M 650 M 15 B
Embedding Dim 1028 768 1028 5120

Input Single-sequence MSA Single-
sequence

Single-
sequence

Universality Family-specific Few-shot Zero-short Zero-short

Model Transformer

Two rows of
attention

mechanisms
have been added

Transformer Transformer

References [69] [49] [74] [75]
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Table 2. ProtTrans family.

Hyperparameter ProtTXL ProtBert ProtXLNet ProtALbert ProtElectra ProtT5-XL ProtT5-XXL

Dataset BFD
100

BFD
100

UniRef
100

UniRef
100 UniRef 100 UniRef 100 UniRef 100 UniRef

50
BFD
100

UniRef
50

BFD
100

Number of layers 32 30 30 30 12 30 24 24
Params 562 M 420 M 409 M 409 M 224 M 420 M 3 B 11 B

Hidden layers
size 1024 1024 1028 1024 1024 1024 1024

2.4. Nucleic Acid Language Models

In addition to pLM, there have been good advances in language models designed
specifically for nucleic acids, including DNABERT [76] and RNA-TorsionBERT [77]. These
models are based on the BERT [60] (Bidirectional Encoder Representation from Transform-
ers) architecture and are tailored to capture the unique features and sequence patterns of
DNA and RNA.

DNABERT [76] and RNA-TorsionBERT [77] adapt BERT models for DNA and RNA
sequences. They are trained on large-scale genomic data to learn the underlying patterns of
nucleotide sequences. These models have been successfully applied to a variety of tasks and
have helped to deepen the understanding of the PNBP mechanism. It provides a powerful
approach to understanding the complex dynamics of protein–nucleic acid interactions. For
instance, DNABERT has been used in tasks like identifying transcription factor binding
sites and predicting methylation patterns, while RNA-TorsionBERT has been applied to
understand RNA conformational dynamics and to predict RNA–protein interactions.

However, in comparison to pLMs, nucleic acid language models have limited training
data, which restricts the generalization ability of the models. In addition, the progress
of pLMs is due to the rich evolutionary information contained in the protein sequences
themselves, whereas nucleic acids themselves may not contain similarly rich information.
Especially in non-coding regions and species-specific regulatory elements, it is difficult
for nucleic acid language models to obtain better access to evolutionary information [35].
Nucleic acid language modeling is at an early stage of development and needs further
validation, but it still has a very promising future.

Looking forward, the future of nucleic acid language models is undoubtedly promis-
ing. Continued advancements in genomic sequencing technologies and the accumulation
of more comprehensive datasets could potentially address the current limitations. Ad-
ditionally, integrating nucleic acid models with other types of biological data, such as
epigenetic marks, chromatin accessibility, and transcriptional activity, could enhance their
ability to make accurate predictions. As these models evolve, they are expected to play an
increasingly crucial role in decoding the intricacies of genetic regulation, gene expression,
and the broader mechanisms underlying protein–nucleic acid interactions.

3. Methods of Nucleic Acid Protein Binding Sites Prediction

This section showcases cutting-edge models designed to predict nucleic acid and
protein binding residues, reflecting the latest advancements in current research endeavors.
It distinguishes these models and compares them based on their use of pLMs as feature
embeddings, highlighting the clear advantages of pLMs in this prediction task. Figure 5
categorizes the features that are currently in common use, and the methods mentioned in
the text involve a wide range of features at the sequence and structural level.
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Figure 5. Classification of protein characteristics. At the sequence level, features are categorized
into traditional amino acid features (taaf), enriched features extracted from pLM, and evolutionary
features containing PSSM and MSA. At the structural level, they lack a concise classification and are
elaborated in Section 3.3.3 in detail. Methods that utilize such features are listed in the parentheses.
Some methods such as DNABind and GeoBind utilize both sequence features and structural ones.

