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Abstract

Motivation: The interactions between protein and nucleic acids play a key role in various biological

processes. Accurate recognition of the residues that bind nucleic acids can facilitate the study of

uncharacterized protein–nucleic acids interactions. The accuracy of existing nucleic acids-binding

residues prediction methods is relatively low.

Results: In this work, we introduce NucBind, a novel method for the prediction of nucleic acids-

binding residues. NucBind combines the predictions from a support vector machine-based ab-ini-

tio method SVMnuc and a template-based method COACH-D. SVMnuc was trained with features

from three complementary sequence profiles. COACH-D predicts the binding residues based on

homologous templates identified from a nucleic acids-binding library. The proposed methods

were assessed and compared with other peering methods on three benchmark datasets.

Experimental results show that NucBind consistently outperforms other state-of-the-art methods.

Though with higher accuracy, similar to many other ab-initio methods, cross prediction between

DNA and RNA-binding residues was also observed in SVMnuc and NucBind. We attribute the suc-

cess of NucBind to two folds. The first is the utilization of improved features extracted from three

complementary sequence profiles in SVMnuc. The second is the combination of two complemen-

tary methods: the ab-initio method SVMnuc and the template-based method COACH-D.

Availability and implementation: http://yanglab.nankai.edu.cn/NucBind

Contact: zhenling@tju.edu.cn or yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–nucleic acids interactions are involved in many biological

processes, such as DNA replication, transcription and translation.

For example, in the process of gene transcription, the transcription

factor (a special kind of protein) binds specific DNA molecules to

control the transcription rate of genetic information from DNA to

messenger RNA (von Hippel et al., 1984). Many efforts have been

done to decipher the interactions between protein and nucleic acids.

One of the most direct ways is determining the protein–nucleic acids

complex structure by experiments, such as X-ray and/or NMR. For

instance, three scientists, Ramakrishnan, Steitz and Yonath, were

awarded the Nobel prize in Chemistry in 2009, to recognize their
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significant contributions to the determination of the structure and

mechanism of ribosome, a complex molecular machine consisting of

rich protein–nucleic acids interactions.

It is notoriously difficult and costly to solve the protein–nucleic

acids complex structure by experiment. Thus, there is a growing de-

mand for the development of computational algorithms to predict

protein–nucleic acids interactions. In fact, a lot of computational

studies have been performed, including the recognition of DNA-

binding domain/protein (Zhang and Liu, 2017), protein–DNA/RNA

docking (Yan et al., 2017), DNA motif pair discovery (Wong,

2017), and so on. Here, we are interested in the prediction of nucleic

acids-binding residues in proteins.

A number of methods have been developed for the prediction of

nucleic acids-binding residues. For example, DP-Bind (Hwang et al.,

2007), DBS_PSSM (Ahmad and Sarai, 2005), MetaDBSite (Si et al.,

2011), ProteDNA (Chu et al., 2009), EL_PSSM-RT (Zhou et al.,

2017), DR_bind (Chen et al., 2012) and SPOT-Seq (DNA) (Zhao

et al., 2014) are specially designed to predict DNA-binding residues.

While Pprint (Kumar et al., 2008), RNABindR (Terribilini et al.,

2007) and Meta2 (Puton et al., 2012) work for protein–RNA bind-

ing residues only. There are a few methods that work for the predic-

tion of both DNA- and RNA-binding residues, such as BindN

(Wang and Brown, 2006), BindNþ (Wang et al., 2010) and

DRNApred (Yan and Kurgan, 2017). In the work of (Zhang et al.,

2017), three hallmarks of DNA-, RNA- and protein-binding resi-

dues were analyzed, which should be useful in the development of

new prediction methods. Recently a new class of method called

DisoRDPbind was developed for the prediction of disordered RNA,

DNA and protein binding regions (Peng and Kurgan, 2015; Peng

et al., 2017). The Kurgan group pointed out that there are cross pre-

dictions between DNA- and RNA-binding residues in existing meth-

ods (Yan et al., 2016; Yan and Kurgan, 2017). For a comprehensive

review and assessment of existing methods, please refer to the stud-

ies in Miao and Westhof (2015), Yan et al. (2016), Zhang et al.

(2017) and Zhao et al. (2013), which suggest that predictive accur-

acy of existing methods is relatively low.

