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Abstract—Protein-DNA interactions play an important role in diverse biological processes. Accurately identifying protein-DNA binding
residues is a critical but challenging task for protein function annotations and drug design. Although wet-lab experimental methods are the
most accurate way to identify protein-DNA binding residues, they are time consuming and labor intensive. There is an urgent need to
develop computational methods to rapidly and accurately predict protein-DNA binding residues. In this study, we propose a novel
sequence-basedmethod, named PredDBR, for predicting DNA-binding residues. In PredDBR, for each query protein, its position-specific
frequency matrix (PSFM), predicted secondary structure (PSS), and predicted probabilities of ligand-binding residues (PPLBR) are
first generated as three feature sources. Secondly, for each feature source, the sliding window technique is employed to extract the
matrix-format feature of each residue. Then, we design two strategies, i.e., square root (SR) and average (AVE), to separately transform
PSFM-based and two predicted feature source-based, i.e., PSS-based and PPLBR-based, matrix-format features of each residue into
three corresponding cube-format features. Finally, after serially combining the three cube-format features, the ensemble classifier is
generated via applying bagging strategy tomultiple base classifiers built by the frameworkof 2D convolutional neural network. The
computational experimental results demonstrate that the proposedPredDBR achieves an average overall accuracy of 93.7% and a
Mathew’s correlation coefficient of 0.405 on two independent validation datasets and outperforms several state-of-the-art sequenced-
based protein-DNA binding residue predictors. The PredDBRweb-server is available at https://jun-csbio.github.io/PredDBR/.

Index Terms—Protein-DNA binding residue, convolutional neural network, sequence-based features, bagging strategy
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1 INTRODUCTION

TNTERACTIONS between proteins and DNAs play a crucial
role in a wide variety of biological processes, such as,

DNA replication, recombination, repair, gene transcription
and expression [1], [2], [3]. Hence, the accurate prediction
of protein-DNA binding residues contributes to elaborate
the interaction mechanism of them, and facilitate our
understanding of these biological processes. Traditionally,
protein-DNA binding residues can be identified by experi-
mental techniques, such as electrophoretic mobility shift
assays (EMSAs) [4], [5], Fast ChIP [6], and X-ray crystallog-
raphy [7]. However, these techniques are time-consuming
and laborious. With the rapid advance of protein sequenc-
ing technology, a large amount of unannotated protein-

DNA complexes is sequenced and deposited. Therefore,
there is an urgent need to develop computational methods
that can rapidly and reliably identify DNA-binding resi-
dues from protein sequences.

During the past decades, many computation-based meth-
ods have been proposed to predict protein-DNA binding
residues. Generally speaking, these existing methods are
roughly divided into three categories: sequenced-basedmeth-
ods [8], [9], [10], structure-based methods [11], [12], and
hybridmethods [13], [14], [15] that both sequence information
and structural information are used. In the early stage, struc-
ture-based methods, such as, PreDs [16], DNABINDPROT
[17], DISPLAR [18], DBD-Hunter [19], and DR_bind [20],
dominated in the field of predicting protein-DNA binding
residues. Due tomost of the existing structure-basedmethods
only extracted the available information from the three-
dimension (3D) structures, that is the sequence information is
ignored, their prediction performance is limited. To overcome
this issue, hybrid methods attempt to integrate sequence-
based/sequence-driven features and 3D structure-based fea-
tures to further improve prediction accuracy. Such as, Igor B.
Kuznetsov et al. [14] incorporated multiple sequence-based
features and low-resolution structure information to generate
a DNA-binding residue prediction model using Support Vec-
tor Machine (SVM) [21] algorithm; Li et al. [13] employed not
only sequenced-based/sequenced-driven features, i.e., posi-
tion specific scoringmatrix (PSSM), residual disorder, protein
secondary structure (PSS), protein solvent accessibility
(PSA), but also five 3D structural features to identify protein-
DNA binding sites. Although the structure-based and hybrid
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methods could achieve a good prediction performance of
DNA-binding residues, all of them depend on the protein 3D
structure information and could not be directly employed to
predict these proteins whose 3D structures are not available.
Luckily, the 3D structure of proteins could be predicted via
many existing computational methods, such as I-TASSER
[22], ROSETTA [23], and AlphaFold [24]; however, there are
still lots of proteins whose 3D structures cannot achieve high-
quality structures prediction via these methods. It is urgent
to develop the methods which only utilize protein sequence
information.

In recent years, many sequence-based methods have been
proposed to identify protein-DNA binding residues, most of
which utilize the machine learning algorithms to complete
this prediction task, such as, DP-Bind [9], BindNþ [25],
DNABR [26], enDNA-Prot [27], MetaDBSite [28], DNABind
[29], MLAB [30], ProteDNA [31], TargetDNA [32],
EL_PSSM-RT [33], iProDNA-CapsNet [34], CNNsite [35],
and DNAPred [36]. For example, DP-Bind [9] extracted evo-
lutionary information from protein sequences and employed
three machine learning algorithms, i.e., SVM, kernel logistic
regression, and penalized logistic regression, to predict pro-
tein-DNA binding residues. EL_PSSM-RT [33] proposed a
novel position-specific scoring matrix (PSSM) encoding
method and combined the algorithms of SVM and random
forest [37] to locate the protein-DNA binding residues.
MLAB [30] designed a novel method, called Multi-scale
Local Average Blocks, to predict the DNA-binding residues
of proteins, which utilizes the ensemble weighted sparse
representation algorithm to dig out the available information
from the evolutionary information and PSA. CNNsite [35]
designed a convolutional neural network based on multiple
sequence features, e.g., PSSM, PSS, and PSA, to locate the
protein-DNA binding residues. DNAPred [36], designed by
our group, combined the PSSM, PSS, PSA, and amino acid
frequency difference between binding and non-binding resi-
dues to generate the feature vector of each residue, which is
inputted to the prediction model built by a two-stage imbal-
anced learning algorithm to improve the prediction accu-
racy. These existing methods have obtained some promising
results, but effective information of protein sequences is not
extracted adequately. There remains room to further
improve the sequence-based prediction accuracy in identify-
ing protein-DNAbinding residues.

