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A B S T R A C T

Protein-DNA interactions play critical roles in various biological processes and are essential for drug discovery.
However, traditional experimental methods are labor-intensive and unable to keep pace with the increasing
volume of protein sequences, leading to a substantial number of proteins lacking DNA-binding annotations.
Therefore, developing an efficient computational method to identify protein-DNA binding sites is crucial. Un-
fortunately, most existing computational methods rely on manually selected features or protein structure in-
formation, making these methods inapplicable to large-scale prediction tasks. In this study, we introduced
PDNAPred, a sequence-based method that combines two pre-trained protein language models with a designed
CNN-GRU network to identify DNA-binding sites. Additionally, to tackle the issue of imbalanced dataset samples,
we employed focal loss. Our comprehensive experiments demonstrated that PDNAPred significantly improved
the accuracy of DNA-binding site prediction, outperforming existing state-of-the-art sequence-based methods.
Remarkably, PDNAPred also achieved results comparable to advanced structure-based methods. The designed
CNN-GRU network enhances its capability to detect DNA-binding sites accurately. Furthermore, we validated the
versatility of PDNAPred by training it on RNA-binding site datasets, showing its potential as a general framework
for amino acid binding site prediction. Finally, we conducted model interpretability analysis to elucidate the
reasons behind PDNAPred’s outstanding performance.

1. Introduction

Protein-DNA interactions play a pivotal role in a wide range of bio-
logical processes, including DNA replication, signal transduction, tran-
scriptional regulation, and gene expression [1–3]. Gaining insight into
protein-DNA interactions holds tremendous potential for predicting
protein function [4–6], elucidating disease pathogenesis [7,8], and
identifying novel drug targets [9,10]. Due to the critical role of protein-
DNA binding sites, many experiment-based approaches have been
developed to identify the protein-DNA binding sites, such as Fast ChIP
[11], X-ray crystallography [12], and electrophoretic mobility shift
analysis (EMSA) [13]. However, these experimental approaches,
although providing high-quality protein annotations, are often costly,
time-consuming, and unable to keep pace with the exponential growth
of protein sequences in the post-genomic era. Therefore, there are a
substantial number of sequenced proteins that still lack DNA binding
annotations. With the rapid development of artificial intelligence,
several advanced techniques have been extensively applied in the field
of bioinformatics, leading to significant breakthroughs and

underscoring the pivotal role of computer technology in this domain
[14–16]. The development of an efficient and accurate computational
method for the identification of protein-DNA binding residues is
imperative [17].

Current computational methods for protein-DNA binding site pre-
diction can be categorized into two types: sequence-based methods and
structure-based methods [18,19]. To be specific, structure-based
methods utilize either natural or predicted 3D structural information
of proteins. Protein structures contain abundant information and play a
crucial role in determining protein function. Hence, utilizing protein
structure information often leads to better performance in predicting
protein-DNA binding sites when compared to sequence-based methods.
Existing structure-based methods include DeepSite [20], GraphBind
[21], DNABind [22], COACH-D [23], NucBind [24], GraphSite [17], and
so on. For instance, GraphBind [21] utilizes structural information and
spatial neighborhoods relationship to construct graphs, which are then
classified using hierarchical graph neural networks (HGNNs). DNABind
[22] employs a hybrid approach that combines machine learning tech-
niques with template-based strategies, relying on structural alignment,
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to accurately classify DNA-binding sites. However, existing structure-
based methods often demand extensive biological structure informa-
tion, leading to high computational resource requirements. Addition-
ally, these methods may struggle to accurately predict binding sites
when the protein or nucleic acid undergoes substantial conformational
changes upon binding [25,26]. Moreover, many proteins still lack
experimentally determined structural information, leading to existing
structure-based methods unsuitable for large-scale prediction.

Sequence-based methods have received significant attention due to
their data availability. These methods solely rely on sequence informa-
tion to identify DNA-binding sites, making them more user-friendly and
computationally efficient. These methods include DRNAPred [27],
DNAPred [28], SVMnuc [24], NCBRPred [29], DBPred [30], CLAPE
[31], and so on. However, most existing sequence-based methods still
exhibit subpar performance in practical applications, primarily due to
their reliance on manual feature engineering. For example, DRNAPred
[27] utilizes 15 physicochemical features and 8 biochemical features to
represent protein sequences. DNAPred [28] employs features including
position-specific scoring matrix (PSSM), predicted secondary structure
(PSS), predicted relative solvent accessibility (PRSA), and amino acid
frequency difference between binding and nonbinding (AAFD-BN) to
represent residues. It is apparent that the effectiveness of sequence-
based models heavily relies on the careful selection and representation
of features, which presents a significant obstacle in achieving compa-
rable performance to structure-based methods. Furthermore, it must be
acknowledged that traditional manual feature extraction methods are
often time-consuming and labor-intensive. Moreover, protein sequence
representations that rely on the physicochemical characteristics of
proteins lack more efficient potential evolutionary information. Evolu-
tionary information plays an important role in protein function predic-
tion. Although PSSM-based features contain rich evolutionary
information, their acquisition cost is often high due to their reliance on
multiple sequence comparison methods. Therefore, it is important to
adopt a more effective protein sequence feature extraction method.

Recently, the significant advancements made in large-scale language
modelings have extended to various fields, including the study of amino
acids in proteins [25]. The pre-trained protein language model (PPLM) is
a result of applying natural language processing (NLP) techniques to
bioinformatics [32,33]. By leveraging the vast amounts of protein
sequence data available, PPLMs can learn complex biological informa-
tion from billions of protein sequences, allowing for the extraction of

comprehensive features that solely rely on sequences [34]. This is
particularly advantageous in overcoming the limitations of small and
potentially biased labeled datasets [35]. In the task of identifying DNA-
binding sites, researchers have made progress by using PPLMs. For
instance, Liu et al. developed CLAPE [31], which employed the ProtT5-
XL-UniRef50 [36] (referred to as ProtT5) model to extract features from
sequences and utilized a convolutional neural network to identify DNA-
binding sites, achieving impressive performance. Similarly, Zhu et al.
introduced ULDNA [37], which leveraged the ESM-2 [38], ProtT5 [36],
and ESM-MAS [39] models for feature extraction. They combined these
features with an LSTM-attention network to accurately identify DNA
binding sites, yielding remarkable outcomes.