In this work, we will present two new methods to predict DNA-/

RNA-binding residues. The first is SVMnuc, an ab-initio method

using features from three complementary sequence profiles. The se-

cond is NucBind, a consensus approach by combing SVMnuc with

the template-based approach COACH-D (Wu et al., 2018), to en-

hance the accuracy and robustness of the prediction.

2 Materials and methods

2.1 Benchmark datasets
Three benchmark datasets are used to assess and compare our meth-

ods with others: YFK16, YK17 and MW15, which were collected

from the recent studies (Miao and Westhof, 2015; Yan et al., 2016;

Yan and Kurgan, 2017). Each dataset consists of 2–8 subsets for

protein–DNA and/or protein–RNA binding. The detailed informa-

tion about these datasets is summarized in Table 1. The structures in

these datasets were originally constructed from the Protein Data

Bank (PDB) (Rose et al., 2017). A residue is defined as a DNA-/

RNA-binding residue if one of the atomic distances between this

residue and the DNA/RNA molecule are smaller than a specified dis-

tance cutoff. Two cutoffs were used in the above datasets: 3.5 and

5 Å. These datasets are available at http://yanglab.nankai.edu.cn/

NucBind/benchmark/.

YFK16. This dataset was from the review (Yan et al., 2016),

which was constructed before 2013. Both cutoffs of 3.5 and 5 Å

were considered in this dataset. The structures released before/after

2010 were used for training/test. The sequence identity between the

training and test proteins is less than 30%. A unique feature of this

dataset is that the binding annotations for the structures in the data-

set were enriched by transferring the annotations from other similar

proteins in PDB.

YK17. This dataset is an extension of YFK16 (Yan and Kurgan,

2017) by inclusion of more structures released before 2016. A cutoff

of 3.5 Å was considered in this dataset. The division of the training

and the test sets is similar to the dataset YFK16 and the sequence

identity between the training and the test proteins is less than 30%

as well.

MW15. This dataset was from the work (Miao and Westhof,

2015), collected after 2014. The sequence identity between this

dataset and others used for training the assessed methods is less than

25%. There is no training set in this dataset and it can be used as an

independent test dataset, which includes 31 DNA-binding proteins

and 15 RNA-binding proteins.

2.2 Overall architecture of the NucBind algorithm
There is no single algorithm to work well for all targets. The com-

bination of complementary algorithms is an effective way to make

stable and accurate predictions. We have developed the COACH

algorithm for template-based protein–ligand binding residues pre-

diction (Yang et al., 2013a), which was recently improved in

COACH-D by the inclusion of molecular docking (Wu et al., 2018).

COACH-D has been consistently ranked as the No.1 method in the

weekly CAMEO-LB experiments (https://www.cameo3d.org/), in a

period of about three years. The success of COACH-D is mainly

attributed to the combination of five complementary algorithms.

However, COACH-D does not work well in case that no homolo-

gous templates are available. To solve this problem, we developed a

new ab-initio method SVMnuc for DNA-/RNA-binding residues

prediction, which was then combined with COACH-D, resulting to

another method NucBind.

The overall flowchart of NucBind is shown in Figure 1. The

query sequence is submitted to three programs PSI-BLAST (Altschul

et al., 1997), HHblits (Remmert et al., 2012) and PSIPRED (Jones,

1999), to generate two sequence profiles and predict its secondary

structure profile, respectively (the panel inside the dashed frame).

These profiles are used to extract a comprehensive set of features,

which are fed into SVMnuc for ab-initio prediction. In addition, the

query sequence is fed into the I-TASSER Suite (Yang et al., 2015) to

generate a structure model (the panel inside the solid frame). The

model is submitted to COACH-D to make template-based predic-

tion. The predictions from SVMnuc and COACH-D are combined

by NucBind. The NucBind prediction is taken from COACH-D if its

confidence score is higher than a dataset-specific cutoff, which was

tuned based on the YFK16 training sets. Otherwise, the NucBind

prediction is taken from SVMnuc.