In this study, we propose a new sequence-based method,
called PredDBR, to further improve the performance of pro-
tein-DNA binding residue prediction. Specifically, we first
extract three feature sources, i.e., position specific frequency
matrix (PSFM), predicted secondary structure (PSS), and
predicted probabilities of ligand-binding residues (PPLBR),
from protein sequences. Secondly, for each feature source,
the sliding window technique is employed to extract the
matrix-format feature of each residue. Then, to extract more
effective information, we design two strategies, i.e., square
root (SR) and average (AVE), to separately transform PSFM-
based and two predicted feature source-based, i.e., PSS-
based and PPLBR-based, matrix-format features of each res-
idue into three corresponding cube-format features. Finally,
after serially combining the three cube-format features, we
obtain the ensemble classifier via applying bagging strategy
to multiple base classifiers built by the framework of 2D

convolutional neural network. Experimental results show
that the proposed PredDBR outperforms other existing
state-of-the-art predictors.

2 MATERIALS AND METHODS

2.1 Benchmark Datasets
To evaluate the performance of the proposed PredDBR, we
employ five protein-DNA binding residue datasets, i.e.,
PDNA-543 [32], PDNA-335 [38], and PDNA-316 [28],
PDNA-52 [38], and PDNA-41 [32]. Here, PDNA-543, PDNA-
335, and PDNA-316 are used for ten-fold cross-validation
tests. PDNA-41 and PDNA-52 are utilized for independent
validation tests.

PDNA-543 and PDNA-41 are constructed during our
previous work [32]. PDNA-543 consists of 543 DNA-bind-
ing protein sequences, which are released into the Protein
Data Bank (PDB) [39] before October 10, 2014. PDNA-41
consists of 41 DNA-binding protein sequences, which are
released into the PDB after October 10, 2014. The identity
between any two sequences selected from the union set of
PDNA-543 and PDNA-41 is no more than 30%. PDNA-335
and PDNA-52 are collected in the previous work [38].
PDNA-335 consists of 335 DNA-binding protein sequences,
which are released into the PDB before 10 March 2010, from
BioLip [40]. PDNA-52 consists of 52 DNA-binding protein
sequences, which are released into the PDB after 10 March
2010, from BioLip. There is no sequence in PDNA-335 that
has more than 40% pairwise identity to the sequences in
PDNA-52. PDNA-316, which is constructed by Si et al. [28],
consists of 316 DNA-binding protein sequences. The iden-
tity of any pairwise of sequences in PDNA-316 is no more
than 30%.

The detailed statistical summary of the five datasets used
in this study is demonstrated in Table 1. The five datasets
could be easily downloaded at https://jun-csbio.github.io/
PredDBR/ freely for academic use. The names of proteins
in the five data sets are listed in Supporting Text S1.

2.2 Feature Sources
To effectively predict DNA-binding residues from protein
sequence information, three feature sources, i.e., position-
specific frequency matrix (PSFM), predicted secondary
structure (PSS), and predicted probabilities of ligand-bind-
ing residues (PPLBR), are employed to encode the feature
representation of each residue.

TABLE 1
Statistical Summary of PDNA-543, PDNA-335, PDNA-316,

PDNA-52, and PDNA-41

aPpos represents the number of positive samples.

bPneg represents the number of negative samples.
cRatio ¼ Pneg/Ppos.
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2.2.1 Position-Specific Frequency Matrix

The protein evolutionary information has been demon-
strated to be effective in predicting DNA-binding residues
[38]. In this study, to obtain the profile that expresses the
evolutionary information of each protein, the HHblits [41]
software is first employed to thread the corresponding pro-
tein sequence against the Uniclust30 sequence database [42]
through three iterations with 0.001 as the E-value cutoff to
generate multiple sequence alignments (MSA). A profile,
named as position-specific frequency matrix (PSFM), is then
computed from the MSA.

Let the size of MSA is M $ L, where M is the number of
protein sequences in MSA and L is the length of query pro-
tein. There are 21 element types in MSA numbered from 1
to 21, including 20 natural amino acid types and the gap
type. Then, the ith row and jth column value in the corre-
sponding PSFM, i.e., PSFMi;j, could be calculated as:

PSFMi;j ¼
dMSA i; jð Þ

M
(1)

where dMSAði; jÞ represents the total number of the jth ele-
ment type in the ith column in MSA, i¼ 1; 2; ' ' ' ; L , and
j¼ 1; 2; ' ' ' ; 21.