It is important to acknowledge that the features obtained from
PPLMs capture general information across various proteins andmay lack
personalized features specific to particular proteins [40,41]. Conse-
quently, there is a crucial demand to develop a more powerful neural
network architecture that can forcefully utilize the embedded features
extracted from PPLMs. Additionally, the imbalanced distribution of
DNA-binding sites in datasets introduces several challenges during
model training, including the potential for biased performance. There-
fore, it is necessary to devise and implement strategies that can pro-
ductively mitigate the impact of class imbalance on training high-quality
models. Furthermore, despite some approaches demonstrating the
effectiveness of leveraging PPLMs, there remains a lack of in-depth
exploration of model interpretability. The specific reasons why the
PPLMs model can achieve such remarkable results have not been
analyzed in detail from the perspective of the model. Given these factors,
it is essential to comprehensively address the challenges mentioned
above and develop a robust and reliable method for accurately identi-
fying DNA binding sites.

In this study, we proposed a novel sequence-based method called
PDNAPred, which accurately identified protein-DNA binding sites by
combining PPLMs with a specifically designed CNN-GRU network.
Specifically, we adopted a transfer learning approach to extract residue-
level embeddings learned by PPLMs, utilizing both ProtT5 and ESM-2
models. Subsequently, we employed the CNN-GRU network to capture
the subtle features within the embedded representations crucial for
identifying DNA-binding sites. Additionally, we decreased the impact of
imbalanced data during model training by employing focal loss.
PDNAPred was systematically evaluated on two independent DNA-
binding sites test sets. The computational results demonstrated that

Fig. 1. The workflow of PDNAPred.
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PDNAPred outperformed existing state-of-the-art sequence-based
methods while achieving performance competitive with structure-based
approaches. Furthermore, PDNAPred also exhibited promising perfor-
mance on RNA-binding site datasets, indicating its potential as a general
framework for predicting protein-nucleic acid binding sites. Finally, to
provide a more comprehensive understanding of the factors contributing
to PDNAPred’s impressive performance, an analysis of model interpre-
tation was conducted. Fig. 1 depicts the flowchart of PDNAPred,
providing a visual representation of its methodology and processes.

2. Methods and materials

2.1. Dataset description

In this study, to evaluate the proposed PDNAPred, we utilized two
classical benchmark datasets. For the sake of clarity, we referred to these
two datasets as Dataset 1 and Dataset 2, with the training sets labeled as
TR and the testing sets as TE. In these datasets, a residue was classified as
a DNA-binding site if the smallest atomic distance between the target
residue and the DNA molecule was less than 0.5 Å plus the sum of the
Van der Waals radius of the two nearest atom [17].

Dataset 1 was initially developed for the study of DBPred, which was
proposed by Patiyal et al. for identifying protein DNA binding residues
[30]. It contains a training set and a test set. The training set is denoted
as TR646, which includes 646 proteins with 15,636 binding sites and
298,503 non-binding sites. The test set is denoted as TE46, which con-
sists of 46 proteins with 965 binding sites and 9911 non-binding sites.

Dataset 2 was compiled from two studies. Among them, TR573 and
TE181 are from the GraphBind, a method proposed by Xia et al. for
identifying nucleic acid binding residues using structural information
[21]. TR573 is a training set of 573 proteins with 14,479 binding sites
and 145,404 non-binding sites.TE181 is a test set of 181 proteins, which
has 3208 binding sites and 72,050 non-binding sites. Additionally,
TE129 is derived from the GraphSite, a model proposed by Yuan et al.
for predicting protein-DNA binding sites using AlphaFold2 [17]. It ex-
cludes redundant proteins with more than 30 % protein sequence
identity to those in TE181. Specifically, TE129 contains 129 proteins
with 2240 binding sites and 35,275 non-binding sites.

Furthermore, the CD-HIT [42] was employed with a threshold set at
0.3, ensuring that no proteins exhibited a similarity exceeding 30 %
between the training and test sets within each dataset. It is important to
note that data imbalances were identified in both Dataset 1 and Dataset
2, as depicted in Table 1. Specifically, in TR646, only 4.98 % of the
residues are binding residues. Likewise, in TR573, 9.06 % of the residues
are binding residues. This suggests that the prevalence of negative
samples (non-binding residues) could introduce bias in model training
and prediction, resulting in weak discrimination of binding sites. To gain
deeper insights into the frequency distribution of the 20 amino acids
across binding and non-binding sites within these datasets, we generated
Fig. S1. Evidently, the distribution patterns of amino acids in both
binding and non-binding residues remain largely consistent across the
training and test sets. This observation underscores the challenge of
accurately identifying DNA binding residues.

2.2. Feature extraction module

Self-supervised techniques in NLP leverage contextual information to
predict missing words, which can provide insights into word meanings.
Protein Language Models extend the application of diverse language
models to the field of biochemistry. By processing protein sequences,
they acquire knowledge about the underlying biochemical properties,
secondary and tertiary structures, and functional patterns within these
sequences [43]. The learned representations exhibit a hierarchical
structure, capturing information from the amino acid properties to the
distant relationships between proteins. These representations are sub-
sequently employed as embeddings for downstream analysis tasks using
transfer learning.

In this study, we employed the ESM-2 [38] and ProtT5 [36] to
facilitate rapid mining and automatic extraction of potentially discrim-
inative representations from protein sequences associated with DNA-
binding sites. Specifically, for the ESM-2 model, we used the
“esm2_t33_650M_UR50D” pre-trained model to extract feature embed-
dings, which was pre-trained on the UniRef50 database [44]. Each
protein with L residues will produce an embedded feature matrix of size
L × 1280 when using the ESM-2 model, resulting in a feature vector with
1280 dimensions for each residue. As for the ProtT5, we used “ProtT5-
XL-U50”, a 24-layer Transformer-based pre-trained model, was initially
trained on the Big Fantastic Database (BFD) [45] and further fine-tuned
with UniRef50 database [44]. Similar to ESM-2, ProtT5 will produce an
embedded feature matrix of size L× 1024, with each residue’s feature
vector having 1024 dimensions. Given that evolutionary knowledge
from multiple database sources may be complementary [46], for each
protein with a length of L, we concatenate the two feature embedding
matrices to form a hybrid embedding matrix with dimensions of L ×

2304 as shown in Fig. 1A.