Table 1. Summary of the benchmark datasets

Dataset Cutoff (Å) #Training #Test Date of PDB

YFK16_DNA 3.5/5 309/311 47/48 [1976, 2013]

YFK16_RNA 3.5/5 158/158 17/17 [1976, 2013]

YK17_DNA 3.5 339 49 [1976, 2016]

YK17_RNA 3.5 161 33 [1976, 2016]

MW15_DNA 5 NA 31 [2014, 2016]

MW15_RNA 5 NA 15 [2014, 2016]
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2.3 Template-based prediction by COACH-D
COACH-D is a general-purpose template-based method for pro-

tein–ligand binding residues prediction, which combines five indi-

vidual methods. The prediction is made by transferring the binding

residues from homologues ligand-binding templates in the BioLiP

database (Yang et al., 2013b). Note that COACH-D does not differ-

entiate between ligand types. To make COACH-D faster and work

for DNA-/RNA-binding residues prediction, we restricted its tem-

plate library to protein–DNA/–RNA complexes. To make

fair comparison with other methods, all structure templates and

ligand-binding templates with > 30% sequence identity to the query

sequence were excluded, in the procedures of both structure model-

ing and binding residues prediction, respectively.

2.4 Feature design for the ab-initio method SVMnuc
The panel inside the dashed frame of Figure 1 is the flowchart of

SVMnuc. As the binding residues are evolutionarily more conserved

than others, the protein sequence is first submitted to three pro-

grams to generate three complementary sequence profiles. Then a

comprehensive set of features are extracted from these profiles to en-

code each residue in a protein. The resulting feature vectors are fi-

nally fed into support vector machine (SVM) for the prediction of

DNA-/RNA-binding residues. Let L denote the number of residues

in a protein.

PSI-BLAST profile. The query sequence is searched by the

sequence-profile alignment tool PSI-BLAST (with parameters ‘-j 3 -h

0.001’) through the NCBI non-redundant sequence database, with

the sequence profile represented in the form of a position-specific

scoring matrix (PSSM) of dimension L*20. Each element x in PSSM

is converted to the range of (0, 1) by 1/[1þ exp(�x)].

PSIPRED profile. One of the most popular tools PSIPRED was

applied to predict the three-state secondary structure (SS) profile.

This profile provides the probabilities of each residues folding into

one of the three states: alpha, beta and random coil. Thus, the di-

mension of the SS profile is L*3.

HHblits profile. The profile hidden Markov models (HMMs)

have been successfully used for protein structure prediction based on

the HMM-HMM alignment. It was demonstrated that the align-

ment generated by HHblits is more accurate than that by PSI-

BLAST (Remmert et al., 2012). In this study, the HMM profile was

generated by searching the query sequence against the database uni-

prot20_2015_06 using HHblits. The dimension of HMM profile is

L*30, but only the first 20 columns are used in this study. The inte-

gers in HMM are equal to 1000 times the negative logarithm of the

amino acid frequency. Thus, each element x in the HMM profile

is converted to a frequency number by the inverse transform

2�0.001*x.

For each residue in a protein, window-based features are

extracted from the three profiles generated above. A residue can be

simply represented by the 43 (¼20þ3þ20) elements in the three

profiles. However, the binding residues are not independent with

each other because the residues inside a binding pocket have a

higher probability to be in contact with DNA/RNA molecules.

Thus, a sliding window is used to incorporate the effects of neigh-

boring residues. For a window with size w, the total number of fea-

tures extracted is 43*w. The optimal window size remains to be

determined by experiments on the training set YFK16_DNA_3.5.

The kernel of radial basis function (RBF) is used based on the ex-

perimental results in Supplementary Figure S1. The regularization

factor C and the kernel parameter c are optimized based on the

5-fold cross-validation on the training set. The LIBSVM package

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used for the imple-

mentation of SVM.

2.5 Performance evaluation
The performance of the proposed methods is assessed by six metrics,

four for assessing binary prediction, and two for the prediction with

propensity score. The first three metrics for the binary prediction are

Precision (Pre), Recall (Rec), and Matthews correlation coefficient

(MCC).

Fig. 1. The flowchart of the proposed methods. The combination of COACH-D and SVMnuc is done by the ensemble method NucBind
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Pre ¼ TP

TPþ FP
; Rec ¼ TP

TPþ FN
(1)

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p (2)

where TP (true positive) is the number of correctly predicted binding

residues, TN (true negative) is the number of correctly predicted

non-binding residues, FP (false positive) is the number of non-

binding residues predicted as binding residues, and FN (false nega-

tive) is the number of binding residues predicted as non-binding resi-

dues. The value of a metric equals zero when the denominator is

zero. The higher the above metrics are, the better the prediction is.

