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ABSTRACT

This article presents the design of a sequence-based
predictor named ProteDNA for identifying the
sequence-specific binding residues in a transcrip-
tion factor (TF). Concerning protein–DNA interac-
tions, there are two types of binding mechanisms
involved, namely sequence-specific binding and
nonspecific binding. Sequence-specific bindings
occur between protein sidechains and nucleotide
bases and correspond to sequence-specific recog-
nition of genes. Therefore, sequence-specific bind-
ings are essential for correct gene regulation.
In this respect, ProteDNA is distinctive since it has
been designed to identify sequence-specific binding
residues. In order to accommodate users with
different application needs, ProteDNA has been
designed to operate under two modes, namely, the
high-precision mode and the balanced mode.
According to the experiments reported in this article,
under the high-precision mode, ProteDNA has been
able to deliver precision of 82.3%, specificity of
99.3%, sensitivity of 49.8% and accuracy of 96.5%.
Meanwhile, under the balanced mode, ProteDNA has
been able to deliver precision of 60.8%, specificity of
97.6%, sensitivity of 60.7% and accuracy of 95.4%.
ProteDNA is available at the following websites:
http://protedna.csbb.ntu.edu.tw/
http://protedna.csie.ntu.edu.tw/
http://bio222.esoe.ntu.edu.tw/ProteDNA/.

INTRODUCTION

In recent years, prediction of residues in a protein chain
that may be involved in interaction with the DNA has

been a research topic that attracts a high level of interest.
Some of the studies were purely based on analysis of the
polypeptide sequence (1–5), while the others took the
structural information into account (3,6). In this respect,
as it has been reported in a recent article that the tertiary
structures of a large number of transcription factors (TFs)
are mostly disordered (7), sequence-based analysis aimed
at identifying the residues in a highly disordered TF that
play key roles in interaction with the DNA is essential
for obtaining a comprehensive picture of how the TF
functions.

Concerning protein–DNA interactions, there are
two types of binding mechanisms involved, namely
sequence-specific binding and nonspecific binding (8).
Sequence-specific bindings occur between protein side-
chains and nucleotide bases, while nonspecific bindings
occur between protein sidechains and the DNA sugar/
phosphate backbone. In molecular biology, sequence-
specific bindings correspond to sequence-specific recogni-
tion of genes and therefore are essential for correct gene
regulation.

This article presents the design of a sequence based
predictor named ProteDNA for identifying the residues
in a TF that are involved in sequence-specific binding
with the DNA. In this article, a residue is regarded as
involved in sequence-specific binding with the DNA, if
one or more heavy atoms in its sidechain fall within
4.5 Å from the nucleobases of the DNA. Figure 1 illus-
trates the function carried out by ProteDNA. Figure 1(a)
shows the prediction output of ProteDNA for the poly-
peptide sequence of Yeast TF GCN4 in the complex with
Protein Data Bank (PDB) (9) ID 1YSA. Figure 1(b)
depicts the output of ProteDNA in the tertiary structure
of PDB complex 1YSA. In Figure 1(b), the residues
colored by red are those sequence-specific binding residues
correctly identified by ProteDNA, while the residue col-
ored by blue is a false negative. In this case, there is no
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false positive. However, this case contains a residue
for which ProteDNA makes no prediction. The reason
that causes ProteDNA providing no prediction in
some cases is that some TF–DNA complexes deposited
in the PDB contain disordered regions and therefore
ProteDNA cannot learn any clues in order to make pre-
dictions for residues located in a similar polypeptide
segment.

In this article, the performance of ProteDNA is
reported based on the following metrics:

precision ¼
TP

TPþ FP
, sensitivity ¼

TP

TPþ FN
,

specificity ¼
TN

TNþ FP
, accuracy ¼

TPþ TN

TPþ TNþ FPþ FN
:

where TP, TN, FP and FN stand for the number of true
positive samples, the number of true negative samples,
the number of false positive samples and the number of
false negative samples, respectively. In order to accommo-
date users with different application needs, ProteDNA has
been designed to operate under two modes, namely, the
high-precision mode and the balanced mode. In this
respect, the user can select either mode when submitting
a query to the web server. The experiments reported
in this article show that under the high-precision mode,
ProteDNA delivers precision of 82.3%, specificity of
99.3%, sensitivity of 49.8% and accuracy of 96.5%.
Meanwhile, under the balanced mode, ProteDNA delivers
precision of 60.8%, specificity of 97.6%, sensitivity of
60.7% and accuracy of 95.4%.