3.1. Overview of Methods Framework

A typical generic framework for PNBP consists of three primary modules: the protein
feature embedding unit, the backbone network module, and the loss computation module.
The embedding unit constructs representations of input proteins leveraging evolution-
ary data or crafting discriminative embeddings through pLM, while also incorporating
structural attributes as salient features. These features are subsequently fed into the back-
bone network, which then performs PNBP within the input protein. Deep learning has
demonstrated significant advantages in predicting nucleic acid–protein binding sites, with
many models discussed in this review utilizing various mainstream neural networks such
as MLPs, CNNs, RNNs, GNNs, and LSTMs, in addition to traditional machine learning
approaches like SVMs.

Finally, the loss calculation module performs backpropagation using diverse loss
functions such as binary classification loss, contrastive loss, cross-entropy loss [78], class-
balanced focal loss [74,75], and triple center loss (TCL) [79], among others. These functions
guide the updating of model parameters based on the calculated loss.

3.2. Benchmark Datasets

To ensure fair comparisons between different methods, most models utilize benchmark
datasets derived from previous works, such as GraphBind [9], which predominantly builds
upon BioLiP [80]. BioLiP is a database of biologically pertinent ligand–protein interactions
meticulously curated from the Protein Data Bank (PDB) [28]. It meticulously curates
interactions through a blend of computational validation and manual verification, ensuring
biological relevance by filtering out non-biologically significant ligands.

Within BioLiP, a residue qualifies as a binding residue if its minimum atomic distance
from a nucleic acid molecule falls below a threshold calculated as 0.5 Å added to the
combined van der Waals radii of the two closest atoms. This criterion is used to complement
experimental data. Each entry in BioLiP is replete with annotations, encompassing details
like ligand-binding residues, binding affinities, catalytic sites, enzyme classifications, gene
ontology terms, and hyperlinks to related databases, offering a holistic view of the ligand–
protein interactions [80].

The GraphBind method, for instance, leverages BioLiP’s comprehensive annotation
of nucleic acid binding residues. It achieves this by aggregating binding residues across
multiple similar or identical protein complexes, where proteins may interact with different
DNA or RNA fragments in the collated data. As of 15 June 2024, BioLiP comprised
43,648 DNA–protein complexes and 153,190 RNA–protein complexes.

Xia et al. utilized the BioLiP database for their work, focusing on DNA and RNA
binding proteins. They excluded DNA–RNA–protein complexes and divided proteins
based on reporting dates, using sequences reported before 6 January 2016, for training.
To tackle the imbalance between binding and non-binding residues in the data, they
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augmented the training set by increasing the number of binding residues using bl2seq [81]
and TM-align [82] algorithms for sequence and structure comparisons. They also reduced
sequence redundancy using CD-HIT [75] (threshold 30%). Ultimately, their final training
set comprised a robust collection of 573 DNA-binding protein chains and 495 RNA-binding
protein chains. Similarly, their test set, subjected to comparable processing measures,
encompassed 129 DNA-binding proteins and 117 RNA-binding proteins.

Other studies similarly rely on BioLiP-based datasets, employing various data process-
ing techniques such as CD-HIT [83] for sequence redundancy reduction and TM-align [82]
for dataset partitioning into training and test sets. Some studies also create validation sets
to ensure model robustness and avoid overfitting during hyperparameter tuning.

3.3. Feature Extraction

Extracting discriminative features is crucial for accurately predicting nucleic acid–
protein binding sites, leading researchers to explore innovative approaches to characterize
protein sequences and structures. The widely held conviction underscores the notion that
a protein’s sequence serves as the blueprint for its three-dimensional (3D) structure and
functionality, thereby fueling the adoption of diverse sequence-level features in relevant
analyses. Commonly employed features include amino acid species encoding, residue
propensity calculations, and physical properties. Evolutionary information derived from
sequence comparisons is also frequently utilized to describe interactions. Moreover, pLMs,
highlighted in this paper, effectively extract information from protein sequences as features.

At the structural level, proteins are often characterized by encoding 3-state and 8-state
secondary structures (SS), while relative solvent accessibility (RSA) data have proven
significant in predicting nucleic acid binding sites [84]. Local geometric features, residue
orientation, and other structural attributes further enhance feature extraction in many
models. In addition, geometric deep learning is well practiced in protein structure modeling
and can be used to extract advanced biophysical–chemical knowledge of the structure.