MCC ranges from �1 to 1 and it is suitable for assessing data with

imbalanced distribution.

The fourth metric is the ratio of the cross prediction (Rc) be-

tween DNA- and RNA-binding residues, proposed in the works Yan

et al. (2016) and Yan and Kurgan (2017). It is defined as the fraction

of native DNA-binding residues that are predicted as RNA-binding

residues or the fraction of native RNA-binding residues that are pre-

dicted as DNA-binding residues. Lower value of Rc indicates better

prediction.

The last two metrics are for assessing the prediction with propen-

sity score. One is the area under the receiver operating characteristic

curve (AUC) and the other is the ratio Rr. The AUC value is between

0 and 1 and the higher AUC value, the better the prediction is. The

area under the lower part of the curve (AULC) was introduced in

Yan and Kurgan (2017) to measure the performance of a method at

the low false positive rate regions. Because the scale of AULC is

small, the ratio (Rr) of a method’s AULC over the random predic-

tion’s AULC is used to reflect the performance. Higher value of Rr

indicates more accurate prediction.

Similar to Yan et al. (2016) and Yan and Kurgan (2017), for

each of the three datasets, the assessments were conducted on a

combined set of DNA- and RNA-binding proteins. When assessing

for the prediction of DNA-binding (resp. RNA-binding) residues,

the native labels for RNA-binding (resp. DNA-binding) proteins are

set to 0. The purpose of doing this is to measure the cross predic-

tions between DNA- and RNA-binding residues.

3 Results and discussions

3.1 Optimization of parameters for SVMnuc
All parameters including the window size w and the values for C

and cin SVM, are tuned to maximize the AUC on the training set

YFK16_DNA_3.5 based on 5-fold cross validation. For each fixed

window size, the default values of C and c were used. The AUCs

and MCCs for different window sizes are shown in Supplementary

Figure S2. From the figure, we can see that the optimal window size

is 15, at which the AUC and MCC are 0.85 and 0.41, respectively.

After the optimal window size is determined, a grid search was per-

formed to optimize C and c, with more values tested: C in [20–27]

and c in [2�1–2�8]. The final values for C and c are 2 and 2�7, re-

spectively. For the sake of generality, these values are also used for

other datasets without further optimizations.

3.2 Analysis of feature contribution
As the features in SVMnuc are from the PSI-BLAST profile (PSSM),

the PSIPRED profile (SS) and the HHblits profile (HMM), their con-

tributions are investigated by dividing the features into seven

categories: three individual feature groups, (1) SS, (2) HMM and (3)

PSSM; combination of two feature groups: (4) SS þ HMM, (5) SS þ
PSSM and (6) HMM þ PSSM; and all features (7) ALL (i.e. PSSMþ
SSþHMM).

The 5-fold cross validation AUC for each group of features on

the training set YFK16_DNA_3.5 is presented in Figure 2. It shows

that the AUC for the SS/PSSM feature is the lowest/highest, when

using the individual feature group only (white bars in Fig. 2).

Improvements were achieved by combing any two feature groups

(gray bars in Fig. 2). The highest AUC is achieved when all the fea-

tures are used together (black bars in Fig. 2). Statistical tests were

performed to judge if the AUC improvements by the combined fea-

ture groups are significant or not, similar to the procedure used in

Meng et al. (2018) and Yan and Kurgan (2017). The P-values for

the tests are shown in the Supplementary Table S1. It indicates that

the improvements by combing more feature groups are all signifi-

cant at P-value < 0.05 (with an exception of SS þ HMM versus

HMM). For example, the P-values are 3.6 � 10�7 and 1.0 � 10�11

for the improvement with the combined feature group 6 (i.e. features

from PSSMþHMM) over the individual feature group 2 (features

from HMM) and 3 (features from PSSM), respectively. These

data suggest that the three feature groups are complementary to

each other.

