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Abstract

The interactions between proteins and nucleic acid sequences play many important roles in gene expression and some
cellular activities. Accurate prediction of the nucleic acid binding residues in proteins will facilitate the research of the
protein functions, gene expression, drug design, etc. In this regard, several computational methods have been proposed to
predict the nucleic acid binding residues in proteins. However, these methods cannot satisfactorily measure the global
interactions among the residues along protein. Furthermore, these methods are suffering cross-prediction problem, new
strategies should be explored to solve this problem. In this study, a new computational method called NCBRPred was
proposed to predict the nucleic acid binding residues based on the multilabel sequence labeling model. NCBRPred used the
bidirectional Gated Recurrent Units (BiGRUs) to capture the global interactions among the residues, and treats this task as a
multilabel learning task. Experimental results on three widely used benchmark datasets and an independent dataset
showed that NCBRPred achieved higher predictive results with lower cross-prediction, outperforming 10 existing
state-of-the-art predictors. The web-server and a stand-alone package of NCBRPred are freely available at http://bliulab.net/
NCBRPred. It is anticipated that NCBRPred will become a very useful tool for identifying nucleic acid binding residues.
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Introduction
The interactions between proteins and nucleic acids (DNA/RNA)
play many crucial roles in biological processes, such as transcrip-
tion control, translation, DNA replication, posttranscriptional
gene regulation [1–3]. Accurate identification of the nucleic acid
binding residues in proteins is important for studying and char-
acterizing the interactions between proteins and nucleic acids
[4, 5].

The nucleic acid binding residues in proteins were mainly
detected by wet-lab experimental methods, such as X-ray
crystallography and nuclear magnetic resonance. However,
these methods are relatively expensive and slow, not suitable
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for whole-genome scale analysis [6–8]. Therefore, only a small
number of complexes of proteins and nucleic acids have been
resolved and deposited in Protein Data Bank (PDB) [9]. Many
nucleic acid binding proteins remain to be discovered and
learned. In this regard, several efforts have been made to
develop computational methods to detect the nucleic acid
binding residues in proteins based on the protein sequence or
structure information. These methods are faster with lower cost
[8, 10, 11] comparing with the wet-lab experimental methods.
For examples, DP-bind [12] predicts DNA-binding residues
in proteins based on Position-Specific Scoring Matrix (PSSM)
and three machine learning classifiers, including Support
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Vector Machine (SVM), kernel logistic regression and penalized
logistic regression; DBS–PSSM [13] employs neural network to
extract evolutionary information of protein sequences from
the PSSMs to predict DNA-binding residues; RNABindR [14,
15] identifies and shows RNA-binding residues based on Naive
Bayes classifier and protein structure in PDB; Pprint [16] predicts
RNA-binding residues by combining evolutionary information
features and SVM algorithm. Some other predictors with
different classification algorithms or features have also been
proposed for improving DNA-binding residue prediction [17, 18]
and RNA-binding residue prediction [19, 20].

All these computational methods have greatly promoted the
development of this field. However, they can only detect the
DNA-binding residue or RNA-binding residue, and are suffering
from cross-prediction problem (a DNA-binding residue predictor
accurately detects the DNA-binding residues, but also cross-
predicts many RNA-binding residues as DNA-binding residues,
and vice versa) [5]. The reason is that DNA-binding residues and
RNA-binding residues share some similar characteristics [5, 21].
If a DNA-binding residue predictor is only trained with DNA-
binding proteins and does not consider the RNA-binding pro-
teins, it can accurately predict the DNA-binding residues but also
prefers to identify the RNA-binding residues as DNA-binding
residues. For similar reason, an RNA-binding residue predic-
tor trained only with RNA-binding proteins tends to predict
the DNA-binding residues as RNA-binding residues. Although
some methods can predict both DNA-binding residues and RNA-
binding residues, such as BindN [22], NAPS [23], BindN+ [24],
SVMnuc [10] and NucBind [10, 25], unfortunately, these meth-
ods still treat DNA-binding residue prediction and RNA-binding
residue prediction as two separate tasks during their train-
ing processes. As a result, they are still suffering from cross-
prediction problem.