METHODS

Overview

Figure 2 presents an overview of the architecture of
ProteDNA. The entire hybrid predictor consists of the
primary predictor and the auxiliary predictor. The pri-
mary predictor is a support vector machine (SVM) with
its parameter settings optimized for delivering high preci-
sion. As a result, one can expect that sensitivity of the
SVM-based primary predictor has been traded, since
tuning the parameters of a predictor aimed at raising pre-
cision typically means that sensitivity is traded and vice
versa. Accordingly, as shown in Figure 2, in the design of
ProteDNA, we have incorporated a mechanism derived
from the secondary structure element alignment (SSEA)

(a) (b)

Figure 1. Illustration of the function of ProteDNA. (a) The partial prediction output of ProteDNA with the polypeptide sequence of Yeast TF
GCN4 in PDB complex 1YSA. (b) The tertiary structure of the complex with PDB ID 1YSA. The residues colored by red are those sequence-specific
binding residues correctly identified by ProteDNA, while the residues colored by blue are the false negatives. In this case, there is no false positive.

Figure 2. Overview of the architecture of ProteDNA.
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approach first proposed by Gewehr and Zimmer (10) to
complement the prediction power of the SVM. With the
primary and auxiliary predictors, ProteDNA can operate
under the high-precision mode as well as the balanced
mode in order to accommodate users with different
application needs. Under the high-precision mode,
only the SVM-based primary predictor is enabled. On
the other hand, under the balanced mode, both predictors
are enabled and a residue is predicted to be involved in
specific binding with the DNA if either the primary or the
secondary predictor makes such a prediction.
For evaluating the performance of ProteDNA, we have

created a data set containing 253 TF–DNA complexes,
among which 227 complexes were extracted from the
691 protein–DNA complexes that Ofran et al. (11) col-
lected from the PDB and the remaining 26 TF–DNA com-
plexes are those that were deposited into the PDB during
September 2007 and November 2008. During the process
to extract the 227 complexes from the Ofran collection,
we excluded those complexes that do not contain a TF
and then queried the PFAM server (12) to exclude those
complexes in which no polypeptide segment is within the
DNA-binding domain predicted by the PFAM server.
In this respect, we submitted the full sequences of the
proteins in the complex to the PFAM server and adopted
only those predicted binding domains with the P-value
computed by the PFAM server <0.01. With this process,
we excluded those complexes in which the polypeptide
segments just happen to be in the proximity of the DNA
but are not really involved in binding with the DNA.
It might happen that we accidently excluded some TF–
DNA complexes with actual TF–DNA interactions.
Nevertheless, it was our intention to be conservative. In
the end, 227 out of the 691 complexes initially in Ofran
collection were extracted.

Design of the primary predictor

For the design of the primary predictor, we have employed
the LIBSVM package with the Gaussian kernel (software
available at: http://www.csie.ntu.edu.tw/�cjlin/libsvm).
The model of the SVM has been generated based on the
training data set derived by associating each residue in
the 253 protein chains with the evolutionary profiles of
the residue and its 10 neighboring residues. The evolution-
ary profile of a residue is in fact the vector corresponding
to the residue in the position specific scoring matrix
(PSSM) computed by the PSI-BLAST package
with three iterations (5). In addition, each residue was
labeled based on whether it is involved in sequence-specific
binding with the DNA or not. As mentioned earlier,
a residue is regarded as involved in sequence-specific
binding with the DNA, if one or more heavy atoms in
its sidechain are within 4.5 Å from the nucleobases of
the DNA.
As mentioned earlier, the parameters of the SVM have

been set to deliver high precision. In this respect, we have
set parameter g with the Gaussian kernel to 0.03125 and
have set costs for the positive and negative classes to six
and four, respectively.