2.2.2 Predicted Secondary Structure

The information of predicted secondary structure has been
demonstrated to be available for DNA-binding residues
prediction [38]. In this study, we also employ the PSIPRED
software [43] to generate the predicted secondary structure
information. Concretely, given a protein sequence with L
residues, the PSIPRED [43] software will output an L $ 3
probability matrix, which includes the probabilities of three
secondary structure classes (i.e., coil (C), helix (H), and
strand (E)) of each residue.

2.2.3 Predicted Probabilities of Ligand-Binding
Residues

Generally, the information of ligand-binding residues has a
positive effect on the prediction of DNA-binding residues.
Hence, in this study, the predicted probabilities of ligand-
binding residues (PPLBR) are employed to be one important
feature source. In order to generate the PPLBR of each pro-
tein, we have designed a sequence-based ligand-binding res-
idue predictor method I-LBR [44], which is available at
https://jun-csbio.github.io/I-LBR for academic use. The
standalone package of I-LBR could also be downloaded at
https://github.com/jun-csbio/I-LBR. For each query pro-
tein sequencewith L residues, I-LBRwith the default settings
is used to predict its PPLBR, whose size is L $ 1. Concretely,
the ith element in PPLBR represents the ligand-binding
probability value of the ith residue in the query protein.

2.3 Cube-Format Feature Extraction
It has been found that one target residue is influenced by its
context residues in a protein sequence [33]. In order to
extract more detailed information about the relationship
between one target residue and its context residues, the fea-
ture information of the target residue is represented as
cube-format for containing more meaningful information.

In this study, we design two different strategies, i.e., square
root (SR) and average (AVE), to generate the cube-format
feature of each target residue from the three above-described
feature sources. The detailed descriptions of SR and AVE are
described as follows:

2.3.1 Strategy of SR

In this strategy of SR, for each feature source with size of L$
K, a slidingwindowwith size ofW is first employed to gener-
ate the corresponding matrix-format feature of each target
residue in one protein with L residues. Here, the sliding win-
dow is centered at this target residue and the size of matrix-
format feature of each residue should beW$ K. Then, based
on the matrix-format feature (FM ), each element (FCSR

k;i;j ) of
the corresponding cube-format feature (FCSR ) could be easily
generated by the SR strategy as follows:

F
CSR
k;i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FM
i;k $ FM

j;k

q
(2)

where FM
i;k represents the ith row and kth column element

value in FM , k¼ 1; 2; ' ' ' ;K, i¼ 1; 2; ' ' ' ;W , and j¼
1; 2; ' ' ' ;W . Hence, the size of FCSR isK$W $W .

2.3.2 Strategy of AVE

Similar to the strategy of SR, for each feature source with
size of L$ K, the matrix-format feature (FM ) of each target
residue in each protein is first generated via using the slid-
ing window with size ofW in the AVE strategy. Then, based
on the FM , each element (F

CAVE
k;i;j ) of the corresponding cube-

format feature (FCAVE ) could be calculated by the AVE strat-
egy as follows:

F
CAVE
k;i;j ¼

FM
i;k þ FM

j;k

2
(3)

where FM
i;k represents the ith row and kth column element

value in FM , k¼ 1; 2; ' ' ' ;K, i¼ 1; 2; ' ' ' ;W , and j¼
1; 2; ' ' ' ;W . Hence, the size of FCAVE isK$W $W .

In this study, we have empirically tested the performance
of the two strategies (SR and AVE) on three different feature
sources, i.e., PSFM, PSS, and PPLBR (see details in Sec-
tion 3.1). It is found that the SR strategy is more suitable for
generating the cube-format feature on the PSFM feature
source than the AVE strategy. On the contrary, the AVE
strategy could achieve a higher performance than the SR
strategy on the feature sources of PSS and PPLBR.

2.4 Framework of 2D Convolutional Neural Network
In order to dig out more detailed information from the
above cube-format feature, in this study, a new framework
of 2D convolutional neural network (2D-CNN) is designed
to train one classifier of protein-DNA binding residue pre-
diction. Fig. 1 demonstrates the 2D-CNN framework.

As shown in Fig. 1, there are four modules in the new 2D-
CNN framework. The first three modules are convolutional
modules and the last module is a fully connectional module
(FCM). For each convolutional module (ConvM), there is
one convolutional (Conv) layer, one batch normalized (BN)
layer, and one rectified linear unit (ReLU) layer. The Conv
layer of the first ConvM employs 50 filters of kernel size 3$
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3. The Conv layer of the second ConvM utilizes 50 filters of
kernel size 5$ 5. The Conv layer of the third ConvM uses
100 filters whose kernel sizes depends on the size of the
inputted cube-format feature, so as to the output element
number is 900. Concretely, for the inputted cube-format fea-
ture with size of K$W $W , the size of each filter in the
Conv layer of the third ConvM is ðW ( 8Þ $ ðW ( 8Þ.

The FCM contains three linear layers and one sigmoid
activation layer. The first linear layer (LL) has 512 neurons
connected to all 900 elements output by the third ConvM.
The second LL has 256 neurons. The third LL includes two
neurons. The sigmoid activation layer is finally employed to
output two probability values of belonging to the classes of
DNA-binding and non-DNA-binding residues.

2.5 Bagging-Based Ensemble Learning Scheme
The problem of DNA-binding residue prediction is a typical
imbalanced learning problem [45]. By revisiting Table 1, it is
easy to find that the imbalance rate is larger than 10. The
imbalanced learning problem inherent in the prediction of
DNA-binding residues has a potential negative effect on the
final prediction performance. Hence, to enhance the perfor-
mance of DNA-binding residue prediction, it is an impera-
tive task to alleviate the negative influence of imbalanced
learning problem.

