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Abstract

The intricate details of how proteins bind to proteins, DNA, and RNA are crucial for the understanding of
almost all biological processes. Disease-causing sequence variants often affect binding residues. Here, we
described a new, comprehensive system of in silico methods that take only protein sequence as input to
predict binding of protein to DNA, RNA, and other proteins. Firstly, we needed to develop several new
methods to predict whether or not proteins bind (per-protein prediction). Secondly, we developed independent
methods that predict which residues bind (per-residue). Not requiring three-dimensional information, the
system can predict the actual binding residue. The system combined homology-based inference with machine
learning and motif-based profile-kernel approaches with word-based (ProtVec) solutions to machine learning
protein level predictions. This achieved an overall non-exclusive three-state accuracy of 77% ± 1% (±one
standard error) corresponding to a 1.8 fold improvement over random (best classification for proteineprotein
with F1¼ 91 ± 0.8%). Standard neural networks for per-residue binding residue predictions appeared best for
DNA-binding (Q2 ¼ 81 ± 0.9%) followed by RNA-binding (Q2 ¼ 80 ± 1%) and worst for proteineprotein
binding (Q2 ¼ 69 ± 0.8%). The new method, dubbed ProNA2020, is available as code through github (https://
github.com/Rostlab/ProNA2020.git) and through PredictProtein (www.predictprotein.org).

© 2020 Elsevier Ltd. All rights reserved.
Introduction

Physical interactions between proteins and large
DNA, RNA, and proteins crucially determine all
essential biological processes, including mechan-
isms relevant for health and disease [1,2]. The
development of new drugs requires detailed mole-
cular understanding of the binding residues [3].
Typically, binding residues are only available
through the detailed three-dimensional (3D) struc-
ture of a protein. UniProt now (Dec. 2019) contains
179 million protein sequences [4], of which, fewer
than 0.36% contain the experimental protein struc-
ture data from X-ray crystallography and NMR
r Ltd. All rights reserved.
spectroscopy in the Protein Database, PDB [5],
whereas good 3D models of structures are available
for fewer than 20% of all the residues of all known
proteins [6]. For all of those, binding residues remain
largely unknown. However, even knowing which
residues are involved in binding without knowing the
binding pocket or any detai ls of the 3D
structure might already help in designing experi-
ments. Often, it might already help to know that a
protein binds to DNA|RNA or other proteins. Despite
the pivotal importance of transient physical proteine-
protein interactions (PPIs), some important proteins
appear not to bind in vivo to any other protein [1].
Possibly 6e8% of all proteins in a eukaryote might
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bind RNA (RBPs: RNA-binding proteins) [7]. For
eukaryotes, the fraction of DNA-binding proteins
(DBPs) appears similar to that of RBPs (6e7%) [8];
for prokaryotes, typically 2e3% of a genome
encodes DBPs [8].
Typically, proteins binding other proteins, DNA, or

RNA form the targets of structure-based drug design
[9]. Understanding protein binding residues
becomes a basis for structure-based drug design.
Drug molecules usually affect the interaction
between the target protein and its ligand [10].
However, fewer than 0.36% of all proteins of
known sequence in UniProt correspond to a known
experimental 3D structure in the PDB [4,5]. There-
fore, it is essential to build computational tools to
reliably and rapidly identify protein-, DNA- and RNA-
binding proteins or residues.
Given that structure annotations remain missing

for most proteins (for >120 million in June 2019),
there continues to be a high demand even for low-
resolution predictions of aspects pertaining to
proteins binding protein, DNA, and RNA from
sequence alone. Not surprisingly, many in silico
methods cater to this need and predict binding
proteins (protein binds or not) or binding residues
(which residues bind) from sequence. These include
(sorted by date) methods optimized for per-protein
predictions (protein binds or not) DNABIND [11],
SomeNA [12], and StackDPPred [13] for DNA
binding, and RBPPred [14], SPOT-RNA [15] and
TriPepSVM [16] for RNA binding. Other aspects are
provided by tools optimized for per-residue predic-
tions (predicting which residues bind), including
some that predict binding for DNA and RNA (sorted
by date): DRNApred [17] and NucBind [18], and
others capturing all three targets: hybridNAP [19]
and DisoRDPbind [20]. The later predicts binding in
intrinsically unstructured proteins. However, we are
not aware of any existing method combining
machine learning prediction and homology-based
inference of per-protein and per-residue binding for
the three most important large macromolecules (PPI,
DNA, or RNA) into one comprehensive system.
Here we present a novel sequence-based system

for the comprehensive identification of proteins that
bind to protein, DNA, and RNA and the prediction of
the residues involved in binding. One crucial novelty
of this work is the demonstration that per-protein
predictions are performed only very poorly by
methods optimized on per-residue predictions, i.e.
users need different tools to predict which protein
binds a protein, DNA or RNA (per-protein) and where
it binds (per-residue) if it does. Toward this end, we
also demonstrate how very different machine learn-
ing methods can be combined best and how
predictions without using evolutionary information
may contribute to performance. Another methodolo-
gical novelty was the embedding of natural language
processing (NLP) concepts [21]. Our new system
has three major advantages over some existing
approaches. Firstly, it combines and assesses per-
protein and per-residue prediction in the same
framework. All prediction methods are grafted into
a common framework although they require very
different individual solutions. Secondly, it combines
homology-based inference with machine learning
(also done by: DisoRDPbind [20]). Thirdly, all the
three major macromolecules (protein, DNA, and
RNA) are integrated into one hierarchical prediction
with sustained performance estimates for the entire
system (also done by hybridNAP [19] and DisoRDP-
bind [20]).
Materials and Methods

Data sets

Reducing sequence redundancy in data sets

For all data sets, UniqueProt reduced redundancy such
that no protein pair in the set had sequence similarity of
HVAL>0 [22] (e.g. corresponding to 20% pairwise
sequence identity for alignments longer than 250 residues)
or PSI-BLAST E-value>10�3 with the minimum alignment
length of 45 residues [22]. Redundancy was reduced to
avoid overestimating performance [23].