2.3. CNN-GRU network

The designed CNN-GRU network includes a CNN layer, a BiGRU
layer, a fully connected layer, and an output layer, as shown in Fig. 1B.

The CNN layer was designed with a parallel architecture consisting
of three convolutional layers. Each layer will reduce the dimension from
2304 to 256. Specifically, the three convolutional layers share the same
input channels but have distinct receptive fields of 3× 3, 5× 5, and 7×
7. This configuration enables the network to capture information at
various spatial scales, enhancing its ability to detect relevant features.
Following each convolutional operation, batch normalization is applied
to normalize the activations and stabilize the learning process. Batch
normalization accelerates training and improves the generalization
ability of the network by reducing internal covariate shifts. To introduce
non-linearity and increase the network’s expressive power, the gaussian
error linear units (GELU) activation function [47] is employed after each
batch normalization steps. The outputs of the three convolutional layers
are concatenated to form a feature with dimensions of 768. This output
is subsequently fed into the BiGRU layer.

The BiGRU layer consists of a Bidirectional Gated Recurrent Unit
(BiGRU) [48], which utilizes the Gated Recurrent Unit (GRU) cell as its
primary component. GRU is a type of recurrent neural network (RNN)
designed to address the gradient problem encountered during the pro-
cessing of long-term memory and backward forward [49,50]. Unlike
Long-Short Term Memory (LSTM) architecture, the GRU unit employs
an update gate in place of input and forget gates, streamlining the
computation of the hidden state within the network and enhancing ef-
ficiency, particularly when dealing with extensive training data. Its
fundamental role lies in the storage and filtration of feature information
through the update gate and reset gate mechanisms:

rt = σ(Wr • [h(t − 1) , xt] ) (1)

zt = σ(WZ • [h(t − 1) , xt] ) (2)

Table 1
Summary of benchmark protein-DNA binding datasets.

Datasets Dataset 1 Dataset 2

TR646 TE46 TR573 TE181 TE129

Number of proteins 646 46 573 181 129
Number of sites 314,139 10,876 159,883 75,258 37,515
Number of binding sites 15,636 965 14,479 3208 2240
Number of non-binding
sites

298,503 9911 145,404 72,050 35,275

% of binding sites 4.98 8.87 9.06 4.26 5.97
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h̃t = (W • [rt*h(t − 1) , xt] ) (3)

ht = (1 − zt)*h(t − 1)+ zt*h̃t (4)

σ(x) = 1
1+ e− x

(5)

where rt and zt represent the gate control states, with rt determining the
integration of new input information with previous memory, and zt
dictates the retention level of the previous memory for the current time
step. The output value ht is obtained by combining the previous hidden
state h(t − 1) with the current node input, involving the forgetting of
certain information and the incorporation of new information. The
output of the BiGRU layer has dimensions of 256 for each residue, ob-
tained by concatenating the hidden states from all GRU cells across all
time steps.

The output of the BiGRU layer is then passed to a fully connected
layer, which consists of two linear layers followed by a Rectified Linear
Unit (ReLU) activation function. This configuration reduces the feature
dimension from 256 to 1. Finally, the output layer, employing a sigmoid
function, produces a confidence score for each residue. A threshold of
0.5 is set, such that residues with an output confidence greater than 0.5
are considered DNA-binding sites, while those with a confidence lower
than 0.5 are classified as non-DNA-binding sites.

2.4. Loss function

The protein-DNA binding site datasets are imbalanced dataset with
fewer positive samples (binding sites) than negative samples (non-
binding sites). Consequently, the deep learning model may assign
greater weight to the negative samples in the loss function, thus paying
less attention to the positive samples. However, accurate identification
of positive sample is of greater significance in protein-DNA binding site
prediction tasks. To solve this problem, we adopt focal loss [51] as the
loss function of the deep learning model. It is an effective strategy to
mitigate the negative impact of sample imbalance, which will assign
greater weight to positive samples, thus improving their identification.
The formula for the focal loss function is as follows:

focal loss (pt) = − αt(1 − pt)
γlog(pt) (6)

where pt is the predicted probability of the positive class, αt is a
weighting factor that assigns different weights to positive and negative,
and γ controls the focusing parameter, which determines how much
emphasis is placed on difficult negatives. In this study, the γ is set to 2,
while the αt ranges from 0.2 to 0.8. The final values of αt are determined
using grid search across different training sets.

2.5. Evaluation metrics

In this study, the benchmark dataset utilized demonstrates an
imbalance between positive and negative samples. To comprehensively
evaluate the effectiveness of the proposed method, we employed six
metrics commonly applied in imbalanced classification tasks: accuracy
(ACC), specificity (Spe), recall (Rec), precision (Pre), F1-score (F1), and
Mathews Correlation Coefficient (MCC). These metrics are calculated
using the following formulas:

ACC =
TP+ TN

TP+ TN+ FP+ FN
(7)

Spe =
TN

TN+ FP
(8)

Rec =
TP

TP+ FN
(9)

Pre =
TP

TP+ FP
(10)

F1 =
2TP

2TP+ FP+ FN
(11)

MCC =
TP× TN − FN× FP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP) × (TP+ FN) × (TN+ FP) × (TN+ FN)

√ (12)

where TP (true positive) and TN (true negative) represent the numbers
of correctly predicted binding and non-binding sites, respectively; FP
(false positive) and FN (false negative) denote the numbers of incor-
rectly predicted binding and non-binding sites. The ACC metric evalu-
ates the overall correct prediction, capturing both TP and TN
classifications. Additionally, the recall and precision metrics measure
the predictive capability of a classifier for identifying binding sites,
while the F1-score provides an assessment of the overall performance of
a classifier. Moreover, MCC evaluates the predictive ability of both
positive and negative classes of the model and is particularly suitable for
imbalanced datasets. Additionally, we have incorporated two additional
evaluation metrics: the receiver operation characteristic (ROC) curve
and the precision-recall (PR) curve, and computed the area under the
ROC curve (AUC) and the area under the PR curve (AUPRC) to evaluate
the overall predictive performance. Higher values indicate better and
more robust performance. In this study, due to dataset imbalance, our
priority lies in comparing MCC values and AUC values with other
existing methods.