To solve the cross-prediction problem, the predictor
DRNApred using a two-layer strategy has been proposed to pre-
dict both DNA-binding residues and RNA-binding residues [8].
However, its prediction accuracy is significantly lower than that
of SVMnuc and NucBind. Besides, most of existing methods treat
DNA- or RNA-binding residue recognition as a classification task,
the unit of training and test is residue. The protein sequences
were segmented into fixed length subsequences, and each
residue was represented by several neighbors before and after
it. Although this classification method can achieve the purpose
of identifying nucleic acid binding residues, it ignored the long-
distance dependence (contextual information) among residues
in a protein, resulting in limited prediction performance.

Therefore, the following two aspects should be revisited
in this very important field: (i) cross-prediction problem. New
frameworks should be explored to solve the cross-prediction
problem and improve prediction accuracy by considering both
the DNA and RNA-binding residues as a whole in their training
and test processes; (ii) global and long dependencies among
residues. The binding residues are typically located on the
protein surface in clusters. However, the neighbor residues in
protein structures could be far away from each other in their
primary sequences. Therefore, the global and long-distance
dependencies among residues in proteins should be considered
when constructing the prediction models.

In this study, we introduced a new method called NCBRPred
to predict both DNA-binding residues and RNA-binding residues
in proteins based on the multilabel sequence labeling model
(MSLM). Compared with the existing methods, NCBRPred has
the following two advantages: (i) it treats the identification of
DNA-binding residues and RNA-binding residues as a multilabel

learning task by using both the DNA-binding proteins and RNA-
binding proteins to train the model so as to reduce the cross-
prediction rate; (ii) the sequence labeling model that can mea-
sure the global and long-distance dependencies among residues
and capture the sequential characteristics of the nucleic acid
binding residues were employed so as to improve prediction
performance.

Methods
Datasets

Three benchmark datasets were used to train and evaluate
different methods, including YK17 [8], YFK16-3.5 [5] and YFK16-
5 [5]. YFK16-3.5 and YFK16-5 are two widely used benchmark
datasets constructed by Yan et al. [5]. YK17 is an extension of
YFK16-3.5 by adding new nucleic acid binding proteins [8]. Each
of these three benchmark datasets contains two subsets, includ-
ing a training set and an independent test set. The sequence sim-
ilarity between any protein in the training set and any protein in
the test set is less than 30%. The dataset MW15 [21] was also
used to evaluate different methods as an independent dataset.
In order to avoid overestimating the performance of our method,
the proteins sharing more than 25% sequence similarity with
any protein in MW15 were removed from the benchmark dataset
YFK16-5 by using BLASTClust [26], and the proposed model
was trained with the refined YFK16-5 to predict the proteins
in MW15. The statistical information of these four datasets is
summarized in Table 1.

Protein representation

Nucleic acid binding residues are conservative during evolution
process, and nucleic acids usually interact with proteins on the
protein surface [5]. Therefore, two kinds of evolutionary profiles
(PSSM and Hidden Markov Model (HMM) profile), the predicted
secondary structure (SS), and the predicted solvent accessibility
(SA) were used to represent the proteins in this study. The per-
formance of different feature combinations on the performance
of the proposed method will be discussed in the ‘Results and
Discussion’ section.

The PSSMs were generated by using PSI-BLAST [27] with
parameters of ‘-num_iterations 3 -evalue 0.001’ to search against
the nonredundant database NRDB90 [28]. Each element e in the
PSSM profile was normalized by:

pi,j = ei,j − ui

si
(1)

where i and j indicate the row index and the column index of
element in PSSM profile, respectively, ui and si are the mean and
the standard deviation of each row in PSSM, respectively, which
can be calculated by following equations:

ui = 1
n

n∑
j=1

ei,j (2)

si = 2

√√√√ 1
n

n∑
j=1

(
ei,j − ui

)2 (3)

where n is the number of standard amino acids. The dimension
of PSSM-based features is L× 20 and L is the length of the protein.