Data sets for per-residue information (PPI, DNA, and RNA)

DNA-protein binding data was extracted from the
ProteineDNA Interface Database (PDIdb, version April
2010 [24]). PDIdb contained 992 entries of proteins with
high-resolution 3D structure from the Protein Data Bank
(PDB [5] with 1317 different protein chains binding DNA.
RNA-protein binding data was extracted from the Pro-
teineRNA Interface Database (PRIDB, version RB1179
[25]). PRIDB contained 1179 non-redundant PDB protein
chains binding RNA. All PDB entries were mapped to
UniProtKB sequences using SIFTS [4,26]. Only 3D
structures from X-ray crystallography with resolutions
<2.5 Å (0.25 nm) were included; DNA or RNA (in the
following NA) interactions were considered only when the
closest pair of atoms (between protein and NA) was within
6Å (0.6 nm). Protein-Protein binding data was provided
by Tobias Hamp [27]. Structures were obtained from PDB
(2015) with a resolution of <2.5 Å. After removing all
structures from the PPI set mapping to fewer than two
different UniProtKB IDs and the proteins with fewer than
five residues within 6 Å (0.6 nm) of any atom of the other
protein, the proteineprotein binding data sets contained
3957 PPIs from 2914 unique proteins representing the
species diversity of the PDB. Although reducing redun-
dancy, we maintained alternative binding residues.
Assume, AeB (A binds B), AeB0, and EVAL(B,B0)>T,
EVAL(A,B)<T, EVAL(A,B0)<T (where T is the threshold for
redundancy reduction; EVAL(A,B) the PSI-BLAST Expec-
tation-value, or E-value, for the alignment between A and
B). We removed B0 from the data set, but kept the labels of
“interacting residues” on A marked by the interaction
AeB0. We deliberately did not consider homo-dimers
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assuming that they bind in a biophysically different manner
from the type of transient physical PPIs that the prediction
method targeted [28]. All data sets are available through
github (https://github.com/Rostlab/ProNA2020.git); statis-
tics are provided in Tables 1 and 2.

Data sets for per-protein information

Besides the proteins used in per-residue data set,
proteins with the experimental annotations were also
collected in positive data set for per-protein (described in
the next section). Total numbers of non-redundant
proteins: protein binding/not binding: 524/282, DNA-bind-
ing/not DNA|RNA-binding: 199/555, RNA-binding/not
DNA|RNA-binding: 263/555 (Table 2).

GO annotations for negatives (only per-protein)

Due to a variety of reasons, experimentally character-
ized negatives are rare. To compensate for that, we used
GO annotations [29] with experimental evidence codes as
proxies for negatives and those used for homology-based
inference. We collected proteins with the experimental
annotations of protein binding (GO:0005515), DNA-bind-
Table 1. Non-redundanta cross-validationb set for per-residue

No. of binding residues No. of non-

Protein-binding residues 29,438 7
DNA-binding residues 6644 1
RNA-binding residues 8588 2

a For all data sets, UniqueProt reduced redundancy such that n
(corresponding to 20% pairwise sequence identity for alignments long

b Cross-validation: We separated the whole development/cross-vali
one of five (cross-training set) was used to optimize hyper-param
combinations of methods). For all decisions, optimal was defined as th
performance of the final model (testing set). The sets were rotated fiv
testing (and cross-training) exactly once.

c Per-residue prediction: prediction of which residue in a protein bin
observed to bind were considered NOT binding.

Table 2. Non-redundanta cross-validationb set for per-prote

Data set

Protein-binding proteins
Negative for protein-binding proteins
DNA-binding proteins
RNA-binding proteins
Negative for DNA and RNA-binding proteins

Overlap between protein-binding negative and DNA/RNA-binding

a For all data sets, UniqueProt reduced redundancy such that n
(corresponding to 20% pairwise sequence identity for alignments lo

b Cross-validation: We separated the whole development/cross-v
set); one of five (cross-training set) was used to optimize hyper-para
combinations of methods). For all decisions, optimal was defined as
the performance of the final model (testing set). The sets were rotate
for testing (and cross-training) exactly once.

c Per-protein prediction: prediction that a protein binds DNA|RNA
i.e. the binding residues. Toward this task, we need to consider a r

d When testing the performance of the whole system, the overlap
as the data set for non-binding.
ing (GO:0003677), and RNA-binding (GO:0003723). All
proteins with neither of those three, nor with any indirect
annotations (keywords: DNA, RNA, nucleotide) served as
negatives. This procedure was only applied for per-protein
predictions (e.g. protein binds DNA or not). For all per-
residue predictions (e.g. which residues bind DNA), all
residues NOT annotated to bind in a particular PDB chain
(e.g. DNA) served as negatives.

Independent data sets for comparisons to existing
methods

In order to compare our new method to others, we built
new sets without sequence redundancy (HVAL < 0 [22]) to
the proteins used for developing our method. We also
applied another HVAL < 5 filter to rule out possible overlap
between any protein used for testing ProNA2020 compo-
nents and those proteins used to develop the prediction
methods used as input through the PredictProtein [30]
server; this applied in particular to predicted secondary
structure and solvent accessibility. The advantage of this
solution was that we could compare tools based on the
same data sets for proteins not similar to those used for
development. The problem was that these rigorous
predictions.c

binding residues No. of all residues Percentage binding

8,608 108,046 27.2%
9,227 25,871 25.7%
1,538 30,126 28.5%

o protein pair in the set had sequence similarity of HVAL > 0
er than 250 residues).
dation set into five parts. Training used three of five (training set);
eters (incl. different input feature combinations, window sizes,
e highest F1 score. The last of the five was used to evaluate the
e times such that each protein in the data set had been used for

ds DNA|RNA|protein (or combinations thereof). All residues NOT

in predictions.c,d

Number of binding proteins

524
282
199
263

negativea
555
108

o protein pair in the set had sequence similarity of HVAL > 0
nger than 250 residues).
alidation set into five parts. Training used three of five (training
meters (incl. different input feature combinations, window sizes,
the highest F1 score. The last of the five was used to evaluate
d five times such that each protein in the data set had been used

|protein (or combinations thereof) as opposed to where it binds,
epresentative data set of proteins NOT binding.
between neither protein-binding nor DNA/RNA-binding served

https://github.com/Rostlab/ProNA2020.git
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constraints resulted in relatively small sets. PDB
sequences from 2010 were selected to assess DNA- and
RNA-binding; PDB sequences from 2016 for PPI. All data
sets were processed (resolution, distance threshold, and
redundancy reduction) in the same way as the develop-
ment data sets (Tables 1 and 2), namely: PDB resolutions
<2.5 Å; binding residues within 6 Å of molecule (statistics
in Table 3). PISA server is used to define the biological
interface [31].

Prediction methods

Homology-based inference

Homology-based inference refers to the following
process. Assume that a particular phenotype (e.g. protein
binds DNA) is known for protein X, and that protein U has a
sequence similarity to X exceeding some threshold
(EVAL(U,X)>T), above which the phenotype is typically
conserved between evolutionarily related proteins. Then
we will infer that U has the same phenotype as X (e.g. U
also binds DNA). The alignments for homology-based
inference were generated by PSI-BLAST using the
following standard protocol implemented, e.g. in the
PredictProtein Server [30]. For each protein, build the
PSI-BLAST profile using an 80% non-redundant database
combining UniProt and PDB (two iterations, inclusion
threshold E-value � 10�3). These profiles were then
aligned against all proteins with experimental annotation of
binding (proteins have experimental annotations of protein
binding (GO:0005515), DNA-binding (GO:0003677), and
RNA-binding (GO:0003723))(inclusion E-value � 10�3).
PSI-BLAST hits to the protein in the test set were excluded
to avoid over-estimate [32].