The scheme of ensemble learning has been demonstrated
to be an effective method for reducing the above negative
influence and enhancing the performance of DNA-binding
residue prediction [10], [30], [33], [36]. Hence, in this study,
we also employ the ensemble learning scheme to enhance
the prediction performance via integrating several base clas-
sifiers learned by the above 2D-CNN framework.

The bagging strategy [46] is an easy and effective method
to tackle the imbalanced data problem. To make full use of
the positive samples, we modify the classical bagging strat-
egy to learn an ensemble model. As Fig. 2 shown, in the

modified bagging strategy, there are the following steps: (1)
separating positive samples (i.e., DNA-binding residues)
and negative samples (i.e., non-DNA-binding residues)
from original training sets to comprise the positive sample
set (PS) and the negative sample set (NS); (2) randomly
selecting T ' jPSj samples from NS to construct a negative
sample subset (NSsub), where T means the imbalance degree
value and jPSj means the sample number in PS; (3) using
step 2 to generate N different negative sample subsets; (4)
combing each NSsub and PS to generate one new training
subset (TrS) and generating N new TrSs; (5) using the
above-described 2D-CNN framework to learn one base clas-
sifier on each TrS and learning N base classifiers; and (6)
applying the mean ensemble strategy to decide the final
probability values of belonging to the positive and negative
classes each target residue. Finally, the target residue is
labeled as this class corresponding to the higher probability
value. Note that, due to the positive samples are paid more
attentions, the sample is labeled as a positive one, when its
probability values of two classes are equal.

2.6 Architecture of PredDBR
Fig. 3 illustrates the architecture of the proposed PredDBR.
For each query protein sequence, PredDBR first employs
the HHblits [41], PSIPRED [43], and I-LBR [44] to generate
three features sources, i.e., PSFM, PSS, and PPLBR. Sec-
ondly, the strategies of SR and AVE described in Section 2.3
are employed to generate the PSFM-based cube-format fea-
ture and the PSS-based and PPLBR-based cube-format fea-
tures of each target residue, respectively. The final cube-
format feature of each target residue is easily obtained via
serially combining the first dimension of the PSFM-based,
PSS-based, and PPLBR-based cube-format features. In the

Fig. 1. Framework of 2D convolutional neural network.

Fig. 2. The schematic diagram of the modified bagging strategy.

Fig. 3. Architecture of PredDBR.
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training phase, after generating the cube-format feature of
all target residues in the training dataset, we can gain the
corresponding imbalanced training sample set. The bag-
ging-based ensemble learning scheme described in Sec-
tion 2.5 is used to learn the final prediction model. In the
prediction phase, for each protein to be predicted, the
ensemble prediction model could be adopted to give the
probability output for each target residue belonging to the
class of DNA-binding residues. The web-server of PredDBR
is freely available at https://jun-csbio.github.io/PredDBR/
for academic use.

2.7 Evaluation Indexes
In this study, to evaluate the performance of PredDBR, we
use six common evaluation indexes, i.e., Sensitivity (Sen),
Specificity (Spe), Precision (Pre), F1-score (F1), Accuracy
(Acc), and the Mathew’s correlation coefficient (MCC). The
five metrics can be easily calculated according to the follow-
ing formula.

Sen ¼ TP

TP þ FN
$ 100 (4Þ

Spe ¼ TN

TN þ FP
$ 100 (5Þ

F1 ¼
2 ' TP

2 ' TP þ FN þ FP
$ 100 (6Þ

Acc ¼ TP þ TN

TP þ FN þ TN þ FP
$ 100 (7Þ

Pre ¼ TP

TP þ FP
(8Þ

MCC ¼ TP ' TN ( FP ' FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þ

p ; (9Þ

where TP is the number of true positive samples; TN is the
number of true negative samples; FP is the number of false
positive samples; FN is the number of false negative sam-
ples. The Pre and MCC values range from 0 to 1 and other
three metrics range from 0 to 100. The higher values of these
five measures indicate the better performance of DNA-bind-
ing residues prediction. By default, the values of the above
threshold-dependent evaluation indexes are calculated
under the threshold of 0.5.

3 RESULTS AND DISCUSSIONS

3.1 Performance Comparison Between Two
Different Strategy Based Cube-Format Features

In this section, we compare the efficacy of the cube-format
features generated by two different strategies, i.e., SR and
AVE, on three different feature sources, i.e., PSFM, PSS, and
PPLBR. For the sake of description, the cube-format features
generated by using the SR and AVE on the feature sources of
PSFM, PSS, and PPLBR are abbreviated to SR-PSFM and
AVE-PSFM, SR-PSS and AVE-PSS, and SR-PPLBR and AVE-
PPLBR, respectively. Each cube-format feature is evaluated
by a ten-fold cross-validation tests on PDNA-543. Here, the
slidingwindow sizeW is set to 15, which is used in the previ-
ous study [47]. In each training phase of the cross-validation
tests, the parameters of T and N in the ensemble learning
scheme are both set to 1. Table 2 summarizes the results of

the SR-based and AVE-based cube-format features over ten-
fold cross-validation tests on PDNA-543.