In summary, a diverse array of features can be harnessed to accurately predict nucleic
acid–protein binding sites, combining features from different sources and assigning appro-
priate weights enriches feature representation, enhancing model performance. By integrat-
ing multiple features, both protein structure and sequence information can be fully utilized
to achieve more accurate PNBP, thereby improving model robustness and generalization.

3.3.1. Features Based on Amino Acids

Identifying nucleic acid binding residues entails employing various methods that draw
upon amino acid composition, residue preferences, and physicochemical characteristics.
Amino acid composition analysis determines the relative abundance of each amino acid
type around DNA binding sites, providing insights into their prevalence in nucleic acid
interactions. Residue propensity calculation assesses the likelihood of specific residues
being involved in nucleic acid binding, revealing which amino acids are preferred in
these sites. Biochemical composition analysis examines the physicochemical properties of
residues—such as polarity, hydrophobicity, and charge—to understand their functional
roles in nucleic acid interactions. Patiyal et al. utilized the Pfeature [85] package to compute
these features comprehensively [86]. In contrast, GeoBind [87] employs a lightweight neural
network that avoids hand-crafted physicochemical descriptors. Instead, it adopts an atomic
point cloud approach similar to dMaSIF, where chemical features are succinctly represented
as a 1 × 6 vector. This vector employs one-hot encoding to capture the presence of specific
atoms, including Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N), Sulfur (S), and
others, offering a precise and efficient way to encode chemical information. This approach
enables GeoBind to effectively analyze protein surfaces by distinguishing atom types,
providing crucial information for subsequent prediction tasks.

Pseudo-positions capture the center of mass for each residue, taking into account both
main chain and side chain atoms to represent their positions in nucleic acid interactions.
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This feature type is essential for modeling interactions involving both main and side
chain atoms.

Additionally, atomic features describe the physicochemical properties and structural
characteristics of residues. Xia et al. [9] extracted seven features for each residue, which
encompass atom mass, B-factor, a flag indicating whether it belongs to a side-chain, its
electronic charge, the number of bonded hydrogen atoms, ring status, and van der Waals
radius. These features were averaged across residues to create an atomic feature matrix
(L × 7) for each query protein, where L represents the number of residues.

For simplicity, approaches such as Roche et al. [27] have adopted one-hot encoding as a
means to represent the 20 distinct amino acid residue types, facilitating the straightforward
integration of amino acid type information in predictive modeling tasks.

3.3.2. Features Based on Evolutionary Information

The PSSMs serve as a valuable tool for representing residue conservation in protein
sequences. PSSMs are typically generated using the PSI-BLAST tool [88], which employs
heuristic and dynamic programming algorithms to search for homologous sequences in
databases like NCBI’s non-redundant (NR) database or Swiss-Prot, with an output size of
L × 20.

Research by Xia et al. has demonstrated that different backend algorithms and
databases, such as PSI-BLAST and HHblits, yield complementary results [9]. HHblits
utilizes a Hidden Markov Model (HMM) to search the uniclust30 database, generating an
HMM matrix of size L × 30 [89]. The HMM matrix is structured to encapsulate crucial
information pertaining to amino acid sequences. It comprises 20 columns that mirror the
observed frequencies of each of the 20 amino acids within homologous sequences. Addition-
ally, seven columns are dedicated to representing transition frequencies and three columns
are utilized to encapsulate local diversities.

MSA information plays a crucial role in assessing protein homology. Tools like Clustal
Omega [90], MAFFT [91], and MUSCLE [92] offer various algorithms and parameters to
enhance accuracy and robustness in comparing protein sequences. MSAs provide insights
into structural and functional relationships among proteins, revealing conserved and
variable regions and aiding in understanding evolutionary and structural features. Several
pipelines facilitate MSA generation, such as the ColabFold [93] pipeline utilized by Roche
et al. [25], which employs MMseq2 [94] to generate MSAs from amino acid sequences.