Fig. 2. The performance values of three feature embeddings on three test sets.
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3. Results and discussion

3.1. Contribution analysis of different protein language models

To assess the contribution of two PPLMs, ESM-2 and ProtT5, we
conducted comparative experiments on the benchmark datasets. The
features comprised individual embeddings extracted from ESM-2 and
ProtT5 models, along with a hybrid feature created by combining the
two embeddings, denoted as ESM-2 + ProtT5. Fig. 2 presents the per-
formance comparison of three embeddings across three test sets (TE46,
TE129, and TE181) for independent validation, while Table S1 presents
the detailed results. Additionally, we utilized the t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) program [52] to visualize these
features, as shown in Fig. S2.

The experimental results show that effective complementarity can be
achieved between ProtT5 and ESM-2. On the TE46 test set, ProtT5 is
better at identifying positive samples, while ESM-2 has an advantage in
identifying negative samples. Specifically, the specificity of ProtT5 is
0.885, and the specificity of ESM-2 is 0.923. However, at this time, the
recall of ProtT5 is 0.701, and the recall of ESM-2 is only 0.570. In
addition, similar conclusions can also be drawn on TE129. On TE181,
ProtT5 and ESM-2 exhibit similar performance in identifying protein
DNA binding and non-binding sites. MCC can comprehensively evaluate
the performance of the model when the positive and negative samples
are imbalanced. It can be found that when using fused features, the MCC
value of the model further increases. Taking TE181 as an example, the
MCC of the model using ProtT5 is 0.331, the MCC of the model using
ESM-2 is 0.350, and the MCC using fused features reaches 0.364,
achieving a performance improvement of 1.4 % -3.3 %. In addition, AUC
is an indicator that is not affected by classification thresholds, and it can
also be observed that models using fused features have higher AUC
values than those using a single feature. These findings suggest that the
two language models, pre-trained on different sequence databases,
complement each other in improving the performance of protein-DNA
binding site prediction. In addition, it can also be seen from Fig. S2
that ESM-2 + ProtT5 achieves better sample aggregation than ESM-2 or
ProtT5 alone.

3.2. Exploration of the optimal architecture of the PDNAPred

To comprehensively assess the effectiveness of the proposed
PDNAPred and compare the contribution of each module, we conducted
a series of experiments on two benchmark datasets. We deleted the CNN
layer or BiGRU layer from the original model to generate no-CNN model
and no-BiGRU model, subsequently comparing their performance with
the original model. The results, presented in Fig. 3, indicated that the
original model achieved the best performance. Specifically, as seen in
Figure3 and Table S2, on the TE46, PDNAPred achieved a precision of
0.519, an F1-score of 0.539, an MCC of 0.564 and an AUC of 0.897.

Compared to the no-BiGRU model, PDNAPred showed improvements of
9.6 % in precision, 2.4 % in F1-score, 2.2 % in MCC and 3 % in AUC.
Additionally, it outperformed the no-CNNmodel by 12.3 % in precision,
3.1 % in F1-score, 2.3 % in MCC and 1.3 % in AUC.

Investigating the individual contributions of the CNN and BiGRU
model revealed their essential roles in identifying protein-DNA binding
residues. Omitting either component led to a decline in performance
metrics such as specificity, recall, precision, and MCC. Specifically, the
no-BiGRU module shows increased specificity, implying that the CNN
module plays a vital role in accurately identifying negative instances.
Conversely, the no-CNNmodel demonstrates higher recall and F1 scores,
suggesting that the BiGRU model significantly contributes to the accu-
rate identification of positive cases. The integration of both CNN and
BiGRU modules synergistically complemented their respective
strengths, achieving a harmonious balance between specificity and
recall, thereby yielding superior performance across diverse datasets.

3.3. Impact of the loss function and thresholds in the performance of the
PDNAPred

In this section, to further explore the effectiveness of the focal loss
employed by PDNAPred, we conduct a delicate experiment where we
replaced the focal loss in the model with the Binary Cross Entropy loss
(BCE loss). The experimental results, shown in Table S3, revealed an
interesting phenomenon: the model with BEC loss exhibited a higher
specificity but lower recall. This suggests that while the model effec-
tively identified negative samples, its ability to predict positive samples
was weak, leading to a suboptimal overall MCC value. For the task of
DNA-binding site identification, accurately identifying positive samples
is crucial. Our evaluation of the two different loss functions underscores
the superiority of focal loss. Specifically, on the TR646, the model with
focal loss achieved an MCC value of 0.564, surpassing the model with
BCE loss that achieved an MCC value of 0.416. Similarly, on the TR573
dataset, the model with focal loss achieved an MCC value of 0.557,
surpassing the model with BCE loss that achieved an MCC value of
0.443. These findings highlight the efficacy of focal loss in mitigating the
imbalance between positive and negative samples, resulting in more
robust model performance across all three test sets.

In our classification network, a sigmoid activation function was
employed alongside a threshold set at 0.5. Instances surpassing this
confidence level are classified as protein-DNA binding sites, while those
below are classified as non-binding sites. It is widely acknowledged that
threshold selection influences model predictions. Lower thresholds
enhance correct positive sample predictions, whereas higher thresholds
improve correct negative sample predictions. To explore this, we sys-
tematically adjusted the threshold from 0 to 1 in increments of 0.1, with
the experimental outcomes detailed in Table S4. Analysis of these results
reveals that threshold variations minimally impact the predictive per-
formance of PDNAPred, underscoring its robustness as a method.