By visiting Table 2, it is easy to find that SR-PSFM outper-
forms AVE-PSFM concerning the Spe, Acc, Pre, F1, and MCC
evaluation indexes. Concretely, the Spe, Acc, Pre, and MCC
values of SR-PSFM are 82.89, 81.90, 0.209, 0.319, and 0.303,
which are 6.30%, 5.96%, 1.00%, 3.45%, and 8.60% higher than
that of AVE-PSFM, respectively, although SR-PSFM has a
lower Sen (67.21). That is, the SR strategy is more suitable
than the AVE strategy for extracting the cube-format feature
on the PSFM feature source. The Sen, F1, and MCC values of
AVE-PSS are 63.54, 0.166, and 0.116, which are 29.15%,
2.41%, and 19.59% higher than that of SR-PSS, respectively,
although AVE-PSS achieves a slightly lower Spe (60.12), Acc
(60.33), and Pre (0.096) values. The Spe,Acc, Pre, F1, andMCC
values of AVE-PPLBR are 2.36%, 2.08%, 4.32%, 2.22%, and
1.59% higher than that of SR-PPLBR, respectively. These
comparisons have demonstrated that the AVE strategy is a
better choice than the SR strategy to generate the cube-format
feature on the PSS and PPLBR feature sources. Hence, in all
the subsequent experiments, we use the features of SR-
PSFM, AVE-PSS, and AVE-PPLBR to encode the discrimina-
tive information of each target residue.

3.2 Performance Comparison Between Matrix-
Format and Cube-Format Features

In order to evaluate the performance of the cube-format fea-
ture, we compare it to the matrix-format feature over ten-
fold cross-validation tests on PDNA-543 under the parame-
ters of T and N are both set to 1. Concretely, in this section,
we employ the SR-PSFM, AVE-PSS, and AVE-PPLBR fea-
tures described in Section 3.1 to generate the final cube-for-
mat feature (denoted as CFF) via serially combining their
first dimensions. The corresponding final matrix-format fea-
ture (abbreviated to MFF) is extracted via two steps: (1)
using the sliding window technique with size 15 to generate
the PSFM-based, PSS-based, and PPLBR-based matrix-for-
mat features; (2) serially combining the three matrix-format
features. Table 3 lists the performance of MFF and CFF on
the training dataset PDNA-543. Note that, due to the 2D-
CNN framework described in Section 2.4 is not suitable to
directly learn the prediction model on MFF, the results of
MFF are obtained by using a newly designed 1D convolu-
tional neural network framework (see detail in Supporting
Text S2), which is similar to the framework of the 2D-CNN.

From Table 3, it is easy to observe that CFF outperforms
MFF in terms of all the six evaluation indexes, i.e., Sen, Spe,
Acc, Pre, F1, and MCC. Concretely, the Sen, Spe, Acc, Pre, F1,

TABLE 2
Performance Comparisons of Different Cube-Format Features

on PDNA-543 Over Ten-Fold Cross-Validation Tests
UnderW ¼ 15, T ¼ 1, and N ¼ 1

Feature Sen Spe Acc Pre F1 MCC

SR-PSFM 67.21 82.89 81.90 0.209 0.319 0.303
AVE-PSFM 68.52 77.98 77.29 0.199 0.308 0.279
SR-PSS 49.20 69.54 68.26 0.097 0.162 0.097
AVE-PSS 63.54 60.12 60.33 0.096 0.166 0.116
SR-PPLBR 53.27 80.53 79.01 0.139 0.220 0.189
AVE-PPLBR 50.52 82.43 80.65 0.145 0.225 0.192
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and MCC values of CFF are 71.32, 81.11, 80.37, 0.235, 0.353,
and 0.329, which are 0.01%, 9.75%, 8.39%, 16.15%, 4.70%,
and 13.45% higher than that of MFF. The comparison result
demonstrates that the cube-format feature could dig out
more available information than MFF for improving the
performance of protein-DNA binding residue prediction.

3.3 Choosing the Value of the Sliding Window Size
As described in the above section, CFF is a good choice to
encode each target residue. However, the size of CFF
depends on the sliding window size (W). Although W ¼ 15
has been demonstrated to be useful one for extracting the
matrix-format feature in the previous study [47], it is not
clear whether it is an optimal choose to extract the cube-for-
mat feature. In this section, we try to empirically choose an
appropriate value for W to generate CFF. Concretely, we
evaluate the performance variations of Pre and MCC on the
training dataset PDNA-543 over ten-fold cross-validation
tests by gradually varying the value of W from 9 to 21 with
a step size of 2. Again, the parameters of T and N in the
ensemble learning scheme are both set to 1.

Fig. 4 shows the performance ofMCC and Pre of different
sliding window sizes. By visiting Fig. 4, it is easily found
that W ¼ 17 outperforms W ¼ 15, which is the second-best
one concerning both Pre andMCC. The Pre andMCC values
of W ¼ 17 are 0.244 and 0.331, which are higher than that of
W ¼ 15 (Pre ¼ 0.235 and MCC ¼ 0.329). In addition, Fig. 4
clearly demonstrates that the overall trend exhibited by the
values of MCC tends to increase with W when W< 17.
When W>17, the values of MCC tend to decrease. The simi-
lar trend could be also found on the values of Pre. These
results demonstrate that W¼ 17 is a suitable choice for
extracting CFF in this study. Hence, in all the subsequent
experiments, the value ofW is set to 17.