Design of the auxiliary predictor

As mentioned earlier, the auxiliary predictor incorporates
a mechanism derived from the secondary structure ele-
ment alignment (SSEA) approach first proposed by
Gewehr and Zimmer (10). The SSEA-based mechanism
refers to a template library containing the polypeptide
segments of sequence-specific DNA-binding domains.
The template library has been created with the following
steps:

(i) Each protein chain in the 253 TF–DNA complexes
was fed into the PSIPRED predictor of protein sec-
ondary structures (13) as well as into the PFAM
server (12). Then, each residue in the predicted sec-
ondary structure elements was examined to deter-
mine whether it is involved in sequence-specific
binding with the DNA. If a secondary structure
element contains one or more residues involved in
sequence-specific binding with the DNA, then the
element was regarded as involved in sequence-
specific binding with the DNA.

(ii) If a DNA-binding domain output by the PFAM
server contained one or more secondary structure
elements involved in sequence-specific binding with
DNA, then the binding domain was deposited
into the template library. In addition, based on
the predictions made by PSIPRED, each residue
in the domain was labeled as belonging to one of
the following three types of elements: a-helix,
b-sheet and coil.

With the template library, we then can invoke the
following procedure to predict the sequence-specific
DNA-binding residues in the query TF, which is a slightly
modified version of the original secondary structure
element alignment (SSEA) algorithm (10).

(i) Invoke PSIPRED to label each residue in the query
TF with one of following three types: a-helix,
b-sheet and coil. Then, the BLAST package (14) is
invoked to align the sequence of PSIPRED labels
of each template in the library with the sequence of
PSIPRED labels of the query TF.

(ii) The alignment score between the query protein
chain and a template in the library is computed
based on the following log average score for pro-
file–profile alignment proposed by von Öhsen and
Zimmer (15):

log
XL

i¼1

X20

j¼1

X20

k¼1

�iðjÞ�iðkÞ expf�Sðj,kÞg,

where

(a) i is the index of the aligned residue pair and L is
the length of the template;

(b) ai(�) and bi(�) are the two PSSM vectors corre-
sponding to the aligned residue pair with index i;

(c) S( j,k) is the score of BLOSUM62 (16) corre-
sponding to residue types j and k;
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(d) � has been set to 0.347, which is the default
value of BLOSUM62.

Under the balanced mode, those residues in the query
TF chain that are aligned with a sequence-specific DNA-
binding residue in the template that yields the highest
alignment score are predicted to be involved in the
sequence-specific binding with DNA.

WEB SERVICE

Figure 3 shows the webpage for submitting a job to
ProteDNA. The user simply needs to provide a polypep-
tide sequence in the FASTA format and an email address
for receiving the output. The output format of ProteDNA
has been illustrated in Figure 1(a).

RESULTS AND DISCUSSION

In this section, we will report the experiments conducted
to evaluate the performance of ProteDNA. In the experi-
ments, we repeated the same testing procedure 20 times

with randomly and independently generated testing data
sets. The independent testing data set used in each run was
derived from 30 TF chains randomly selected from the
253 TF–DNA complexes that we have collected. In
order to eliminate possible bias presence in our collection
of TF complexes, we took steps to guarantee that no two
TF chains used to generate the testing data set in the same
run are homologous with a sequence identity higher than
20%. Furthermore, aiming to obtain experimental results
that accurately reflect the actual performance observed by
the users of ProteDNA, we guaranteed that the training
data generated with a TF chain that is homologous to the
protein chain under testing by having a sequence identity
higher than 20% are removed.
Table 1 shows the overall performance of ProteDNA

with 20 independent runs and Table 2 shows a breakdown
of the experimental results based on the classification of
TF–DNA interactions proposed by Thornton et al. (17).
In calculating the numbers presented in Tables 1 and 2,
the residues for which ProteDNA made no prediction
were treated as if ProteDNA had labeled them as non-
binding residues. However, the counts of residues listed
in Tables 1 and 2 do not include those residues that are
located in the disordered regions of the tertiary structures
of the testing protein chains. In the Supplementary Data,
we have included an additional table in which the residues
located in the disordered regions are treated as negative
samples. Performance data reported in Tables 1 and 2 and
Supplementary Table S1 show how we treat the residues
in the disordered regions really does not introduce any
material difference.
One interesting observation about the numbers pre-

sented in Table 1 is that ProteDNA failed to effectively
identify the sequence-specific binding residues in b-sheet
secondary structure elements. Our conjecture about
this phenomenon is that the number of sequence-specific
binding residues in b-sheet secondary structure elements is
far fewer than the number of sequence-specific binding
residues in either a-helix or coil elements. As a result,
ProteDNA cannot learn sufficient clues in order to iden-
tify sequence-specific binidng residues in b-sheet elements.
Accordingly, as shown in Table 2, ProteDNA failed to
effectively identify the sequence-specific binding residues
involved in the b-hairpin/ribbon type of binding with