Cross-training and testing

All hyper-parameter optimizations were done on the
cross-training sets. This included the choice of alternative
machine learning methods (e.g. between profile-kernel
SVM and ProtVec Local). All results for the final estimates
of performance were compiled either on the test set or on
the independent test set. No parameter was optimized on
these. For instance, the decision to combine SVM and
ProtVec Local on each node of the per-protein level
prediction rather than to use the single best at each node
(Fig. 1) appeared optimal for the cross-training set, not for
the independent test set (we did provide the estimate for
Table 3. Non-redundanta independentb test data set.

For per-protein predictions

No. of binding proteins No. of non-binding pro

Protein-binding 209 52
DNA-binding 109 152
RNA-binding 57 204

a For all data sets, UniqueProt reduced redundancy such that n
(corresponding to 20% pairwise sequence identity for alignments lon
HVAL > 0 to any protein used for development of any of the methods

b Independent test set refers to the fact that those experimental mea
the development of ProNA2020. Again not only were those proteins n
(HVAL < 0) to any that had been available before.
the combination, i.e. not the one performing best in
comparison to other methods). Overall, different parts
from the identical data set served as training, cross-
training, and testing sets; all were rotated through so that
every protein in the redundancy-reduced set was used for
testing exactly once and for cross-training exactly once,
implying that the cross-training and testing sets were
identical (Fig. S1): five-fold cross-validation was accom-
plished by using three splits of the data for training, one for
cross-training (optimize hyper-parameters, including num-
ber of hidden units in NN, early stop) and one for testing.
Overall, we optimized the parameters (such as the number
of node, learning rate for NN; k-mer, s for profile-kernel)
and features for residue-level prediction in the cross-
training set and tested the final performance on the testing
set. This implied that we actually trained five different
machine learning models for each task, and that each
protein from the main development data set was used for
testing/cross-training exactly once. We picked the optimal
hyper-parameters with best average performance in cross-
training splits. This along with avoiding feature-selection
decreased the likelihood of over-fitting. In fact, the choice
of input units essentially followed what had been best for
earlier methods developed in our lab.

Random prediction

All performance values were compared to random
predictions. A random prediction was created by choosing
a random number between 0 and 1, if >0.5, the residue
was predicted as binding. The random per-protein predic-
tions used the same tree-like hierarchical prediction
system as the machine learning method (Fig. 1).

Prediction methods

When training the various machine learning models,
protein binding and nucleotide binding were considered as
separate tasks solved by two different systems of decision
trees (Fig. 1, Table S1; each node represented one binary
machine learning model typically trained on different data
sets with different inputs and outputs).

(1) Per-protein: profile-kernel SVM. Support
Vector Machines (SVMs) were implemented
through WEKA [33]. The profile-kernel function
For per-residue predictions

teins No. of binding residues No. of non-binding residues

5174 10,447
3645 8345
1444 4711

o protein pair in the set had sequence similarity of HVAL > 0
ger than 250 residues). In addition, none of those proteins had
compared.
surements have become available AFTER the data sets used for
ew, they also differed significantly in terms of sequence similarity



Fig. 1. Hierarchical prediction system. The branches
represent the paths for the protein sorting, the nodes mark
particular prediction methods (circles: machine learning
(ML) models, rhombus: homology-based inference. Full
lines mark part of the hierarchy the system will follow
(higher in the image: earlier in the processing hierarchy). In
contrast, dashed lines (from the homology-based infer-
ence) are those that might lead to bypass full lines. (A) Per-
protein: The top silver gray panel is the major novelty of
this contribution, namely the integration of modules
specialized for per-protein level prediction. These are
four ML modules predicting whether a query binds any:
nucleotide (NA), proteins (PROT), DNA, or RNA. The
values above the red/blue ML nodes give the F1 score of
profile-kernel SVMs (red) and ProtVec (blue) based on the
cross-training set (best method in bold numbers). (B) Per-
residue: The lower gold panel marks per-residue predic-
tions that have been integrated into servers before. The
green circles mark three separate prediction methods
predicting which residues bind PROT, DNA, and RNA.
Proteins are filtered through the per-protein prediction on
top and passed only to the module found appropriate by
the previous step. Upon request, the sorting can be
bypassed if users know the binding mode (PROT|DNA|
RNA) of the query protein.
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mapped the PSSM profile of each protein
family to a vector indexed by all possible
subsequences of length k from the alphabet
of amino acids. Another parameter s in the
profile-kernel SVM was the threshold to decide
when a particular k-mer was considered to be
conserved in the multiple sequence alignment
(family) or not. So each element in the final
vector represented one particular k-mer and its
score gave the number of occurrences of this k-
mer that was below a certain user-defined
threshold s. The dot product between two k-
mer vectors reflected the similarity of two
protein sequence profiles. The best combina-
tions of profile kernel parameters (k, s) and of
SVMs were found through 5-fold cross-valida-
tion [32e34].

(2) Per-protein: protein vectors (ProtVec). Con-
tinuous vector representation, as a distributed
representation for words, has been recently
established in NLP as an efficient way to
capture semantic/syntactic units [21,35]. The
basic underlying idea is to elucidate the
meaning of a word through its context, i.e.
neighboring words. Words with similar vectors
show multiple degrees of similarity. For
i n s t a n c e ,
vector(king) � vector(man) þ vector(woman) is
closest to vector(queen) [21,35].

The method ProtVec [21,35] applies this concept of so-
called skip-gram natural language models to protein
sequences. In this way, consecutive amino acids are
grouped into words and the whole protein sequence
becomes a sentence described by an n-dimensional
vector by considering contexts of different size (i.e. word
lengths). These n-dimensional vectors were input into the
downstream machine learning.
We used the Word2Vec [21,35] to re-implement our own

version of ProtVec (referred to as ProtVec Local).
Parameters optimized included the dimensionality of the
feature vectors (size), the maximum distance between
words within a sentence (window), and the minimum
number of the words (min_count). We also tested different
word lengths k of consecutive residues (k-mer, e.g. the
enzyme lactase begins with the 3-mer MEL), and whether
or not to use the feature “phrase”. Using “phrase” implied
to automatically detect common phrases (multiword
expressions) from a stream of sentences. The best
combination was found by five-fold cross-validation
[21,35]. For the subsequent machine learning algorithm,
we compared SVM, Random Forests (RF), and Neural
Networks (NN).