3.3 Performance on the training sets of YFK16
The AUCs for COACH-D, SVMnuc and NucBind on the training

sets of YFK16 are presented in Supplementary Figure S3. It shows

that the template-based method COACH-D has lower AUC than

SVMnuc, probably due to the fact that close homologous templates

(sequence identity >30%) have been excluded in out experiments

for fair comparison. Another reason is that COACH-D was not

trained to optimize AUC. The residue-specific propensity scores

were calculated based on the majority votes from template-query

alignments, making many residues with scores of 0. However,

improved AUCs were obtained in NucBind for all datasets by comb-

ing the predictions from COACH-D and SVMnuc. The P-values of

the AUC differences between these three methods are presented in

Supplementary Table S2, which shows that the improvements of

Fig. 2. Predictive performance of SVMnuc on the training set YFK16_DNA_3.5

from different feature groups. The AUC for the feature group 1 is not shown

in the figure due to the low value (0.598)
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NucBind over COACH-D and SVMnuc are significant at the signifi-

cance level of 0.05, except on the set YFK16_DNA_5.

3.4 Comparison with other methods
To demonstrate the effectiveness and robustness of the proposed

method, we compare NucBind with other state-of-the-art methods

on the independent test sets. As DRNApred is one of the latest meth-

ods for DNA-/RNA-binding residues prediction and it provides a

web server for use (Yan and Kurgan, 2017), we submitted the pro-

tein sequences from the test sets to the server and calculated the cor-

responding metrics for the predictions. We can see the results for the

two subsets in the YK17 dataset are identical to the ones reported in

Yan and Kurgan (2017). Thus it should be fair to compare our

methods with the server version of DRNApred.

The AUCs for all methods are shown in Table 2 and the data for

MCC and Rc are available in Supplementary Tables S3 and S4. When

measured by AUC, the template-based approach COACH-D does not

have advantage over other methods, such as BindNþ and DBS_PSSM,

with the above-mentioned reasons. On the contrary, the ab-initio

method SVMnuc achieves consistently higher AUCs over other meth-

ods, which are improved further in NucBind. For example, compared

with BindNþ, which has competitive accuracy for the prediction of

both DNA- and RNA-binding residues, the AUCs of NucBind are

2.5–14.1% higher than BindNþ on the compared datasets. Statistical

tests indicate that the AUC improvements of NucBind over BindNþ
and other methods are significant at the significance level of 0.05.

We note that the AUC and MCC of the most recent method

DRNApred are not the highest. This is because the main purpose of

DRNApred is not to predict the binding residues with high accuracy

but to reduce the cross predictions between DNA- and RNA-

binding residues. The metric ratio (Rc) has been defined to measure

the cross predictions. We made a comprehensive comparison be-

tween the proposed methods and DRNApred on all datasets based

on Rc and other metrics, with results presented in Supplementary

Table S5. It shows that the proposed methods have higher MCC,

AUC, Pre, Rec and Rr than DRNApred for all datasets. However,

DRNApred has the lowest or the second lowest value of Rc for all

datasets except MW15_DNA. For this dataset, the cross predictions

Rc for all methods are surprisingly high (>0.2), which might be be-

cause some proteins in this dataset are able to bind to both DNA

and RNA. For example, the complex structure of the protein (PDB

ID: 4OL8) contains both DNA and RNA.

From Supplementary Table S5, we can see that compared with

other methods, COACH-D’s performance is satisfactory in terms of

Rr, Rc and MCC for most datasets. For example, on the dataset

YFK16_RNA_3.5, COACH-D’s Rr, Rc and MCC are 24.7, 0.01

and 0.36, respectively. In comparison, the corresponding values for

DRNApred are 2.8, 0.02 and 0.06 respectively. This good perform-

ance of COACH-D can be attributed to the full use of the template

information during the inference of both the binding residues and

the type of bound ligand. COACH-D predicts the binding residues

as DNA (resp. DNA) binding if more than half of the template

ligands are DNA (resp. RNA). The usage of template information in

COACH-D results to a lower ratio of cross prediction than other

ab-initio methods, including DRNApred and SVMnuc. The high

values of Rr for COACH-D can be attributed to the high values of

Pre. Though with such advantages, the AUC for COACH-D is not

as high as DRNApred. This suggests that template-based predictions

are complementary with ab-initio predictions. Thus the combination

of COACH-D and SVMnuc leads to the most stable method

NucBind. Statistical tests were performed to assess the difference be-

tween the proposed methods and DRNApred based on the AUCs

presented in Table 2. The P-values in Supplementary Table S6 indi-

cate that COACH-D alone does not outperform DRNApred.