3.3.3. Feature Based on Structure

Protein 3D structures are crucial for revealing nucleic acid–protein binding sites and are
frequently employed to predict their characteristics. Solvent accessibility, introduced by Lee
and Richards [95], plays a pivotal role in this process because it identifies the protein surface
regions likely to interact with other molecules. Solvent accessibility categorizes residues as
buried (B), intermediate (I), or exposed (E), and can be accurately predicted using programs
like SANN [96]. This method constructs an RSA (Relative Solvent Accessibility) feature
for each residue using a sliding window of size 9, resulting in an RSA feature vector of
dimension 27. Additionally, RSA can also be computed using the DSSP program [97]. Apart
from RSA, calculating the protein’s monothermal secondary structure profile deriving the
sine and cosine values of the protein backbone torsion angle ϕ are effective methods for
representing the protein’s 3D structure. By leveraging one-hot encoding to represent SS in
either a 3-state or 8-state format, each amino acid residue within a protein sequence can be
transformed into a multidimensional feature vector, where each dimension corresponds to
a specific type of secondary structure. The torsion angles, including the C=O cosine angle
between consecutive residues, the torsion angle between consecutive Cα atoms, and the
normalized backbone torsion angle, provide critical local geometric information about the
protein’s backbone. These angles offer insights into local spatial relationships, torsion, and
curvature of the protein backbone, enhancing our understanding of its structural functions.
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Predicted protein structures can also serve as features for PNBP, as demonstrated in
studies like DNABind [22]. These studies used predicted secondary structures and RSA to
characterize residue structures, with secondary structures generated using programs such
as SPINE [98] based solely on input protein sequences.

Geometric deep learning plays a crucial and impactful role in extracting features from
protein structures. GPSite [99] and GPSFun [100] utilize a geometric featurizer to extract
atomic and inter-atomic features, treating residues as nodes and constructing protein
radius maps to represent protein structures. Experimental findings have convincingly
demonstrated that this approach captures and represents the intricate three-dimensional
structural features of proteins.

3.3.4. Feature Representation Extraction from pLMs

While traditional hand-designed features have been effective in predicting nucleic
acid–protein binding sites, they are constrained by a priori knowledge and may not capture
diverse patterns, limiting their feature extraction capabilities. Moreover, these features
often lack generalization ability and struggle to adapt to different prediction tasks. In
contrast, pLM embeddings offer a more comprehensive, accurate, and adaptable feature
representation. pLM embeddings are learned through large-scale pre-training, making
them highly transferable and effective even with limited data samples. When used in
analysis, pLM embeddings can be directly integrated into models for end-to-end learning.
This simplifies the modeling process, circumvents the complexities of manual feature
design, and enhances flexibility and versatility. Furthermore, pLM embeddings can be
further harnessed by fine-tuning them for specific tasks or domains, improving their
characterization capabilities and overall performance.

ESM2, for example, was trained on the Uniref50 [101] database, leveraging evolution-
ary insights from millions of sequences. It offers a range of pre-trained models with varying
sizes, each providing feature matrices of different dimensions (e.g., 320, 480, 640, 1280, 2560,
5120) for protein sequences of length L. However, due to GPU limitations, processing long
sequences (e.g., length > 1000) with even smaller models can still lead to memory issues,
necessitating sequence segmentation while retaining sufficient evolutionary information.

Additionally, other methods like ProtT5-XL-U50 have been pre-trained on datasets
like BFD [102], yielding 1024-dimensional sequence embeddings normalized to scores
between 0 and 1. This normalization ensures consistent scaling across embeddings, facili-
tating straightforward integration into predictive models using tools like HuggingFace’s
Transformers(v4.44.0) [103].

3.4. Performance Evaluation

Here we evaluate several methods for predicting nucleic acid binding sites using pLMs
as feature embeddings: CLAPE [53], ESM-NBR [52], DeepProSite [50], EquiPNAS [27],
ULDNA [51], GPSite [99], and GPSFun [100], which are generally summarized in Table 3.
We compare them to cutting-edge methods that rely on manual feature extraction, evaluat-
ing their performance side-by-side.