(3) Per-residue: neural networks and smooth-
ing filter. Following earlier publications [2,36],
we applied a two-step process to predict per-
residue binding residues. First level: We
trained standard feed-forward neural networks
with back-propagation and momentum term
using the sliding-window approach as input (for
a window size of w, when predicting for residue
j, all residues from j � INT(w/2) to j þ INT(w/2)
were included). All input features were taken
from PredictProtein [30] including, but not
limited to, predicted secondary structure, pre-
dicted relative solvent accessibility, and bio-
physical properties of amino acids. The combi-
nations of features and other hyper-parameters
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(e.g. window sizes and hidden units) were
optimized on the cross-training set using the F1
score (complete list of features: SOM
Tables S2 snd S3). Second level: The final
prediction score for a residue was calculated
by the average of the positive values in the
certain window as follows:

score¼ 1

u

Xðu�1Þ=2

i¼�ðu�1Þ=2
raw scorei;ðraw scorei > 0Þ ð1Þ
Q2 ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ

MCCðCÞ ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FP ÞðTP þ FNÞðTN þ FP ÞðTN þ FNÞp ð3Þ
Reliability index (prediction strength)

The reliability (or strength) of a prediction was described
through a reliability index (RI) ranging from 0 (weak
prediction) to 100 (confident prediction). For per-protein
predictions, the RIs were computed directly from the
machine learning output. For per-residue predictions, the
RIs were computed from the second-level scores (Eq. (2)).
For homology-based inferences from PSI-BLAST, RIs
were compiled from the percentage pairwise sequence
identity (PIDE). As in our settings PSI-BLAST did not find
any relations at PIDE < 10%, prediction performance did
not change for PIDE � 10 (Fig. S4). Thus, RIs were re-
normalized accordingly [32].

Performance evaluation

Many publications fall short of comprehensively asses-
sing performance through a diversity of measures [37,38].
While we tried to avoid this pitfall, we also tried to confine
additional analyses that only confirmed previous results to
the Supporting Online Material (SOM) wherever possible
to eschew obfuscation.
Proteins might bind more than one target. Thus, we

intrinsically had to assess a multi-class problem. For
several aspects of the evaluation, we simplified by
calculating the per-protein performance for each class,
by only considering that class. With the standard acronyms
(TP: true positives, observed and predicted in class C; TN:
true negatives, observed and predicted in non-C; FP: false
positives: predicted in C, observed in non-C; FN: false
negatives: predicted in non-C, observed in C), we applied
the standard definitions:

PREðCÞ ¼ PrecisionC
¼ TP=ðTP þ FP Þ;RECðCÞ
¼ RecallC ¼ TP=ðTP þ FNÞ;
NPV ðCÞ¼TN=ðTNþFP Þ; TNRðCÞ¼TN=ðTNþFNÞ
F1ðCÞ¼2*PREðCÞ*RECðCÞ=ðPREðCÞþRECðCÞÞ

ð2Þ
We also provided the confusion matrix containing the

raw values for TP, TN, FP, and FN for the test set of each
of our methods separately. Toward this end, we only
provided results for the cross-validation test set due to the
larger data set size. These raw numbers are particularly
relevant to correct for overall estimates [39]; for that
correction, estimates based on larger data sets appear
most helpful. In addition, we monitored the overall two-
state accuracy (Q2) and the Matthews correlation coeffi-
cient (MCC):
The overall non-exclusive three-class accuracy on the
protein level was defined as:

AccuracyðAÞ¼ 1

n

Xn

i¼1

jprdi∩obsij
jprdi∩obsij ð4Þ

where prdi|obsi are the numbers of classes pre-
dicted|observed for protein i. For instance, if protein
A binds DNA and other proteins, and the prediction is
RNA&Protein binding, the Accuracy(A) would be 1/
3; the random prediction would reach Arandom ¼ 43 ±
1%.

Family size comparison

The number of sequences in each protein family was
obtained from https://pfam.xfam.org/. For a protein with
multiple families, the largest family was assigned.

Error estimates

Error rates for the evaluation measures were estimated
by bootstrapping [40] (without replacement to render more
conservative estimates), i.e. by re-sampling the set of
proteins/residues used for the evaluation 1000 times and
calculating the standard deviation over those 1000
different results. Each of these sample sets contained
50% of the original proteins/residues (picked randomly,
again: without replacement).

Method comparison

We did compare performance with other methods task
by task using the following publicly available methods. For
DNA binding, these were DNAbinder [41], DNABIND [11],
NucBind [18], SomeNa [12], and StackDPPred [13]. For
RNA binding, these were RNABindRPlus [42], RBPPred
[14], SomeNa [12],SPOT-RNA [15], and TriPepSVM [16].
For protein binding, these were BSpred [43], iPPBS-

https://pfam.xfam.org/
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PseAAC [44], InteractionSites [36], LORIS [45], PPIS [46],
and SPRINGS [47]. The following multi-class binding
prediction methods were included: DisoRDPbind [20],
DRNApred [17], hybridNAP [19], and NucBind [18]. One
important novelty of this work is the finding that different
machine-learning methods are needed to predict where a
protein binds (per-residue level), and whether a protein
binds (per-protein level). Toward this end, we can turn a
method optimized for the per-residue level into a per-
protein prediction by simply considering that the method
predicted the protein not to bind if no residue was predicted
as binding (modes of assessment summarized in Table 4).
Results

Tree-like hierarchy for prediction system com-
plicates assessment

We implemented an intuitive tree-like hierarchy for
the entire per-protein prediction system (Fig. 1).
While the system was not optimized for perfor-
mance, at each node in the hierarchy (Fig. 1), we
tried different solutions for the machine learning and
for the combination of machine learning and homol-
ogy-based inference (Methods). Methods were
assessed on their specific tasks and on how they
performed embedded into the hierarchy (Table 4).
For instance, assume the DNA-binding ML module
correctly predicts protein P to bind DNA. Assume
further that the first module nucleotide-bindingmade
a mistake (Fig. 1: top right circle, Table 4: unknown
bindingmode). Then theDNA-bindingmodule would
never be activated, i.e. the system would classify
incorrectly although the isolated module was indeed
correct. Both aspects needed assessment because
users might over-ride some components of the
system. All decisions (hyper-parameter optimiza-
tions) were done on the cross-training set (Methods),
NOT on the test set.

Per-protein: profile-kernel SVM and ProtVec best
together

We created two versions of machine-learning
classifications for each node in our protein level
prediction tree-like hierarchy (Fig. 1, Tables S4 and
Table 4. Summary of three prediction modes.

Performance measures

Protein sorting mode Accuracy, Q2, PRE, REC,
NPV, TNR, F1, MCC

Residue known binding mode Q2, PRE, REC, NPV, TNR,
F1, MCC

Residue unknown binding mode Q2, PRE, REC, NPV, TNR,
F1, MCC
S5): one used a profile kernel SVM and the other the
skip-gram like ProtVec approach. For each node, the
better solution was identified on the cross-training
set (Fig. 1: values above circles valid for cross-
training). Thus, the performance values were rele-
vant only to set up the final system. For some tasks,
ProtVec performed better (Fig. 1: blue values,
numerically higher for protein binding); however, for
most, the profile kernel SVM did (Fig. 1: red values,
significantly better for DNA- and RNA-binding). The
best result originated from running both methods for
a protein and then choosing the one with the higher
score. Overall, the profile-kernel performed better on
proteins from larger families (Fig. 2, P ¼ 0.05).