Table 1. Overall performance of ProteDNA

Type of the secondary
structure element

No. of residues tested Prediction results

TP TN FP FN Precision Sensitivity Specificity Accuracy

Performance under the high-precision mode
Helix 33 769 1397 30 916 320 1136 0.814 0.552 0.990 0.957
Sheet 5396 0 5239 0 157 NA 0.000 1.000 0.971
Coil 21 286 355 20 401 57 473 0.862 0.429 0.997 0.975
Overall 60 451 1752 56 556 377 1766 0.823 0.498 0.993 0.965

Performance under the balanced mode.
Helix 33 769 1679 30 299 937 854 0.642 0.663 0.970 0.947
Sheet 5396 39 5208 31 118 0.557 0.248 0.994 0.972
Coil 21 286 417 20 052 406 411 0.507 0.504 0.980 0.962
Overall 60 451 2135 55 559 1374 1383 0.608 0.607 0.976 0.954

Figure 3. The webpage for submitting a job.
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DNA, since the interaction region contains a b-sheet
element.
In the following, we will discuss how the ProteDNA

performs in comparison with the related studies reported
in recent years. In this respect, one must note ProteDNA
is the only predictor listed in Table 3 that has been
designed to identify the residues involved in sequence-
specific binding with the DNA, while all the other predic-
tors do not distinguish between sequence-specific binding
and nonspecific binding. Therefore, the results listed in
Table 3, which includes the main results extracted from
the related studies along with the overall results with the
ProteDNA, should be regarded as a survey of the latest
advances in the field. It must also be noted that most
related studies have adopted slightly different definitions
of DNA-binding residues. In the article by Ahmad and
Sarai (1) and in the article by Wang and Brown (18), a res-
idue is regarded as involved in interaction with the DNA,
if one of its heavy atom is within 3.5 Å from a heavy atom
of the DNA. In the article by Hwang et al. (19), a larger
threshold of 4.5 Å, instead of 3.5 Å, has been adopted.
In the article by Yan et al. (2), a residue is regarded
as involved in interaction with the DNA, if its solvent
accessible surface area (ASA) in the protein–DNA com-
plex is less than its ASA in the unbound protein by more
than 1 Å2.
The numbers listed in Table 3 with an asterisk have

been derived from the numbers reported in the related

studies. Since all the four related studies addressed in
Table 3 reported three out of the four performance metrics
listed in the table, for each of the related study, we
can obtain three equations about the following four
variables:

TP
^

¼
TP

TPþFPþTNþ FN
,FP
^

¼
FP

TPþFPþTNþ FN
,

TN
^

¼
TN

TPþ FPþ TNþ FN
,FN
^

¼
FN

TPþFPþTNþ FN
:

In addition, we have TP
^

þFP
^

þTN
^

þFN
^

¼ 1. Therefore,
for each related study, we can derive the actual value
of the fourth performance metric based on the values of
the other three performance metrics that were provided.
The only exception is precision for the predictor proposed
by Hwang et al. (19). It can be easily shown in mathemat-
ics that accuracy cannot be higher than sensitivity and
specificity simultaneously, which is the case with the num-
bers reported by Hwang et al. Therefore, there is no way
to derive the exact value of precision for their predictor.