Firstly, compared to sequence-based models, pLM embeddings significantly enhance
model performance due to pre-training. Notably, some of these methods outperform most
structure-based methods, such as CLAPE [53], even without leveraging any structural
information. Meanwhile, the accuracy of protein structures is crucial for prediction tasks,
as predicted structures are often less useful for PNBP. When using experimental protein
structures, CLAPE’s performance is slightly lower than GraphBind [9]. However, when
replacing with predicted protein structures, CLAPE [53] outperforms GraphBind [9], high-
lighting the superiority of pLMs in the absence of precise structural data. In experiments
with the EquiPNAS [27] method using structural features and pLM embeddings, EquiP-
NAS [27] outperforms other methods even when using AlphaFold2-predicted structures
as inputs, and the performance degradation is small compared to using experimental
structures. The embeddings from pLMs undoubtedly contributed significantly to this
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performance improvement. GPSite [99] and GPSFun [100] extract features from structures
predicted by ESMFold using geometric characterizers and incorporate pLM as embed-
dings. This approach leverages the accuracy and computational efficiency of language
models, resulting in prediction accuracies that surpass most experimental structure-based
methods. These results indicate that using pLMs as embeddings provides robustness and
performance elasticity, achieving high prediction accuracy and significantly enhancing the
scalability of PNBP without compromising accuracy.

Table 3. Introduction to pLM extraction of features.

Method Feature Generation Feature
Representation

Key Learning
Architecture

CLAPE [53] ProtBert Tensor Concatenated
ACNNs

ESM-NBR [52] ESM2 Tensor LSTM
DeepProSite [50] ProtBert, DSSP Graphs GNN

EquiPNAS [27] ESM2, DSSP, PSSM, MSA,
taaf, SS, RSA, et al. Graphs GNN

ULDNA [51] ESM, ESM-MSA, ProtBert Tensor LSTM
GPSite [99] ProtBert, ESMFold Graphs GNN

GPSFun [100] ProtBert, ESMFold Graphs GNN

Secondly, these models demonstrate excellent robustness and generalization capabili-
ties, as evidenced by the EquiPNAS [27] experiments. GPSite [99] can predict the binding
residues for ten different molecules, while GPSFun [100] is capable of annotating protein
sequences with Gene Ontology (GO) terms in addition to predicting molecule interactions.
As another good example, DeepProSite [50] excels in pinpointing protein–protein/peptide
binding sites, and its application has been broadened to encompass the prediction of
binding residues for a diverse range of ligands (e.g., Mg2+, Ca2+, and Mn2+) to verify its
generalization ability. Results demonstrate that DeepProSite [50] outperforms its competi-
tors across the majority of evaluation metrics, further confirming the robust and generalized
capabilities of pLMs.

Thirdly, pLM embedding methods significantly accelerate PNBP by eliminating the
time required to compute evolutionary information. ESM-NBR predicts a 500 bp pro-
tein sequence in just 5.52 s, approximately 16 times faster than the second-ranking DR-
NAPred [104], with other methods not even in the same order of magnitude. This demon-
strates the clear computational speed advantage of pLMs.

Finally, the combined application of different pLMs offers complementary advan-
tages for predicting nucleic acid binding sites, further enhancing prediction accuracy.
ULDNA [51] demonstrates that not only can learned information be complementary across
pre-trained models, but failures in one method’s predictions can be corrected by the other
two methods. Despite the potential overlap in true positive predictions, ULDNA’s overall
accuracy surpasses that of single pre-trained model methods.

3.5. Ablation Studies

The relative importance of features in a model can be assessed through ablation
experiments, where different pLMs or different combinations with other features are
formed. This allows for the investigation of the impact of various feature combinations on
model performance. The ablation study allows us to further understand the contribution
made by pLMs in PNBP.