3.4 Selecting the Imbalance Degree Parameter
In this section, we will tune the imbalance degree parameter
T to an appropriate value, which is used in the ensemble
learning scheme. Specifically, we evaluate the Pre and MCC
performance variations of a classifier learned by the ensem-
ble learning scheme on the training dataset PDNA-543 over
ten-fold cross-validation tests via gradually varying the
value of T from 1 to 6 with a step size of 1. Here, the parame-
ter of N, i.e., the number of the base classifiers, is set to 1.

Fig. 5 shows the performance variation curves of Pre and
MCC versus T. From Fig. 5, it is clearly observed that the
overall trend exhibited by the values of MCC tends to
increase with T when T ) 3. When 3<T ) 6, the values of
MCC tend to decrease. It can be expected that the perfor-
mance ofMCCwill further deteriorate with the increase in T,
when T > 6, because the severity of imbalance will become
increasingly serious with the increase in T. In addition, it is
easy to find the similar trend concerning the Pre values.
Thus, in all subsequent experiments, the value of T is set to 3
to train each base classifier in the ensemble learning scheme.

3.5 Selecting the Number of the Base Classifiers
To select a suitable number of the base classifier (N) in the
ensemble learning scheme, in this section, we evaluate the
Pre andMCC performance variations on the training dataset
PDNA-543 over ten-fold cross-validation tests by gradually
varying the value of N from 1 to 16 with a step size of 1.
Fig. 6 plots the performance variation curves of Pre and
MCC versus N.

By visiting Fig. 6, it is easy to find that N ¼ 8 is the best
choice in this study. Concretely, the Pre and MCC values of
N ¼ 8 are 0.450 and 0.413, which are 3.93% and 3.25% higher
than that of the second-best choice, i.e., N ¼ 15, respectively.
Hence, the value of N is finally set to 8 in this study.

3.6 Comparisons With Other Protein-DNA Binding
Residue Prediction Methods

In this section, to evaluate the performance of the proposed
PredDBR, we compare it with the existing DNA-binding
residue methods, including BindN [8], DP-Bind [9], BindN-
rf [10], BindNþ [25], DNABind [29], TargetDNA [32],
iProDNA-CapsNet [34], DBS-PRED [48], DNABindR [49],
DISIS [50], MetaDBSite [28], DNAPred [36], TargetS [38],
and EC-RUS [51].

TABLE 3
Performance Comparison Between Matrix-Format and
Cube-Format Features on PDNA-543 Over Ten-Fold
Cross-Validation UnderW ¼ 15, T ¼ 1, and N ¼ 1

Feature Sen Spe Acc Pre F1 MCC

MFF* 71.31 73.90 74.15 0.188 0.296 0.290
CFF

#
71.32 81.11 80.37 0.235 0.353 0.329

*MFF means matrix-format feature.
#CFF means cube-format feature.

Fig. 4. Comparison of MCC and Pre of different sliding window sizes on
PDNA-543 over ten-fold cross-validation tests under T ¼ 1 and N ¼ 1.

Fig. 5. The performance ofMCC and Pre versus T values.
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3.6.1 Performance Comparison on PDNA-543

Table 4 shows the performance comparisons of PredDBR
and two control methods, i.e., TargetDNA [32] and
DNAPred [36], which are two of the most recently released
methods, on PDNA-543 over ten-fold cross-validation tests.
For the purpose of fair comparison, the performance of
PredDBR is evaluated under two different thresholds, as do
in TargetDNA and DNAPred. One is the threshold that
makes Sen + Spe, and the other is the threshold that makes
Spe + 95%.

From Table 4, it can be observed that PredDBR outper-
forms other two predictors, i.e., TargetDNA and DNAPred,
concerning the Pre and MCC evaluation indexes under both
of the considered thresholds. Concretely, under the thresh-
old that makes Sen + Spe, the Pre, F1, and MCC values of
PredDBR are 0.233, 0.358, and 0.338, which are 21.35%,
14.25%, and 11.18% higher than that of TargetDNA, respec-
tively. Under the threshold that makes Spe+ 95%, the Pre, F1,
and MCC values of PredDBR are 0.451, 0.458, and 0.409,
which are 23.56%, 16.16%, and 20.65% higher than that of
TargetDNA, respectively. Compared to DNAPred, PredDBR
improves the value of MCC by 6.29% and 9.65% under the
thresholds that make Sen + Spe and Spe + 95%, respectively.
The performance of PredDBR is also evaluated under the
threshold of 0.5 on PDNA-543 and the values of Sen, Spe,Acc,
Pre, F1, and MCC of PredDBR are 45.35, 95.50, 91.43, 0.471,
0.462, and 0.415, respectively.

3.6.2 Performance Comparison on PDNA-316

In this section, the performance of PredDBR is evaluated on
PDNA-316 over ten-fold cross-validation tests, comparing
with other state-of-the-art DNA-binding residue prediction
methods, i.e., DBS-PRED [48], BindN [8], DNABindR [49],
DISIS [50], DP-Bind [9], BindN-rf [10], MetaDBSite [28], Tar-
getDNA [32], and DNAPred [36]. The detail results are
shown in Table 5.