Homology-based inference embedded into the
prediction system

Merging machine learning directly with homology-
based inference might improve both [32]. We
measured sequence similarity through PSI-BLAST
at a threshold of T ¼ 10�15, i.e. the annotation was
inferred for a query protein Q if its sequence
similarity to a protein of known binding K was
below T (PSI-BLAST expectation E-value(Q,K) < 10-
�15; Fig. S2). For combination, we used homology-
based inference (PSI-BLAST) where available
(below threshold T < 10�15), and machine learning
prediction, otherwise. This combination outper-
formed the machine learning method, reaching an
overall performance of 77 ± 1% (Eq. (4)). For all
three classes, the combined predictions improved
over machine-learning (Fig. S3, Table S6) and sig-
nificantly over random (Fig. 3A, Table S7).

Per-residue predictions

All per-residue prediction methods were standard
two-layer feed-forward neural networks, trained
exclusively on a subset of protein from each class
(e.g. to learn the prediction of DNA-binding residues,
only proteins observed to bind DNA were used).
There are two ways to assess the final system.
Firstly, we measured performance for proteins
known to e.g. bind DNA. Toward this end, each
prediction task was tested separately, e.g. when
Description

Per-protein level prediction

Per-residue level prediction for proteins for which it is known
THAT they bind protein/DNA/RNA for which the residue is
predicted (no sorting needed)
Per-residue level prediction for proteins for which it is NOT
known what they bind and for which the residue is predicted
(mistakes in protein sorting are added to mistakes in per-
residue prediction)



Fig. 2. Correct predictions exclusive to profile-
kernel SVM vs. ProtVec. Bases for this plot are all
proteins correctly predicted by only one of the two per-
protein prediction algorithms, namely either by the profile-
kernel SVM or by the ProtVec. The y-axis shows the
average number of family members in each of the families.
The horizontal black line gives the average over all
families. Clearly, the profile-kernel SVMs do better for
unusually large families, while the ProtVec tends to win for
unusually small families.
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testing DNA-binding, all DNA-binding proteins were
assessed with respect to per-residue performance
and all proteins experimentally known to bind DNA
and those known not to bind for per-protein
performance. This constitutes the standard way in
which all other methods have been tested (Fig. 3A,
B, D). The 2nd level filter smoothened spikes (Eq. (1)
averaging over adjacent residues); it increased
precision (Eq. (2)) to PRE(protein) ¼ 46 ± 0.3%
(from 35 ± 0.2% without filter), to PRE(DNA) ¼ 57 ±
0.6% (from 48 ± 0.4%), and to PRE(RNA)¼ 54 ± 1%
(from 46 ± 1%; Tables S8 and S5). DNA residue-
binding reached the highest MCC (0.42 ± 0.006),
followed by RNA residue-binding (MCC ¼ 0.36 ±
0.006) and protein residue-binding (MCC ¼ 0.25 ±
Fig. 3. Test set performanceof ProNA2020. All plots show
The first two panels give the MCC (Eq. (2)) for the per-protein
method, ProNA2020, improved over random (black vs. gray bar
second two panels both give per-residue performance. PanelC
system: dark bars: with sorting (i.e. with system errors); gray
provide estimates for predicting binding residueswithout any pri
who know that their protein was a binding protein and want to
performance between the raw ML solution (gray bars) and the
0.003 Fig. 3D, Tables S8 and S5). The MCC
improvement was similar (Eq. (2); Fig. 3B). The
improvement over random was again highest for
DNA-binding (Fig. 3B, Tables S8 and S5).
Secondly, we assessed the entire sorting system,

i.e. per-protein mistakes reduced per-residue per-
formance (Fig. 3C). Overall, DNA-, RNA-binding
reached similar performance; protein-binding was
slightly below (Fig. 3C, Table S9). All per-residue
prediction methods performed better on non-binding
than on binding residues, e.g. reflected by very high
levels of the overall two-state per-residue accuracy
Q2 (Eq. (3)) which was dominated by non-binding
(Table 1). The test-set results were Q2 68e70%,
80e82%, and 79e81% for protein, DNA, RNA,
respectively (ranges encapsulated ± one standard
error rounded to closest integer; details about error
estimates are provided in Table S9). With respect to
DNA/RNA confusion, 24% of the DNA binding
residues were mis-predicted as RNA binding resi-
dues (Table S10).
The detailed inspection of particular examples for

typical predictions (Fig. 4) suggested that
ProNA2020 identified some core of a binding residue
(yellow in Fig. 4). This was impressive because the
method “sees” only sequence, i.e. has no notion of
“binding residue”, instead it only predicts “binding
residues”.

Predictions strength measured by reliability
index (RI) correlated with performance

The confidence of each prediction was measured
through a reliability index (RI) that scaled from �100
(high confidence for non-binding) to 100 (high
confidence for binding). Technically, RI reflected
the strength of a prediction. For homology-based
performance for the test set used to assess our new system.
(panel A) and per-residue predictions (panel B). Our new
s) bymany standard deviations (±s shown at each bar). The
compares valueswith or without errors of the protein sorting
without sorting (i.e. without system errors). The dark bars
or knowledge; the gray bars estimate performance for users
find the residues involved in binding. Panel D compares

smoothing filter (dark bars) that improved for all classes.

mailto:Image of Fig. 3|eps
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Fig. 4. Representative per-residue predictions. We picked three proteins of known 3D structure to visualize correct
and incorrect predictions of binding residues for protein, DNA, andRNA.Coordinateswere taken from thePDB [5]. Although
each prediction was an average case for its task (complete distribution of predictions in Fig. S6), all three happened to be
examples of relatively small “chains” (i.e. protein domain-like regions) that almost entirely bind. Yellow marks correctly
predicted residues, blue residues observed in the binding but not predicted (under-predicted false negatives) and magenta
residues predicted but not observed (over-predicted false positives). Panel A shows the protein binding prediction (6HA7
[57], Q2¼ 71%), panelBgives aDNAbinding prediction (5DWA [58],Q2(this protein)¼ 78%), and panelC samples anRNA
binding prediction (5XTM [59], Q2(this protein) ¼ 76%). Note that none of the 3D information was used for the prediction.
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inference, the RIs were normalized values for
percentage pairwise sequence identities read of
the PSI-BLAST alignments (Fig. S4). For the per-
protein machine learning predictions, the RIs were
taken directly from the ML method output (Method).
For the per-residue level, the RIs were taken from
the smoothened values (Methods). The binding
prediction, higher RIs corresponded to more precise
(high PRE, Eq. (2)) but fewer (lower REC, Eq. (2))
predictions (Fig. 5). For instance, for the per-protein
sorting, the subset of predictions stronger than 0
(RI � 0) reached levels of >60% precision for DNA
and RNA (Fig. 5A: full blue and red lines at x ¼ 0).
This level was reached for about 70% of all
predictions (Fig. 5A: dashed blue and red lines at
x ¼ 0). Prediction strength correlated also with
performance for the per-residue predictions of
binding proteins, e.g. for RI > 0 about 50% of all
proteineprotein binding residues were correctly
predicted (Fig. 5B: full green line), and these
constituted over 40% of all the PP-binding predic-
tions (Fig. 5B: dashed green line). For the prediction
of non-binding, reversely, lower RIs implied better
predictions (Fig. S5).