Extensive experiments have demonstrated that evolutionary information has diffi-
culty in replacing the role of pLMs in predictions. This suggests that pLMs may already
encapsulate protein evolutionary information and possess richer data, thereby enhancing
prediction quality [50]. Table 4 shows the classification of features taken by some of the
methods. EquiPNAS [27] shows that even completely discarding evolutionary features
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results in only a negligible decrease in prediction accuracy for protein–nucleic acid binding
sites. This underscores the importance of using pLMs as predictive embeddings, while
features derived from pLMs significantly contribute to model performance.

Table 4. Feature combinations of different methods for ablation studies. Bolded text is the combination
of features used in the full version of the methods.

ULDNA [51] DeepProsite [50] EquiPNAS [27]

ProtTrans + ESM-MSA
ESM2 + ESM-MSA
ESM2 + ProtTrans

ESM2 + ProtTrans +
ESM-MSA (ULDNA)

EVO
DSSP

ProtT5
ProtT5 + EVO + DSSP

EVO + DSSP
ProtT5 + EVO

ProtT5 + DSSP (DeepProSite)

No ESM2
No (PSSM + MSA)

No MSA
No PSSM

ESM2, DSSP, PSSM, MSA, taaf,
SS, RSA, et al. (EquiPNAS)

Moreover, combining pLMs with appropriate features is not redundant but positively
impacts model performance. Features such as structural features (DSSP), GO annotations,
etc., are also important to improve model performance. Therefore, identifying and utilizing
suitable combined features is essential.

We already know that different pLMs can complement each other in terms of infor-
mation. Further ablation studies have investigated three significant pLMs: ESM-MSA,
ProtTrans, and ESM2. ULDNA [51] combined these different pLMs as feature embeddings,
and results showed that the inclusion of ESM2 brought the most significant performance
improvement. Thus, among the three pLMs, ESM2 contributed the most.

In conclusion, feature ablation studies have demonstrated the powerful impact of pLM
embeddings on PNBP. Compared to traditional feature extraction methods, pLMs can learn
more effective discriminative features, reducing the reliance on conventional sequence- and
structure-based features. Additionally, the embeddings from pre-trained pLMs decrease the
model’s dependency on evolutionary information, enabling feature extraction for orphan
proteins or rapidly evolving proteins with sparse evolutionary data. This also avoids the
time-consuming task of generating MSA and PSSM features. Furthermore, even when using
only pLMs, the performance of EquiPNAS [27] is comparable to or better than the current
best-in-class for PNBP. This indicates that pLMs can effectively learn usable evolutionary
information embedded within the protein sequences themselves. All these points illustrate
that methods utilizing pLMs offer robustness and can be used to develop a versatile and
scalable model, standing out against other advanced approaches.

4. Discussion

With the emergence of multi-million protein sequence databases, pLMs are becoming
increasingly larger (e.g., ESM2 has 1.5 billion parameters). However, training such large-
scale pLMs is often impractical for academic research teams. Therefore, it is advisable for
academic researchers to leverage existing pre-trained language model embeddings with
good generalization abilities for downstream tasks. In the case of PNBP, the pLMs are not
readily usable due to the presence of the nucleic acid ligands and need to be customized to
at least take the interplay between protein and the nucleic acids into account.

Moreover, it is important to note that increasing the size of pLMs does not always
result in better model performance. Nijkamp et al. [105] found that larger models do not
necessarily yield better zero-shot fitness performance. Similarly, ESM2 [75] points out
that the improvement of small-scale pLMs tends to saturate when dealing with proteins
that have a high evolutionary depth. However, for proteins with low evolutionary depth,
increasing the model size significantly improves performance. This suggests that inte-
grating appropriate biological or physical prior knowledge (e.g., PSSM, MSA, DSSP, GO)
with pLMs can not only reduce the size of the pLM but also enhance the performance
of downstream tasks. The involvement of multi-source data in task design implies that
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multi-task or multi-modal learning is worth exploring. On the other hand, the language
models built upon nucleic acids, such as the DNA language model [76], RNA language
model [106], and the combined biological language models [107], could be integrated into
the tasks of PNBP for residue-level properties with high accuracy and efficiency. Since
nucleic acids can bind to different sites on the surface of a protein, the structural features of
proteins, especially local structural information, would not lose their importance if not play
an increasingly important role in the near future. As RNA molecules are highly flexible,
RNA language models could be very useful in guiding the related structure prediction
tasks. How the local structural information can be extracted to well complement existing
pre-trained pLMs is challenging. To note a promising direction, Zheng et al. proposed
a multi-view graph embedding fusion of two networks that capture the global and local
embedding representations, respectively [108].