By visiting Table 5, it is easy to find that PredDBR enjoys
the better performance than other nine predictors in terms of
MCC. Compared to the second-best method DNAPred,
under the threshold that makes Sen + Spe, the values of Sen,
Spe, Acc, and MCC of PredDBR are improved by 1.93%,
1.01%, 1.10%, and 7.56%, respectively; under the threshold
that makes Spe+ 95%, the values of Sen, Spe,Acc, andMCC of
PredDBR are 56.06, 95.34, 92.12, and 0.497, which are 7.60%,
0.25%, 0.35%, and 9.96% higher than that of DNAPred. Fur-
thermore, under the threshold of 0.5, the Sen, Spe, Acc, Pre,
and MCC values of PredDBR are 53.08, 95.82, 92.30, 0.532,
and 0.489, respectively. In addition, the Sen, Spe, Acc, and
MCC values of PredDBR, which are evaluated under the
threshold that makes Sen + Spe, are higher than the values
evaluated for DBS-PRED, BindN, DNABindR, DP-Bind,
MetaDBSite, and TargetDNA(Sen+ Spe). Taking MetaDBSite as
an example, PredDBR(Sen+ Spe) achieves the improvements of
5.90%, 4.82%, 4.91%, and 24.38% on Sen, Spe, Acc, and MCC,
respectively. It is also easy to notice that DISIS obtains the
highest Spe value (98.00) but the lowest value of Sen (19.00).
That is, DISIS predicts toomany false negatives.

3.6.3 Performance Comparison on PDNA-335

Table 6 demonstrates the performance of PredDBR, TargetS
[38], EC-RUS [51], and DNAPred [36] on PDNA-335 over
five-fold cross-validation tests. The Sen, Spe, Acc, Pre, and
MCC values of PredDBR are 42.59, 95.34, 90.96, 0.453, and

Fig. 6. The performance ofMCC and Pre versus N values.

TABLE 4
Performance Comparisons Between PredDBR, TargetDNA, and
DNAPred on PDNA-543 Over Ten-Fold Cross-Validation Tests

aResults excerpted from TargetDNA [32]; bResults excerpted from DNAPred
[36]; “Sen + Spe” means the threshold that makes Sen + Spe; “Spe + 95%”
means the threshold that makes Spe + 95%. ‘-’ means the value is not given.

TABLE 5
Performance Comparisons Between PredDBR and the Existing
Methods on PDNA-316 Over Ten-Fold Cross-Validation Tests

aResults excerpted from TargetDNA [32]; bResults excerpted from DNAPred
[36]. “Sen + Spe” means the threshold that makes Sen + Spe; “Spe + 95%”
means the threshold that makes Spe + 95%. ‘-’ means the value is not given.
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0.390, respectively. The MCC value of PredDBR is equal to
that of DNAPred, 7.73% higher than that of TargetS, and
3.17% higher than that of EC-RUS.

3.6.4 Performance Comparison on PDNA-52

To evaluate the generation ability of the proposed PredDBR,
its performance is calculated on the independent validation
dataset PDNA-52, comparing to five control methods, i.e.,
DNABR [26], MetaDBSite [28], TargetS [38], DNAPred [36],
and COACH [52]. COACH is a general-purpose protein-
ligand binding residues predictor. To facilitate the calcula-
tion of evaluation indexes and performance comparison,
the protein-ligand binding residues predicted by COACH
are all regarded as DNA-binding residues. Note that, in this
section, the prediction model of PredDBR is trained on the
training dataset PDNA-335. Table 7 lists the detail results.

By visiting Table 7, we can find that PredDBR gains the
highest values of Acc (93.46) and MCC (0.451). Compared to
COACH on the independent dataset PDNA-52, which
obtains a higher Sen value (59.91), the improvements of
2.49%, 2.04%, 22.03%, and 6.89% are achieved by PredDBR
on Spe, Acc, Pre, and MCC, respectively. Compared to
DNAPred, which is the third-best method, the improve-
ments of 4.00%, 1.00%, 1.04%, and 11.40% are achieved by
PredDBR on the evaluation indexes of Sen, Spe, Acc, and
MCC, respectively. Compared to TargetS, PredDBR obtains
the improvements of 30.39%, 0.17%, and 19.63% on Sen, Acc,
and MCC, respectively, although PredDBR has a lower Spe
value (95.83). Compared to MetaDBSite, PredDBR achieves
higher Spe, Acc, and MCC values and a lower Sen value.
Compared to DNABR, PredDBR gains the improvements of
32.31%, 9.77%, 10.47%, and 143.78% on Sen, Spe, Acc, and
MCC, respectively. In addition, PredDBR achieves a Pre
value of 0.454.

3.6.5 Performance Comparison on PDNA-41

To further evaluate the generation ability of PredDBR, its
performance is also evaluated on the independent validation
dataset PDNA-41, comparing to ten control methods, i.e.,
BindN [8], ProteDNA [31], BindNþ [25], MetaDBSite [28],
DP-Bind [9], DNABind [29], TargetDNA [32], iProDNA-
CapsNet [34], DNAPred [36], and COACH [52]. Note that, in
this section, the prediction model of PredDBR is trained on
the training dataset PDNA-543. The detail results are demon-
strated in Table 8.