However SVMnuc and NucBind’s AUC improvements over

DRNApred are significant at the level of 0.05 for all datasets.

3.5 Case studies
Figure 3 shows two examples that NucBind makes satisfactory predic-

tion for DNA- and RNA-binding residues, respectively. The first ex-

ample is a DNA-binding protein ‘C.Esp1396I bound to a 25 base pair

operator site’ (PDB ID: 4IWR), from the set YK17_DNA. In this ex-

ample, there are 17 DNA-binding residues. NucBind predicted 19 bind-

ing residues and 16 of them are true positives (Fig. 3B). This leads to a

high MCC of 0.857, Pre of 0.842 and Rec of 0.941. On the contrary,

DRNApred predicted 27 binding residues and 13 of them are true posi-

tives and the remaining 14 are false positives (Fig. 3A). This translates

to lower MCC, Pre and Rec of 0.459, 0.481 and 0.765, respectively.

The second example is a RNA-binding protein ‘Bacteriophage

Qbeta coat protein in complex with RNA operator hairpin’ (PDB

Table 2. Comparison with other methods on the independent test sets based on AUC

Method Dataset

YFK16a YFK16b YK17a YK17b MW15a MW15b

Cutoff (Å) 3.5 5 3.5 5 3.5 3.5 5 5

Pprint NA NA 0.667 0.629 NA 0.66 NA NA

RNABindR NA NA 0.712 0.694 NA 0.73 NA NA

DP-Bind(klr) 0.794 0.770 NA NA 0.76 NA NA NA

BindNþ 0.806 0.773 0.738 0.704 0.79 0.67 NA NA

DBS_PSSM 0.810 0.784 NA NA 0.77 NA NA NA

DRNApred NA NA NA NA 0.77 0.67 NA NA

DRNApred* 0.757 0.738 0.687 0.666 0.77 0.67 0.725 0.467

COACH-D 0.771 0.764 0.711 0.732 0.69 0.64 0.713 0.579

SVMnuc 0.833 0.821 0.784 0.785 0.80 0.74 0.829 0.789

NucBind 0.834 0.822 0.801 0.803 0.81 0.75 0.830 0.794

Note: The results for other methods are taken directly from Yan et al. (2016) and Yan and Kurgan (2017). The highest values are highlighted in bold type.
aDNA-binding;
bRNA-binding;

*The server version of DRNApred.
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ID: 4L8H), from the set YK17_RNA. There are 14 RNA-binding

residues in this protein. A total of 17 residues were predicted as

binding residues by NucBind and 10 of them are true positives

(Fig. 3D). As can be seen from the figure, other predicted binding

residues (false positives) are in fact around the interface of the pro-

tein–RNA complex structure. Note that the distance cutoff used for

this target is 3.5 Å. These false positives are very possible to become

true positives when increasing the distance cutoff in the definition of

a binding residue. Nevertheless, the prediction by NucBind for this

example is also satisfactory with the MCC, Pre and Rec of 0.597,

0.588 and 0.714 respectively. When increasing the distance cutoff to

5 Å, the number of false positives reduced from 7 to 3. This makes

the MCC for the NucBind predictions increase to 0.694. However,

DRNApred does not predict any binding residues for this target and

the values for all metrics are 0 (Fig. 3C).

3.6 Application of predicted binding residues in

molecular docking
As a demonstration for the application of the proposed methods in

the field of structure biology, we employed the predicted binding

residues to improve the ranking of docking models. The protein–

DNA/RNA docking method HDOCK (Yan et al., 2017) was used

for this purpose. A similar strategy has been shown to be effective

for ranking ligand-binding poses in the COACH-D algorithm (Wu

et al., 2018), where the ligands are small molecules rather than

DNA and RNA.

The structure of the DNA-binding domain of the well-known

tumor suppressor p53 is used as an illustration here. Self docking

was not performed as it turned out to be very trivial for HDOCK to

find the optimal binding pose. Instead, the unbound structure of p53

(PDB ID: 2OCJ) and the DNA structure from the bound structure

(PDB ID: 5LGY) of p53 were submitted to the HDOCK server to

perform protein–DNA docking. Here, the bound structure of p53

was obtained from the mTM-align server by searching the unbound

structure against the server’s structure database, which reports that

the root-mean-square deviation (RMSD) between the bound and

unbound structures is 0.49 Å (Dong et al., 2018). We superimposed

the bound structure to the unbound structure to generate a DNA-

binding complex structure for the unbound structure. This manually

generated DNA structure is used as a reference to assess the accur-

acy of the docking models.