In the case of PNBP, many methods have opted to create new datasets to meet the
demand. This has introduced discrepancies in assessing the efficacy of varied approaches,
eliciting apprehensions over potential data prejudices and ethical implications. Hence, the
establishment of comprehensive, credible, and impartial benchmarks becomes imperative
for assessing diverse models and promoting the advancement of dependable methodologies.
Due to the existence of many approaches, a systematic assessment of these approaches on
plenty of datasets could benchmark the performance and the potential problems (such as
dataset bias) to guide the efforts to improve them in the coming years.

As the progress of PNBP with pLMs continues, it is of great possibility that unknown
facets of protein–nucleic acid binding could be revealed and novel nucleic acid-binding
proteins of desired properties could be designed. One challenge to this endeavor is that the
complex embedding representation in pLMs can hardly be interpretable by any human.
Understanding how protein sequences are processed and represented is crucial to identi-
fying how models predict nucleic acid binding sites, which is helpful in protein design.
On the one hand, pLMs can be linked to interpretable molecular representations such as
physicochemical properties. On the other hand, model interpretability can be improved
by machine learning approaches that are self-explainable [109]. In addition, biological
knowledge and physical principles could be integrated within the frameworks of machine
learning models to develop easily comprehensible models [110]. For most of the deep
learning models in PNBP, their applicability domains are not unambiguously discussed
and there are risks that such models could be applied to certain applications in which
the underlying assumptions are not satisfied. Proteins are usually flexible and undergo
conformational changes upon ligand binding. One is thus cautioned when applying pLMs
to PNBP applications where changes in conformation and allosteric effects play a role,
although successful applications of pLMs are noted in other related tasks such as drug
discovery and protein engineering [111].

In addition, the role of IDP or IDR in protein–nucleic acid interactions complicates
binding site prediction. Essentially, the structure of IDPs or IDRs is highly flexible and
capable of dynamically interacting with nucleic acid binding. This structural plasticity
allows them to participate in a wide range of binding events and often modulate binding
affinity and specificity. Many intrinsic disorder predictors for IDRs that interact with
proteins and nucleic acids such as DisoRDPbind [112] and DeepDISOBind [113] have
been proposed and can be found, for example, in a recent survey [114]. Some of these
predictors including the ones for disordered nucleic acids–binding proteins have also been
accessed recently based on a novel benchmark dataset with reduced similarity to existing
datasets [115]. Very recently, HybridDBRpred was developed to improve sequence-based
prediction of DNA-binding residues for both the structure-annotated proteins and the
disorder-annotated proteins and thus reduced prediction biases from different annotation
types [116]. Both amino acid level and structural level information have been used in
existing intrinsic disorder predictors; however, the utilization of pLMs in such tasks has not
been reported yet. One possible reason could be that the flexibility of IDRs makes it difficult
for pLMs to accurately predict binding sites, as conventional models may not fully capture
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the transient and dynamic nature of these interactions. Given this complexity, it is critical
to develop and refine computational methods that better account for protein flexibility and
the unique properties of IDPs or IDRs in nucleic acid binding. Future development of pLMs
should focus on incorporating structural dynamics and disorder into their predictions to
improve the accuracy and reliability of PNBP [117].

5. Conclusions

This paper systematically reviews the recent advancements in protein–nucleic acid
binding site prediction. It covers the background, prediction challenges, the development
of pLMs, and their application in this field. We highlight several successful cases that
demonstrate the superior prediction quality achieved by pLM embeddings, further em-
phasizing the advantages of pLMs. Additionally, we discuss current limitations, potential
directions, and future trends. Ultimately, we anticipate that language modeling will play a
significant and convincing role in specific biological domains in the future.
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