Fig. 3. The performance values of three models on two training sets and three test sets.
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3.4. Performance comparison with classical deep learning algorithms

To examine whether classical deep learning methods trained on
these two datasets could provide comparable performance to that of
PDNAPred, we selected deep learning algorithms: CNN, bidirectional
long short-term memory network (BiLSTM), and multi-layer perceptron
(MLP). These models were trained on TR646 and TR573 and evaluated
on their respective test sets: TE46, TE181, and TE129. Additionally, we
employed 5-fold cross-validation to train these models on the training
sets and set the classifier threshold at 0.5. The results are summarized in
Table 2, and the ROC and PR curves on the independent test set are
illustrated in Fig. S3. It is evident that the CNN network achieved the
highest MCC values of 0.471 on TE46, 0.357 on TE181, and 0.479 on
TE129 among the three algorithms compared. Although BiLSTM is
tailored for sequence modeling tasks, our findings suggest that CNN
outperformed it in predicting DNA-binding sites. This observation might
stem from the fact that DNA-binding residues are primarily influenced
by spatial structures rather than simple sequential order [31]. CNN
models protein sequences using sliding windows, thereby inherently
integrating relative positional information of amino acids. Conversely,
RNN models treat amino acids as independent tokens [53].

3.5. Performance of the hybrid test set on dataset 2

In this section, we amalgamated TE181 and TE129 to establish a
novel, autonomous test set for validating model performance. TE181
curated experimentally validated protein-DNA binding site data from
the BioLiP database spanning January 6, 2016, to December 5, 2018.
Complementarily, TE129 serves as an extension to TE181, encompassing
data released fromDecember 6, 2018, to August 19, 2021, and excluding
sequences with over 30 % similarity to TE181. The amalgamation of
TE129 and TE181 represents a comprehensive compilation of datasets
from the BioLiP database spanning January 6, 2016, to August 19, 2021.
By merging these two test sets and assessing them with the TR573-
trained model, the outcomes are detailed in Table S5. The amalgam-
ated test set exhibited a specificity of 0.951, a recall of 0.547, a precision
of 0.361, an F1-score of 0.435, an MCC of 0.401, and an AUC value of
0.908. Overall, the performance of the combined TE129 and TE181 test
set falls between that of TE129 and TE181 individually, thereby offering
supplementary insights for comparing the fusion’s performance with the
two original test sets.

3.6. Comparison with existing sequence-based protein-DNA binding site
predictors

In this section, we conducted a comprehensive evaluation of
PDNAPred in comparison with other sequence-based protein-DNA
binding site predictors, including DRNAPred [27], DNAPred [28],
SVMnuc [24], NCBRPed [29], DBPred [30], CLAPE-DB [31], ULDNA
[37]. Table 3 illustrates the performance of PDNAPred across bench-
mark datasets. Notably, on the TE46, PDNAPred demonstrated prom-
ising results, boasting a specificity of 0.949, a precision of 0.519, an F1-
score of 0.539, and anMCC of 0.493. Furthermore, the robust AUC value
of 0.897 from the test dataset further validated the effectiveness and
robustness of PDNAPred. Compared to other predictors, PDNAPred
surpassed CLAPE-DB and DBPred, enhancing the AUC indicator by
0.092 and 0.173, respectively.

In the case of the TE81, PDNAPred achieved a specificity of 0.949,
recall of 0.512, precision of 0.309, F1 of 0.386, MCC of 0.364, and AUC
of 0.896. When compared with deep learning-based methods such as
PDNAPred, NCBPRed, CLAPE-DB, and ULDNA, alongside machine
learning-based methods like SVMnuc, PDNAPred demonstrates im-
provements in MCC values of 0.131, 0.149, 0.112, 0.033, and 0.135,
respectively. Furthermore, it exhibited substantial increases in the F1-
score, with enhancements of 0.136 and 0.123 compared to NCBPred
and SVMnuc, respectively.

For the TE129, PDNAPred exhibited remarkable performance across
various metrics: recall at 0.595, precision at 0.466, F1-score at 0.523,
MCC at 0.493, and AUC at 0.923. In comparison to DNAPred, NCBRPed,
CLAPE-DB, and ULDNA, PDNAPred exhibits improvements in MCC in-
dicators of 0.161, 0.189, and 0.104, as well as in recall indicators of
0.113, 0.54, 0.07, and 0.042, respectively.

CLAPE-DB and ULDNA notably adopted the feature encoding strat-
egy akin to PDNAPred, utilizing a PPLM. This underscored the effec-
tiveness of this methodology over manually crafted features,
substantiated by their superior performance. Moreover, the utilization
of deep learning models has been demonstrated to elevate model per-
formance in contrast to machine learning-based approaches. It is note-
worthy that while ULDNA has demonstrated commendable performance
among existing methodologies, its reliance on a pre-trained protein
language model grounded in multi-sequence comparison results in a
relatively lower efficiency compared to PDNAPred.

3.7. Comparison with existing structure-based protein-DNA binding site
predictors

In this section, we comprehensively evaluated PDNAPred alongside
other structure-based protein-DNA binding site predictors, including

Table 2
Performance comparison between PDNAPred and other classical deep learning
algorithms on the test sets.

Dataset Models Spe Rec Pre F1 MCC AUC

TE46 CNN 0.912 0.659 0.423 0.515 0.471 0.867
BiLSTM 0.895 0.710 0.396 0.508 0.470 0.884
MLP 0.852 0.776 0.339 0.471 0.444 0.892
PDNAPred 0.949 0.561 0.519 0.539 0.493 0.897

TE181 CNN 0.924 0.603 0.261 0.364 0.357 0.863
BiLSTM 0.875 0.748 0.211 0.329 0.351 0.901
MLP 0.851 0.780 0.189 0.304 0.334 0.897
PDNAPred 0.949 0.512 0.309 0.386 0.364 0.896

TE129 CNN 0.935 0.678 0.397 0.500 0.479 0.897
BiLSTM 0.890 0.803 0.316 0.454 0.458 0.927
MLP 0.865 0.837 0.283 0.423 0.436 0.925
PDNAPred 0.957 0.595 0.466 0.523 0.493 0.923

Table 3
Performance comparison between PDNAPred and other sequence-based pre-
dictors on the test sets.