A total of 12 DNA-binding residues were predicted by NucBind,

which were used as reference to rank the docking models as follows.

First, the DNA-binding residues in each docking model were calcu-

lated at 3.5 Å distance cutoff. Second, the precision of the binding

residues from each model was computed. Third, the docking models

were ranked based on their precision values. The ligand RMSDs be-

tween the docking models and the reference structure were com-

puted. The results are summarized in Figure 4, in which the protein

structure is shown in orange surface. It suggests that top model (in

blue) by our method is very close to the reference (in red) with

2.32 Å RMSD. In comparison, the default top model (ranked by the

HDOCK’s docking score, in green) is relatively far away from refer-

ence, with 41.19 Å RMSD. This example shows that the predicted

binding residues can be useful for docking. However, due to the dif-

ficulty in generating complex structure for unbound structures

manually, only one example was given here as an illustration.

3.7 Limitations of the proposed methods
Though the proposed methods were demonstrated to have advan-

tages over other state-of-the-art methods, there do exist some limita-

tions. The first is the slow speed and high computational cost. It

takes more time and computing resource to generate multiple se-

quence profiles in SVMnuc and run template-query alignments in

COACH-D. As the server is built on a computer cluster with 100

CPU cores, the programs are executed in parallel. In general, it takes

about 0.5 hour to return the predictions for each job submission.

The second is the relatively high ratio of cross prediction of DNA-

and RNA-binding residues in SVMnuc and NucBind. This is mainly

caused by the ab-initio method SVMnuc, which seems to be a com-

mon issue for most ab-initio methods, such as BindNþ and

DBS_PSSM (please refer to Supplementary Table S4). This problem

was pointed out in Yan and Kurgan (2017) and the cross prediction

was significantly reduced in the work of DRNApred with an

Fig. 3. Two examples of DNA- and RNA-binding residues predictions made

by NucBind and DRNApred. (A) and (C) are for the predictions by DRNApred,

while (B) and (D) are for NucBind. The protein structure is shown in gray car-

toon and DNA/RNA molecules structures are shown in magenta cartoon. TP,

FP and FN are shown in green, red and blue cartoon, respectively

Fig. 4. An example to illustrate the improved ranking of the docking models,

with the DNA-binding domain structure of the tumor suppressor p53. The

protein structure is shown in orange surface. The reference DNA structure,

default top model and re-ranked top model are shown in red, green and blue

cartoons, respectively
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elaborately designed training strategy. Except DRNApred, the cross

prediction in SVMnuc is much smaller than in other ab-initio meth-

ods, though not intentionally trained. We note that the cross predic-

tion in COACH-D is even smaller than DRNApred for some

datasets. However, its combination with SVMnuc did not reduce

the cross prediction significantly. This is because the confidence

scores for most of the COACH-D predictions are too low to be com-

bined, mainly due to the stringent exclusion of homologous tem-

plates at 30% sequence identity. Nevertheless, in most real-world

applications, the sequence identities between templates and query

proteins are above this cutoff, resulting to predictions with higher

confidence scores. It is thus anticipated that the cross prediction

could be relieved in real-world applications.

4 Conclusions

Accurate recognition of the residues that bind nucleic acids can fa-

cilitate the study of uncharacterized protein–nucleic acids interac-

tions. By utilizing three complementary sequence profiles, we first

designed an ab-initio approach SVMnuc to predict the nucleic acids-

binding residues. Enhanced prediction was further achieved by com-

bining SVMnuc with our previously developed template-based ap-

proach COACH-D, which results to the algorithm NucBind.

Benchmark tests show that the proposed methods consistently out-

perform other state-of-the-art methods for the prediction of nucleic

acids-binding residues. Though with high prediction accuracy, cross

prediction between DNA and RNA-binding residues, a common

issue in many methods, was also observed in SVMnuc and NucBind.

More efforts are needed to reduce the cross prediction in future

work, such as those done in the method DRNApred. The success of

NucBind is attributed to the utilization of the improved features

from three complementary sequence profiles in SVMnuc and the

consensus of complementary methods.
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