From Table 8, it is easily found that the values of 39.10,
96.79, 93.93, 0.389, and 0.359 are obtained by PredDBR on the
evaluation indexes of Sen, Spe, Acc, Pre, and MCC under the
threshold of 0.5, respectively. Although COACH obtains a
higher Sen value (46.19) on the independent dataset PDNA-
41, PredDBR achieves the improvements of 1.75%, 1.34%,
15.17% and 1.95% on Spe, Acc, Pre and MCC, respectively.
Compared to the third-best method, i.e., DNAPred, under
Spe + 95%, where the corresponding threshold is calculated
on the training dataset PDNA-543, the Spe,Acc, andMCC val-
ues of PredDBR are 95.77, 93.14, and 0.351, which are 0.92%,
0.80%, and 4.15% higher than that of DNAPred, respectively,
although PredDBR achieves a lower Sen value (43.05); under
Sen+ . Spe, PredDBR also achieves a comparable performance
with a slightly higher MCC (0.264). Compared to iProDNA-
CapsNet, under Spe + 95%, the improvements of 2.09%,
0.88%, 0.82%, 16.78%, and 11.43% are achieved by PredDBR
on the evaluation indexes of Sen, Spe, Acc, Pre, and MCC,
respectively; under Sen + Spe, the MCC value of PredDBR
(0.264) is also higher than that of iProDNA-CapsNet (0.245).
Compared to TargetDNA, under Spe+ 95%, PredDBRobtains

TABLE 6
Performance Comparisons Between EC-RUS, TargetS,
DNAPred, and PredDBR on PDNA-335 Over Five-Fold

Cross-Validation

Predictor Sen Spe Acc Pre MCC

EC-RUS
a

48.70 95.10 92.60 - 0.378
TargetSb 41.70 94.50 89.90 - 0.362
DNAPredc 54.30 91.70 88.60 - 0.390
PredDBR 42.59 95.34 90.96 0.453 0.390
aResults excerpted from EC-RUS; bResults excerpted from TargetS; cResults
excerpted from DNAPred. ‘-’ means the value is not given.

TABLE 7
Performance Comparisons of PredDBR, MetaDBSite, TargetS,
and DNAPred on the Independent Validation Dataset PDNA-52

Predictor Sen Spe Acc Pre MCC

DNABR
a

40.70 87.30 84.60 - 0.185
MetaDBSite

a
58.00 76.40 75.20 - 0.192

TargetS
a

41.30 96.50 93.30 - 0.377
DNAPredb 51.80 94.90 92.50 - 0.405
COACHc 59.91 93.45 91.55 0.354 0.420
PredDBR 53.85 95.83 93.46 0.454 0.451
aResults excerpted from TargetS [38]; bResults excerpted from DNAPred [36].
‘-’ means the value is not given; cresults are computed by COACH program.

TABLE 8
Performance Comparisons Between PredDBR and Other

Existing Predictors on PNDA-41 Under Independent Validation

aResults excerpted from TargetDNA [32]; bResults excerpted from iProDNA-
CapsNet [34]; cResults excerpted from DNAPred [36]; dresults are computed
by COACH program. “Sen + Spe” means the threshold that makes Sen +
Spe on PDNA-543; “Spe + 95%” means the threshold that makes Spe +
95% on PDNA-543. ‘-’ means the value is not given.
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2.68%, 2.48%, 33.33%, and 17.00% increases in Spe, Acc, Pre,
and MCC, respectively, although PredDBR achieves a lower
Sen value; under Sen+ Spe, PredDBR gains a comparable per-
formance. Compared to DNABind, PredDBR achieves the
higher Pre (0.389) and MCC (0.359) values. In addition, it is
also easy to find that PredDBR outperforms BindN, Pro-
teDNA, BindNþ, MetaDBSite, and DP-Bind. Taking DP-Bind
as an example, the Pre and MCC values of PredDBR (Pre ¼
0.389 and MCC ¼ 0.359) increased by 150.97% and 48.96%,
respectively.

4 CONCLUSION

In this study, we have developed and implemented a new
method, called PredDBR, to predict protein-DNA binding
residues from protein sequence information. Benchmarked
results have demonstrated the efficacy of the proposed
PredDBR via comparing to several state-of-the-art sequence-
based methods on five protein-DNA binding residue data-
sets. The superior performance of PredDBR is mainly attrib-
uted to the strong capabilities of 2D-CNN and bagging
strategy, which can effectively dig out the available informa-
tion embedded in the cube-format feature and deal with the
imbalanced learning problem, respectively. The web-server
is freely available at https://jun-csbio.github.io/PredDBR/
for academic use.

In the future work, to further improve the DNA-binding
residue prediction performance of PredDBR, three directions
are considered: (1) extracting more discriminative feature
sources from the results of research problems similar to pro-
tein-DNA binding residue prediction, such as transcription
factor binding site prediction [53], [54], [55], associationmap-
ping from DNA methylation to disease [56], protein-protein
interaction prediction [57], [58], protein crystallization pre-
diction [59], protein-vitamin binding residues prediction
[60], and sequence-based protein structure/function analy-
sis [61]; (2) developing more useful strategies to extract more
discriminative cube-format feature information; (3) using
the deep learning algorithms [62], [63], [64], [65] to train the
prediction model on a newly collected big dataset. In addi-
tion, RNA is structurally similar to DNA. Learning from the
existing RNA-protein or DNA-protein binding prediction
method [66], [67], we will extend the prediction model of
PredDBR to predict protein-RNA binding residues. Except
RNA, although the structures of ATP and Ca2þ are different
from that of DNA, we will also employ the transfer learning
algorithms to predict the binding residues of them.
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