Dataset Models Spe Rec Pre F1 MCC AUC

TE46 DRNAPreda 0.692 0.677 0.185 0.291 0.226 0.775
DNAPreda 0.655 0.671 0.157 0.254 0.194 0.730
SVMnuca 0.666 0.668 0.154 0.250 0.192 0.715
NCBRPeda 0.674 0.677 0.165 0.265 0.207 0.713
DBPreda 0.784 0.708 0.243 0.362 0.320 0.794
CLAPE-DBa 0.835 0.747 0.306 0.434 0.401 0.871
ULDNAb 0.696 0.800 0.204 0.325 0.296 0.831
PDNAPred 0.949 0.561 0.519 0.539 0.493 0.897

TE181 DNAPreda 0.948 0.334 0.223 0.267 0.233 0.802
SVMnuca 0.960 0.289 0.242 0.263 0.229 0.803
NCBRPreda 0.964 0.259 0.241 0.250 0.215 0.771
CLAPE-DBa 0.931 0.413 0.212 0.280 0.252 0.824
ULDNAb 0.917 0.585 0.238 0.339 0.331 0.851
PDNAPred 0.949 0.512 0.309 0.386 0.364 0.896

TE129 DRNAPreda 0.937 0.233 0.190 0.210 0.155 0.693
DNAPreda 0.954 0.396 0.353 0.373 0.332 0.845
SVMnuca 0.966 0.316 0.371 0.341 0.304 0.812
NCBRPeda 0.969 0.312 0.392 0.347 0.313 0.823
CLAPE-DBa 0.955 0.464 0.396 0.427 0.389 0.881
ULDNAb 0.911 0.725 0.340 0.463 0.452 0.893
PDNAPred 0.957 0.595 0.466 0.523 0.494 0.923

a Data excerpted from CLAPE-DB [31].
b Results computed using the standalone program of ULDNA downloaded at

https://github.com/yiheng-zhu/ULDNA.
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COACH-D [23], NucBind [24], DNABind [22], GraphBind [21],
GraphSite [17], GLMSite [54], EquiPNAS [55], and EGPDI [56]. The
results in Table 4 demonstrated that PDNAPred achieved comparable or
even superior performance to several state-of-the-art structure-based
predictors.

Specifically, on the TE181, when compared with CPACH-D, Nuc-
Bind, DNABind, GLMSite, and EquiPNAS, our proposed PDNAPred
exhibited improvements of 0.129, 0.13, 0.085, 0.03, and 0.011 in MCC.
For the TE129, in comparison to COACH-D, NucBind, DNABind,
GLMSite, and EquiPNAS showed improvements in MCC indicators of
0.172, 0.176, 0.082, 0.081, and 0.05 as well as in AUC indicators of
0.213, 0.112, 0.065, 0.005, and 0.004, respectively. Based on these re-
sults, it is evident that PDNAPred, despite not incorporating any struc-
tural information, outperformed several structure-based models.
Notably, the GraphBind model, which utilized predicted protein struc-
ture, exhibited poor performance with an AUC of 0.816, lower than that
of PDNAPred. This result suggests that structure-based models rely
heavily on accurate protein structure information to attain acceptable
prediction results. In addition, compared with the latest proposed EGPDI
based on multi view feature fusion, PDNAPred still has some room for
improvement.

3.8. Comparison with general RNA binding sites predictors

To further validate the performance of PDNAPred in identifying
RNA-binding sites, we collected two mainstream benchmark datasets of
protein-RNA binding sites and trained PDNAPred on them. Specifically,
we denoted these two datasets as Dataset 3 and Dataset 4. Table 5 and
Text S1 provides a comprehensive description of the datasets. To fully
evaluate the generalization ability of PDNAPred, we compared it with
existing state-of-the-art RNA-binding site predictors, including

RNABindPlus [57], SVMnuc [24], CLAPE-RB [31], COACH-D [23],
NucBind [24], aaRNA [58], NucleicNet [59], and GraphBind [21] for
Dataset 3. PDNAPred demonstrated good generalization performance
and excelled in RNA-binding site prediction tasks, as shown in Table 6.
Notably, PDNAPred outperformd GraphBind based on incorrectly pre-
dicted protein structures, highlighting its potential to overcome the
limitations of structure-based models.

For Dataset 4, we compared PDNAPred with DRNAPred [27],
NCBRPred [29], RNABindR-Plus [57], NucBind [24], iDRNA-ITF [60],
and MucLiPred [61]. The results in Table S6 indicated that PDNAPred
outperformed all other methods except MucLiPred, a newly proposed
protein and molecular binding disability predictor equipped with a dual
contrastive learning mechanism. PDNAPred achieves higher accuracy
while maintaining the same AUC as MucLiPred.

Our results demonstrate that PDNAPred is a versatile framework for
predicting nucleic acid binding sites for various protein sequences and
nucleic acids. Furthermore, our experimental results demonstrate that
PDNAPRed achieved high performance even without structural infor-
mation.Fig. 4 illustrate the ROC and PR curves of PDNAPred on the RNA
binding site prediction task.

Table 4
Performance comparison between PDNAPred and other structure-based predictors on the test sets.

Dataset Models Spe Rec Pre F1 MCC AUC

TE181 COACH-Dc 0.971 0.254 0.280 0.266 0.235 0.655
NucBindc 0.960 0.293 0.248 0.269 0.234 0.796
DNABindc 0.904 0.535 0.199 0.290 0.279 0.825
GraphBindc 0.933 0.624 0.293 0.399 0.392 0.904
GraphSitea,c 0.958 0.517 0.354 0.420 0.397 0.917
GLMSited 0.805 0.829 0.209 0.311 0.334 0.899
EquiPNASd 0.958 0.436 0.346 0.366 0.353 0.907
EGPDId 0.952 0.558 0.346 0.424 0.407 0.914
PDNAPred 0.949 0.512 0.309 0.386 0.364 0.896

TE129 COACH-Dc 0.958 0.367 0.357 0.362 0.321 0.710
NucBindc 0.966 0.330 0.381 0.354 0.317 0.811
DNABindc 0.926 0.601 0.346 0.440 0.411 0.858
GraphBindb, c – 0.439 0.310 0.362 0.320 0.816
GraphBinda, c 0.941 0.676 0.425 0.522 0.499 0.927
GLMSited 0.816 0.848 0.287 0.405 0.412 0.918
EquiPNASd 0.956 0.516 0.471 0.462 0.443 0.919
EGPDId 0.961 0.612 0.503 0.549 0.522 0.941
PDNAPred 0.957 0.595 0.466 0.523 0.493 0.923

a Indicates the GraphBind using experimental protein structures.
b Indicates the GraphBind using predicted protein structures.
c Data excerpted from CLAPE-DB [31].
d Data excerpted from EGPDI [56].