In our view, the general observation concerning the
numbers presented in Table 3 is that ProteDNA is capable
of delivering superior performance in comparison with the
related works. In particular, in terms of the F-score, which
is the harmonic mean of precision and sensitivity and is
widely used for reporting the overall performance of a
predictor in machine learning research, ProteDNA can

Table 2. Breakdown of the experimental results with ProteDNA in respect of different types of TF-DNA bindings

Type of TF-DNA
bindings

No. of
TFs involved

No. of residues
tested

Prediction results

TP TN FP FN Precision Sensitivity Specificity Accuracy

Performance under the high-precision mode.
Zipper-type 146 9587 586 8667 128 206 0.821 0.740 0.985 0.965
Helix-turn-helix 220 27 063 510 25 455 149 949 0.774 0.350 0.994 0.959
Zinc-coordinating 152 12 105 598 11 098 86 323 0.874 0.649 0.992 0.966
b-hairpin/ribbon 38 2618 0 2488 0 130 NA 0.000 1.000 0.950
Others 44 9078 58 8848 14 158 0.806 0.269 0.998 0.981
Overall 600 60 451 1752 56 556 377 1766 0.823 0.498 0.993 0.965

Performance under the balanced mode
Zipper-type 146 9587 643 8496 299 149 0.683 0.812 0.966 0.953
Helix-turn-helix 220 27 063 769 24 994 610 690 0.558 0.527 0.976 0.952
Zinc-coordinating 152 12 105 610 10 925 259 311 0.702 0.662 0.977 0.953
b-hairpin/ribbon 38 2618 39 2365 123 91 0.241 0.300 0.951 0.918
Others 44 9078 74 8778 84 142 0.468 0.343 0.991 0.975
Overall 600 60 451 2135 55 558 1375 1383 0.608 0.607 0.976 0.954

Table 3. Performance delivered by alternative predictors of DNA-binding residues, where the F-score is the harmonic mean of precision and

sensitivity

Predictor Sensitivity Specificity Accuracy Precision F-score

ProteDNA under the high-precision mode 0.498 0.993 0.965 0.823 0.621
ProteDNA under the balanced mode 0.607 0.976 0.954 0.608 0.607
Ahmad and Sarai (1) 0.682 0.660 0.664 0.308� 0.425�

Yan and et al. (2) 0.410 0.871 0.780 0.439� 0.424�

BindN (18) 0.652 0.728 0.722 0.186� 0.289�

DP-Bind (19) 0.791 0.786 0.800 –� –�

The numbers with an asterisk are those that have been derived from the numbers reported in the related studies.
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deliver significantly superior performance, regardless of
the mode under which it is operating.

CONCLUSIONS

This article presents the design of a sequence-based pre-
dictor aiming to identify the sequence-specific DNA-bind-
ing residues in a TF. As a recent study has revealed that
the tertiary structures of a large number of transcription
factors are mostly disordered, a sequence-based predictor
is essential for analyzing how a TF interacts with the
DNA. Furthermore, it is highly desirable to have a pre-
dictor capable of identifying those residues involved in
sequence-specific binding with the DNA, since sequence-
specific binding corresponds to sequence-specific recogni-
tion of a gene and therefore is essential for correct gene
regulation.

In the experiments reported in this article, ProteDNA
has been able to deliver precision as high as 82.3%, when
operating under the high-precision mode. Precision of
82.3% implies that about four out of five predicted bind-
ing residues are really involved in sequence-specific bind-
ing with the DNA. On the other hand, when operating
under the balanced mode, ProteDNA has been able to
deliver sensitivity as 60.7%. Sensitivity of 60.7% implies
that ProteDNA can catch about 6 out of 10 residues
involved in sequence-specific binding with the DNA.

It is anticipated the prediction accuracy delivered by
ProteDNA will continue to improve as the number of
TF–DNA complexes deposited in the PDB continues to
grow and the number of training samples that can be
exploited continues to increase accordingly. Nevertheless,
it is computational biologists’ primary interest to develop
more advanced prediction mechanisms. In this respect, we
believe that, as the number of TF–DNA complexes depos-
ited in the PDB increases, we can obtain more insights
about the key physiochemical properties that play
essential roles in TF–DNA interactions and then we will
be able to develop more advanced prediction mechanisms
accordingly. In addition, we will exploit the experiences
learned in this study in order to design specific predictors
for other families of proteins interacting with DNA. We
believe that different families of proteins may have very
different characteristics. Therefore, concerning a specific
type of proteins, a specifically designed predictor should
be able to deliver superior performance in comparison
with a general-purpose predictor.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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