ProNA2020 performed best in independent
comparison

To compare our new method, ProNA2020, with
others, we added another independent test set
without significant sequence similarity (HVAL<0) to
sets used for development. For the per-protein
sorting (protein sorting mode, Table 4), ProNA2020
reached the highest F1 score and MCC in protein-
binding, RNA-binding, and DNA-binding prediction
(Fig. 6, Table S11). Values for precision and recall
never are directly comparable because some meth-
ods find different balance points, i.e. perform very
well on one of the two at the price of performing
poorly on another. For instance, hybridNAP reached
a recall of 100% on DNA binding and RNA binding at
the cost of levels of precision below 42% for
DNA and below 22% for RNA. On the other extreme
end, SPOT-RNA reached high precision for RNA
and DisoRDPbind for proteineprotein, but both
achieved this at rather low recall (DisoRDPbind
41% for proteineprotein, SPOT-RNA 33% for RNA).
DisoRDPbind even achieved a second highest MCC
in protein binding prediction by the high precision
(MCC: 0.21, Fig, 6), because most other methods
predicted all proteins as protein binding (NPV ¼ 0
Table S11). Overall, for per-protein prediction,
ProNA2020 numerically outperformed all state-of-
the-art sequence-based binding protein prediction
methods tested (in terms of F1 and MCC; in terms of
Q2 for RNA binding, SPOT-RNA and TriPepSVM did
better due to under-prediction, Table S11).
Methods developed to predict which residues

bind e.g. DNA (per-residue level) could be employed
to predict which proteins bind DNA (per-protein level).
Our results highlighted the problems originating from
such an approach: for all prediction tasks, all per-
residuemethods clearly over-predictedbindingon the
per-protein level. This led to very high levels of Recall

mailto:Image of Fig. 4|eps


Fig. 5. Reliability index (RI) to focus on best predictions. All machine learning solutions reflect the strength of a
predictioneven forbinaryclassifications (binding/not). Thesegraphs relatepredictionstrength toperformance.Thex-axesgive
prediction strengthas the reliability index (from�100: very non-binding to100: very binding). The y-axes reflect thepercentage
precision (full lines, Eq. (2)) and recall (dashed lines, Eq. (2)) for proteins binding to DNA (red), RNA (blue), and other proteins
(green). The left panel (A) shows the per-protein methods and the right one (B) the per-residue predictions. For all models,
precision is proportional to prediction strengths, i.e. predictions with higher RI are, on average, better. All plots are cumulative,
e.g. answering the question: if you looked at all per-residue predictions for DNA (panel B red full line) or RNA (panel B blue full
line) with RI > 50 about 75% of all residues you looked at are expected to be correct predictions. Above that threshold, the
methods have found slightly over 12.5% of all residues observed to bind DNA (B: dashed red) and RNA (B: dashed blue).

Fig. 6. Per-protein prediction of ProNA2020 in comparison for independent data set. All values are based on three
new independent data sets (protein, DNA, and RNA, Table 1) without significant level of sequence similarity to those
proteins used for development of all methods. The y-axis gives the MCC (Eq. (2)). Error bars define ±one standard error.
All numbers were compiled on exactly the same data set. The horizontal black lines mark random predictions. Note that
most data sets were imbalanced, most extreme that for proteineprotein binding, as a result all but two methods
(DisoRDPbind and ProNA2020) reached the same MCC (Table S11) by simply always predicting proteineprotein binding,
i.e. by never correctly rejecting any protein. Consequently, the MCC (Eq. (2)) was exactly 0 for all methods (Table S11)
other than DisoRDPbind (MCC ¼ 0.21 ± 0.05, Table S11) and ProNA2020 (MCC ¼ 0.22 ± 0.08, Table S11).
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at low levels of Precision (Table S11) and relatively
low F1 scores. This problem was less severe for the
identification of proteins that bind other proteins: all
methods reached relatively high levels for the
independent test setwhich contained fewnon-binding
proteins, i.e. over-prediction of bindingwas rewarded,
in the most extreme: always predicting binding
resulted in F1 ¼ 89%, Q2 ¼ 80% (Precision ¼ 80%,
Recall ¼ 100%). Consequently, the negative pre-
dictive value (NPV, Eq. (3)) for those methods might
be as low as 0% (on a scale of 0e100, Table S11); the
MCCs were also all 0 (Fig. 6, Table S11).
Comparing the per-residue level performance, we

had to, again, distinguish the two different scenarios.
First, users do not know whether or not their query Q
binds (residue unknown binding mode, Table 4).
Second, they do know that it binds and want to find
out where it binds (residue known binding mode,
Table 4). For the first scenario (unknown binding
mode), no method reached higher F1 or MCC
(Table 5 and Table S11, F1: unknown mode) for
any task than ProNA2020. For per-residue RNA
binding predictions, RNABindRPlus reached a high-
est MCC together with ProNA2020 (MCC ¼ 0.40),
but a slightly lower F1 than ProNA2020 (F1-
ProNA2020 ¼ 46 vs. F1RNABindRPlus ¼ 45).
Table 5. Overall per-residue performance for independent tes

Method Binding Unknown bin

F1

DisoRDPbind [20]3 DNA 19 ± 3
DRNApred [17]2 28 ± 3
hybridNAP [19]3 35 ± 2
NucBind [18]2 35 ± 5
SomeNA [12]3 44 ± 2
ProNA20203 60 ± 2
DisoRDPbind [20]3 RNA 15 ± 4
DRNApred [17]2 21 ± 5
hybridNAP [19]3 26 ± 3
NucBind [18]2 20 ± 6
RNABindRPlus [42] 45 ± 4*
SomeNA [12]2 23 ± 2
ProNA20203 46 ± 3
DisoRDPbind [20]3 Protein 5 ± 2
hybridNAP [19]3 37 ± 2*
BSpred [43] 18 ± 2
CRF-PPI [60] 31 ± 2
InteractionSites [36] 14 ± 1
iPPBS-PseAAC [44] 20 ± 1
LORIS [45] 31 ± 2
PPIS [46] 32 ± 2
SPRINGS [47] 32 ± 2
SSWRF-PPI [61] 33 ± 2
ProNA20203 42 ± 3

a Methods: superscript numbers give number of tasks for methods th
Mode-unknown: for a query protein Q it is not known whether it binds
Methods incorrectly predicting that Q binds DNA will likely mis-predict
Thus, values on right are mostly higher than on left. Mode-known: fo
instance, when assessingmethods for the DNA per-residue prediction,
MCC (Eq. (2)). BOLD values and *marks: the numerically top method
numerical top (p-value of difference >0.1).
Overall, our new method, ProNA2020, appeared
to be the best among all state-of-the-art per-residue
prediction methods we tested with these new
independent data sets. ProNA2020 clearly signifi-
cantly outperformed other multi-task predictions:
DRNApred, NucBind, hybridNAP, and DisoRDPbind
(Table 5).
For the second scenario (known binding mode,