Table 5
Summary of benchmark protein-RNA binding datasets.

Datasets Dataset 3 Dataset 4

TR545 TE161 TR495 TE117

Number of proteins 545 161 495 117
Number of sites 190,438 51,315 136,899 37,345
Number of binding sites 18,559 6966 14,609 2031
Number of non-binding sites 171,879 44,349 122,290 35,314
% of binding sites 9.75 13.58 10.76 5.44

Table 6
Comparison of the proposed PDNAPred and other methods on the RNA117 test
set.

Models Rec Pre F1 MCC AUC

RNABindPlusc 0.273 0.227 0.248 0.202 0.717
SVMnucc 0.231 0.240 0.235 0.192 0.729
CLAPE-RBc 0.467 0.201 0.281 0.240 0.800
COACH-D*,c 0.221 0.252 0.235 0.195 0.663
NucBind*,c 0.231 0.235 0.233 0.189 0.715
aaRNA*,c 0.484 0.166 0.237 0.214 0.771
NucleicNet*,c 0.371 0.201 0.261 0.216 0.788
GraphBind*,a, c 0.303 0.171 0.218 0.168 0.718
GraphBind*,b, c 0.463 0.294 0.358 0.322 0.854
PDNAPred 0.335 0.298 0.315 0.274 0.829

Note: *Indicates structure-based models.
a Indicates results using predicted protein structures.
b Indicates results using experimental protein structures.
c Data excerpted from CLAPE-DB [31].
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3.9. Case study

To visually compare the prediction performance of DNA-binding
residues in PDNAPred, we selected two experimentally validated pro-
teins that were not included in datasets: 1GCC_A (PBD ID: 1GCC, chain
A, denoted as 1GCC_A) [62] and 1KQQ_A (PBD ID: 1KQQ, chain A,
denoted as 1KQQ_A) [63]. We compared PDNAPred with CLAPE, which
is currently considered the leading algorithm for sequence-based DNA
binding residue prediction. Table 7 presents the confusion matrices of
the two algorithms tested on the selected samples, the prediction results
are shown in Table S7, and the corresponding visualization results are
displayed in Fig. 5. The results indicated that these sequence-based

Fig. 4. PDNAPred’s general ability to predict nucleic acid binding sites. (A- B) The ROC and PR curves of PDNAPred models in predicting RNA-binding sites.

Table 7
The modeling results of two DNA-binding site prediction methods on two
representative examples.

Method 1GCC_A 1KQQ_A

TP FP TN FN TP FP TN FN

CLAPE 8 6 47 2 7 11 114 7
PDNAPred 13 1 46 3 7 11 119 2

Fig. 5. Comparative and empirical case studies. (A-C) Analysis of the DNA-binding sites for protein 1GCC_A, where (A) represents the experimental results, (B) and
(C) represent the results predicted by CLAPE and PDNAPred. (D–F) Analysis of the DNA-binding sites for protein 1KQQ_A, where (D) represents the experimental
results, (E) and (F) represent the results predicted by CLAPE and PDNAPred. The atomic-level native structure of each protein is downloaded from the PDB database
and then plotted as a cartoon picture using PyMOL software [64]. The colour scheme is used as follows: the DNA is orange, the DNA-binding site is red, the non-DNA-
binding site is sky blue, the false negative is green, and the true negative is yellow.
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Fig. 6. Presentation of the interpretability experiment results. A. Correlation heat map of each residue under ProtT5 embeddings, ESM-2 embeddings, and ProtT5 +

ESM-2 embeddings; B. The t-SNE results show the feature variation results of the output of different intermediate layers in the PDNAPred architecture; C. The top 20
features with the greatest impact on predicting DNA-binding sites and non-DNA-binding sites; D. The effect of interactions between Feature 1160 and Feature 234
with other features.
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methods exhibited satisfactory performance, with PDNAPRed out-
performing CLAPE in these two samples. In the 1GCC_A sample, CLAPE
correctly identified 8 DNA binding residues, while PDNAPred correctly
identified 13 DNA binding sited. In the 1KQQ_A sample, both CLAPE and
PDNAPred accurately identified 7 DNA binding residues. However,
PDNAPred showed a lower overall misclassification rate, leading to
better performance.

Additionally, we observed interesting occurrences. For example, in
the 1GCC_A sample, CLAPE correctly identified 10P as a non-DNA-
binding residue, while PDNAPred misclassified it. In contrast,
PDNAPred correctly identified 8Q as a non-DNA-binding residue, while
CLAPE made an incorrect prediction. Therefore, for practical applica-
tions, we suggest considering a combination of different methods.
Overall, PDNAPred demonstrates excellent proficiency in identifying
DNA binding residues compared to existing tools.

3.10. Model interpretability analysis

Model interpretability has become increasingly important in the
development of models [65]. It aims to clarify how features contribute to
model predictions and offer insights into the model’s effectiveness. In
this study, we employ two commonly used model interpretability
methods, Shapley Additive exPlanations (SHAP) [66] and t-SNE [52], to
analyze the PDNAPred model. Using the TE46 dataset, we presented the
explanatory results in Fig. 6.

Firstly, we extracted embedded features from the first protein sample
(PDB ID:4JBM) in the TE 46 using the ProtT5 and ESM-2 models,
respectively. These features were also concatenated to form a hybrid
feature. Pearson correlation coefficient was employed to describe the
correlation between amino acid residues in the embedding features of
each amino acid, as illustrated in Fig. 6A. It was evident from the figure
that each amino acid residue exhibited a strong correlation with its
adjacent amino acids. Interestingly, the ProtT5 and ESM-2 captured
specific relationships between amino acids even as the distance
increased. This indicated that PPLMs can mitigate the decline in model
performance resulting from missing structural information in protein
sequences. Furthermore, combining these two features enhanced the
association between amino acids.