Table 4), we e.g. only used RNA binding proteins for
the per-residue RNA-binding comparison (Table 5
rightmost column, Table S13). ProNA2020 reached
the highest F1 score and MCC in the DNA and
protein binding per-residue prediction. The higher
values were statistically significant (difference more
than two standard errors, i.e. p < 0.1; Table 5). For
RNA binding, ProNA2020 numerically reached the
top MCC, followed by NucBind and RNABindRPlus;
however, those two were within a single standard
error of the top value, i.e. the differences were
statistically not significant (Table 5). Statistically
significantly lower was rank four with the other
multi-task methods, namely hybridNAP with
F1 ¼ 34%, albeit at an MCC of 0.08 (Table 5). For
protein binding, ProNA2020 came consistently on
top highest F1 and MCC (Table S13). Performance
was almost same between overall independent test
t seta.

ding mode Known binding mode

MCC F1 MCC

0.09 ± 0.02 19 ± 3 0.04 ± 0.02
0.13 ± 0.03 30 ± 3 0.10 ± 0.03
0.12 ± 0.02 40 ± 1 0.08 ± 0.02
0.16 ± 0.07 52 ± 2 0.47 ± 0.02*
0.31 ± 0.03 45 ± 2 0.27±±0.04
0.49 ± 0.02 66 ± 1 0.50 ± 0.02
0.05 ± 0.03 20 ± 4 0.04 ± 0.03
0.08 ± 0.06 26 ± 5 0.07 ± 0.04
0.11 ± 0.02 34 ± 2 0.08 ± 0.03
0.03 ± 0.06 43 ± 5* 0.37 ± 0.05*
0.40 ± 0.04* 50 ± 3* 0.36 ± 0.03*
0.19 ± 0.04 25 ± 3 0.17 ± 0.06
0.40 ± 0.03 50 ± 2 0.37 ± 0.03
�0.03 ± 0.03 5 ± 2 �0.001 ± 0.008
0.14 ± 0.02 39 ± 2 0.11 ± 0.02
�0.04 ± 0.02 20 ± 1 �0.036 ± 0.009
0.02 ± 0.01 38 ± 2 0.03 ± 0.01
0.05 ± 0.02 15 ± 1 0.05 ± 0.02
0.04 ± 0.02 22 ± 1 0.027 ± 0.008
0.001 ± 0.007 36 ± 1 0.005 ± 0.008
0.01 ± 0.01 38 ± 2 0.02 ± 0.01
0.004 ± 0.007 35 ± 2 �0.01 ± 0.008
0.02 ± 0.01 38 ± 2 0.02 ± 0.01
0.28 ± 0.03 47 ± 3 0.28 ± 0.03

at addressmore than one (maximum is three: DNA, RNA, protein).
DNA/RNA/Protein, instead, this binding has to also be predicted.

more residues than those correctly rejecting such a binding mode.
r a query protein Q it is known that it binds DNA/RNA/protein. For
only DNA-binding proteins are presented. Percentages for F1 and
in each mode is bolded; methods within two standard errors of the
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set and PISA reduced independent test set (biology
interface only) (Table S14).

Predictions different for prokaryotes and eukar-
yotes and similar for unknown data

Separately analyzing the performance for prokar-
yotic and eukaryotic proteins, we first observed that
our training data had more residues annotated as
binding RNA in prokaryotes than in eukaryotes
(5351 vs. 2308, Table S16); the percentage of
RNA-binding residues was also almost twice as
high in prokaryotes than in eukaryotes (38% vs.
20%, Table S16); the corresponding percentages
were slightly higher in prokaryotes than in eukar-
yotes for protein-binding (31% vs. 26%, Table S16)
and this ratio was inversed for DNA-binding (24% vs.
29%, Table S16). Protein- and RNA-binding resi-
dues were predicted substantially better for prokar-
yotes than for eukaryotes (F1(protein) ¼ 48 ± 0.4 vs.
45 ± 0.4; F1(RNA) ¼ 63 ± 0.2 vs. 49 ± 0.3;
Table S15). In contrast, DNA-binding residues were
predicted better in eukaryotes (F1(DNA) ¼ 54 ± 0.9
vs. 60 ± 0.8; Table S15). The differences in the
amount of binding data used for training correlated
but did not explain the differences in performance:
protein: observed ratio binding residue (prokaryote/
eukaryote) ¼ 1.2 vs. performance (F1) of 1.05; DNA:
observed ratio: 0.8, performance 0.9; RNA:
observed ratio 1.9, performance 1.3.
Often experimental data sets are biased and

machine learning methods inherit the training bias.
For instance, all methods predicting the effects of
single amino acid variants (SAVs) upon protein
function perform very similar for the tiny data sets
with experimental annotations, although they per-
form very differently for proteins without annotations
[48]. The independent test sets helped to assess
whether or not methods behave the same way for
annotated proteins used for development and those
not used. Obviously, we cannot “assess” perfor-
mance for proteins without annotations. However,
what we can do is to at least analyze whether the
score distributions from a prediction method look
similar for proteins of known and unknown function.
Toward this end, we applied ProNA2020 to all
human proteins and found the distribution of predic-
tion scores to resemble that for the data sets with
experimental annotations (Fig. S7).
Discussion

New system works overall better than previous
tools

The major objective of this work was the combina-
tion of several prediction tasks into one comprehen-
sive prediction system for the prediction of
proteineprotein, proteineDNA, and proteineRNA
binding. The system included the per-protein level
to automatically handle predictions for entirely
sequenced organisms or metagenomes for which
many proteins remained without annotations for
these binding modes. The system also combined
homology-based inference and machine learning to
help users to the best possible prediction for each
case. Many of these ideas had been realized before,
e.g. the multi-task predictions (for nucleotides:
SomeNA [12], DRNApred [17], and NucBind [18];
for nucleotides and proteins: DisoRDPbind [20] and
hybridNAP [19]), or per-protein and per-residue level
predictions (SomeNA [12]), or the combination of
homology-based and machine learning (DisoRDP-
bind [20]). However, no system had really simulta-
neously addressed all aspects.
All data sets were too small for out-of-the-box

Deep Learning. Word2vec, used so successfully by
Google [33] and others, including for proteins [35,49]
and in ProtVec [21], did provide interesting new
angles (Fig. 1: blue numbers from ProtVec). How-
ever, profile-kernel SVMs tailored to protein predic-
tion [12,27,34] performed better overall (Fig. 1: red
mostly higher than blue numbers). Similar trends
have been observed for other applications in biology
[27,32,50e53]. The profile-kernel SVM mines evolu-
tionary information as contained in multiple
sequence alignments of protein families, while
ProtVec aspires at understanding the protein
sequence in a different way through NLP. It seems
that the machine learning model underlying ProtVec
might be too simplistic to achieve this objective. Less
simplistic models reach further [54,55]. One problem
for profile-kernel SVMs are un-informative (lack of
diversity) and incorrect alignments. In such cases,
ProtVec can perform better.
The ProtVec-like solution performed particularly

well for the top-level proteineprotein and pro-
teineNA (nucleic acid) sorting (Fig. 1). For these, it
outperformed or was on par with the profile-kernel
SVM (Fig. 1: middle top and left top circle).
Conversely, the profile-kernel SVMs clearly per-
formed better for DNA and RNA (Fig. 1: middle
circles on right and in center). One common trend
was that the larger the data set, the relatively better
the ProtVec. The finding that the best combination
used whichever prediction had the highest score
(reliability) suggested that methods had learned
independent aspects.
One task often implicitly left to the user is the

combination of homology-based inference with
machine learning. Building such a combination into
a system can improve and simplify predictions [32].
For ProNA2020, performance also improved through
in-built combination of machine learning with homol-
ogy-based inference (Fig. S3). For example, protein-
binding protein Q9Y3Y4 cannot be predicted by
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machine learning, while Q9Y3Y4 hits another
protein-binding protein Q9T0K5 through homology-
based inference.
The non-redundant independent data set was

composed of proteins for which experimental data
became available after the proteins used for devel-
opment (cross-validation). Thus, this set was com-
pletely “novel” with respect to independently testing
our method. However, several of the other methods
compared had access in their development to some
(older methods) or most (newer methods) of those
proteins, i.e. our independent comparison was
conservative in that it likely under-estimated the
performance of our methods with respect to that of
others. Nevertheless, in this test, no other method
statistically significantly outperformed our method
and no method combined as many crucially relevant
components into a system as ours. Some perfor-
mance measures cannot be directly compared
between methods, e.g. precision and recall: each
method finds a different balance. Is method M1 with
Precision ¼ 60% and Recall ¼ 30% better than M2
with P ¼ 40%, R ¼ 50%? The only way to answer is
through composite scores such as the F1 or MCC.
When scanning such composite scores, our new
method ProNA2020 reached numerically the highest
value for all three per-protein predictions (Table S11,
Fig. 6) and for all per-residue assessments (Table 5).
Another important feature of our prediction system

that is not assessed through the independent test
set is the integration of homology-based inference.
By design, the independent test set could not be
subjected to homology-based inference, i.e. the
method comparison was confined to assessing the
machine learning part of ProNA2020. Other methods
use homology-based inference (e.g. SBI). In fact, for
some or all of the proteins in the independent data
set, those methods might have used SBI instead of
de novo prediction.
Overall, we accomplished our goals: we devel-

oped the most comprehensive and most automated
system for the prediction of binding of proteins to
DNA, RNA, and other proteins. The only limitation of
the system are specific predictions: it cannot predict
which proteins, DNA, or RNA in particular will bind,
only that they will bind and where in the protein that
will happen. In absence of knowing 3D structure, the
system can also not identify entire binding residues:
although when mapping it onto 3D structures
(Fig. 4), we observed that parts of binding residues
non-consecutive in sequence and close in space
had been predicted; however, without the knowledge
of 3D structure, this information would not have been
available. Thus, the prediction of many non-con-
secutive protein binding residues might indicate two
separate binding pockets, or one very large one. The
comprehensive system, ProNA2020, consists of
parts, none of which appeared worse than any
state-of-the-art prediction method, and while the
system will be available to users as a whole, the
separate components are also available for expert
users through github.

Estimates for sustained performance challen-
ging

When assessing machine learning, proper cross-
validation is essential. This includes to have non-
redundant data sets and to separate all hyper-
parameter optimization and model choice (based on
the cross-training set, Fig. S1) from the performance
estimates for the final method, for which we used two
test setsdthe first from our original data set
(Fig. S1) and the other independent test set, which
most likely had not been used for the development of
other methods and clearly not used by us (Methods).
We applied the final test sets only to the system that
was found best using the cross-training set. This
implied that some of the results shown had to be
taken from this “development phase” (Fig. 1,
Fig. S3), while others were taken from the test set
(Fig. 3) or the independent test set (Fig. 6, Table 5).
Only these results reflected the final performance
estimates for the method. Values for cross-training
and testing results might differ more than the
estimates of standard errors suggest; this is just an
aspect of development. In contrast, if values differed
between test and independent test sets, this would
suggest some mistake in performance estimates.
Indeed, all differences (F1) between the indepen-
dent and the cross-validation test set remained
within less than a single standard error (Table 5,
Table S11). Thus, these differences did not chal-
lenge the technical correctness of our estimates.
Consistent performance of ProNA2020 in cross-
validation and the independent test sets suggested
that there was rather limited bias from the develop-
ment set, in particular, in comparison to other
methods, some of which tended to perform below
the levels published when faced with new proteins
between independent test set and publication
(Table 5: rightmost two column, Table S13).
Many of our performance comparisons were

complicated by the small sets of proteins with
experimental annotations that are neither sequence
similar to any protein used by any of the methods
compared, nor sequence similar to each other. This
double constraint has complicated comparisons in
many fields of protein prediction, in particular when
high-resolution data continues to be impossible for
high-throughput experiments. When each novel
structure continues to cost over $100,000 [56],
data sets with “only” 108 novel protein binding
proteins (independent test set, Table 3) carry very
high value. Some methods (alphabetically: NucBind
[18] and RNABindRPlus [42]) reached a similar
value on the independent data set as published.
Others remained below the expectations. For one of
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those, namely for DisoRDPbind [20], the difference
was easily explained by that it only focused on the
binding residues on the disorder region. Unfortu-
nately, we could not analyze this separately,
because for none of the proteins in our independent
data set did we find experimental annotations about
disorder.
Another particular problem often arising from

proper cross-validation is that some alternative way
of solving a problem might turn out to be best
according to the cross-training set (Fig. 1, e.g.
numbers in blue vs. those in red), but not best for
the test or the independent test set. We encountered
this for the final solution for the protein sorting system:
whichever prediction method (profile-kernel SVM or
ProtVec Local) had the highest score at each node of
the per-protein sorting (Fig. 1) was best for the cross-
training but was not best for the independent test set.
Proper procedure, in cases such as this, is to trust the
procedure and stick with the cross-training results, at
the expense of reducing the values in the direct face-
to-face comparison to other methods.
Conclusion

Each component of ProNA2020 essentially out-
performed the state-of-the-art methods in per-protein
sorting (Table S11, Fig. 6). With respect to most
criteria, ProNA2020 also outperformed most per-
residue prediction methods. When it did not outper-
form, it was on par, or at least not worse by a
statistically significant margin (Table 5, Tables S12
and S13). Our method ProNA2020 is available
through github (below), so that users could combine
different components of our system with their
solutions. One important novelty is the combination
of per-protein sorting and per-residue prediction. We
did not use existing annotations, such as Pfam
domains, or Swiss-Prot annotations explicitly as
input. Therefore, our system is available to be
applied to high-throughput analyses, such as com-
parisons on the level of entire proteomes between
organisms. Toward that end, ProNA2020 is available
through https://github.com/Rostlab/ProNA2020.git
and PredictProtein (http://www.predictprotein.org).
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