Second, we utilized the t-SNE program for dimensionality reduction
and visualization of the features, as shown in Fig. 6B. The results
revealed that the combined embedding features contribute to the pre-
diction of DNA binding sites. After feature embedding, the positive
samples appeared clustered in a narrow range, albeit exhibiting a
generally random distribution. Subsequently, the CNN layer preserved
crucial classification features, causing positive samples to cluster over a
broader range. Following the BiGRU layer, the aggregation of positive
samples becamemore pronounced. This outcome underscored the utility
of our designed CNN-GRU network in identifying DNA binding sites.
Finally, we investigated the influence of various features on protein
binding site prediction by employing SHAP for explanation. Fig. 6C
showcased the 20 features that exerted the greatest impact on DNA
binding site prediction. Here, red denotes higher eigenvalues, while blue
indicates lower eigenvalues. It is noteworthy that Feature 0 to Feature
1023 represent the embedded features of the ProtT5 model, whereas
Feature 1024 to Feature 2303 represent those of the ESM-2 model. Our
findings demonstrated that both ProtT5 and ESM-2 collaboratively
enhanced the accuracy of DNA binding site prediction. To illustrate, we
examined the influence of the two features with the greatest impact,
namely Feature 1160 and Feature 234, on PDNAPred’s prediction out-
comes. As depicted in Fig. 6D, both features exhibited the strongest
interaction with Feature 1486, and these features can promote each
other. This underscores the global context dependence inherent in the
ProtT5 and ESM-2 models, as their feature representations are based on
joint action with different features, thereby further validating the effi-
cacy of the ProtT5 and ESM-2 models in DNA binding sites identificatory
tasks [67].

4. Conclusion

Predicting protein-DNA binding residues holds significant impor-
tance in biomedical research, offering insights into biological functions,
disease mechanisms, and drug discovery in biomedical research. In this
study, we introduce PDNAPred, a novel deep learning method designed
for accurately identifying DNA binding residues within protein se-
quences. Leveraging pre-trained models ESM-2 and ProtT5, PDNAPred
autonomously generates enhanced representations of protein sequences.
Our crafted CNN-GRU network effectively captures subtle features
associated with DNA binding residues, resulting in improved identifi-
cation accuracy. To address data imbalance, we employ the focal loss as
the loss function during training.

Through comprehensive comparisons with existing advanced deep
learning models on widely used benchmark datasets, PDNAPred dem-
onstrates outstanding performance. It surpasses sequence-based
methods and achieves commensurable results to structure-based
methods. Furthermore, PDNAPred exhibits commendable performance
on RNA binding site datasets, showcasing its versatility in identifying
amino acid binding residues in proteins. The interpretability analysis
provides insight into PDNAPred’s internal workings, enhancing its
credibility. With superior computational efficiency and speed,
PDNAPred is suitable for large-scale binding site prediction tasks. The
standalone PDNAPred package is freely available for academic use at the
provided link: https://github.com/zlr-zmm/PDNAPred. In terms of
method efficiency, the prediction time for 10 protein sequences with the
length of 1000 is under 1 min when utilizing the Nvidia RTX 3090 GPU,
rendering it suitable for large-scale predictions.

While PDNAPred has exhibited satisfactory results, it harbors un-
tapped potential for further enhancement. Structural approaches excel
in discriminating conformational variations and considering biological
assembly capabilities, showcasing notable advantages, especially in
intricate structure predictions [68]. These are advantages that sequence-
based methods cannot achieve. In future endeavors, we intend to
address the limitations inherent in sequence-centric methodologies,
particularly concerning the complexities of protein structures. Further-
more, our subsequent research will focus on refining PDNAPred to
become a robust predictor of protein-nucleic acid binding sites. Drawing
from esteemed prior studies [29,69,70], cross-validation has garnered
considerable attention, highlighting its significance in assessing the
reliability of predictive models. Our aspiration is to enhance the effi-
ciency of our methodology for predicting protein-ligand binding sites,
thereby aiding the research community in their endeavors.
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[9] R. Esmaeeli, A. Bauzá, A. Perez, Structural predictions of protein–DNA binding:
MELD-DNA, Nucleic Acids Res. 51 (4) (2023) 1625–1636.

[10] E. Kim, Y.-J. Kim, Z. Ji, J.M. Kang, M. Wirianto, K.R. Paudel, J.A. Smith, K. Ono, J.-
A. Kim, K. Eckel-Mahan, ROR activation by Nobiletin enhances antitumor efficacy
via suppression of IκB/NF-κB signaling in triple-negative breast cancer, Cell Death
Dis. 13 (4) (2022) 374.

[11] J.D. Nelson, O. Denisenko, K. Bomsztyk, Protocol for the fast chromatin
immunoprecipitation (ChIP) method, Nat. Protoc. 1 (1) (2006) 179–185.

[12] M. Smyth, J. Martin, X ray crystallography, Mol. Pathol. 53 (1) (2000) 8.
[13] M.A. Heffler, R.D. Walters, J.F. Kugel, Using electrophoretic mobility shift assays to

measure equilibrium dissociation constants: GAL4-p53 binding DNA as a model
system, Biochem. Mol. Biol. Educ. 40 (6) (2012) 383–387.

[14] J.M. Sagendorf, R. Mitra, J. Huang, X.S. Chen, R. Rohs, Structure-based prediction
of protein-nucleic acid binding using graph neural networks, Biophys. Rev. (2024)
1–18.

[15] R. Mitra, J. Li, J.M. Sagendorf, Y. Jiang, A.S. Cohen, T.-P. Chiu, C.J. Glasscock,
R. Rohs, Geometric deep learning of protein–DNA binding specificity, Nat.
Methods (2024) 1–10.

[16] C.J. Glasscock, R. Pecoraro, R. McHugh, L.A. Doyle, W. Chen, O. Boivin,
B. Lonnquist, E. Na, Y. Politanska, H.K. Haddox, Computational Design of
Sequence-specific DNA-binding Proteins, bioRxiv, 2023.

[17] Q. Yuan, S. Chen, J. Rao, S. Zheng, H. Zhao, Y. Yang, AlphaFold2-aware
protein–DNA binding site prediction using graph transformer, Brief. Bioinform. 23
(2) (2022) bbab564.

[18] K. Qu, L. Wei, Q. Zou, A review of DNA-binding proteins prediction methods, Curr.
Bioinforma. 14 (3) (2019) 246–254.

[19] H. Zhang, Y. Wu, Y. Zhu, L. Ge, J. Huang, Z. Qin, Identification and functional
analysis of a serine protease inhibitor using machine learning strategy, Int. J. Biol.
Macromol. 265 (2024) 130852.
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