The HMM profiles were generated by using HHblits [29] to
search against the database uniprot20_2016_02 with default
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Prediction of nucleic acid binding residues 3

Figure 1. The framework and architecture of NCBRPred. (A) The overall framework of NCBRPred. Both DNA-binding proteins and RNA-binding proteins are fed into

NCBRPred for training and test. The sliding window strategy was used to capture the local dependencies among residues in a protein. (B) The network architecture of

MSLM. It contains three layers, including two BiGRU layers and a TDMLFCB layer. The two BiGRU layers measure the correlations among residues along the protein in a

global fashion so as to capture the long and short distance dependencies among residues. The TDMLFCB layer predicts DNA-binding residues and RNA-binding residues

based on the learned hidden features by the former two BiGRU layers. The red, blue, orange and gray circles in the input layer represents DNA-binding residue, RNA-

binding residue, DNA and RNA-binding residue, and non-DNA/RNA-binding residue, respectively. (C) The network architecture of MLFCB. It integrates the predictive

results for binding residues via the multilabel learning strategy trained with both DNA and RNA-binding residues, leading to lower cross-prediction rate.

parameters. Each element e in the HMM profile was normalized
by:

fi,j =
{

2.0−0.001×ei,j if ei,j �= ∗
0 otherwise.

(4)

where ∗ represents an infinite integer in HMM profile; i and
j indicate the row index and the column index of element in
HMM profile, respectively. The HMM profile contains L rows and
30 columns. L is the length of the query protein sequence. The
first 20 columns indicate the frequencies of the 20 standard
amino acids in the corresponding positions, and the last 10
columns contain the seven transition frequencies and three local

diversities in the corresponding position. For more information
of HMM profile, please refer to [30]. Therefore, the dimension of
HMM-based features is L×30.

The SS and SA were predicted by SSpro and ACCpro [31],
respectively. The predicted SS provides the information of three
class SSs, including helix, strand and other, whose dimension is
L×3. Two predicted SA profiles are the binary SA and the score
of SA. The element in the profile of SA score was normalized by
s× 0.01, where s represents the SA score. The dimensions of the
combination of two predicted SA profiles are L ×2.

By merging these four different features, the protein was rep-
resented as a matrix with dimension of L×55. Then each protein
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Table 1. The statistical information of the four datasets used in this study

Dataset Training set Test set

Protein chains Residues Protein chains Residues

Da Rb Nc Da Rb Nc

YK17 [8] 488 7764 4684 90 594 82 955 807 17 119
YFK16-3.5 [5] 467 6932 4647 88 508 64 875 409 13 679
YFK16–5 [5] 469 10 848 6941 82 811 65 1452 648 12 927
MW15 [21] NA NA NA NA 46 760 368 9447

aDNA-binding residues.
bRNA-binding residues.
cResidues neither bind to nucleic acid residue nor are disordered residue.

Figure 2. The performance of NCBRPred with different window sizes on the

training set of YK17 via 5-fold cross-validation. For the clearer results, we used

1-AURC instead of AURC to show the trend of the cross-prediction of NCBRPred

under different window sizes.

was converted into a context matrix by using a sliding window
approach (see Figure 1A) with a window size of 7 optimized by 5-
fold cross-validation on the training dataset of YK17. Therefore,
the final dimension of the context matrix is L×385.

Architecture of NCBRPred

Sequence labeling models, especially for the models based on
recurrent neural networks, are able to measure the global and
long-distance dependencies among residues in protein, which
usually were ignored by classification models. They have been
proven to be more effective than classification models in the
identifications of special sites or regions in proteins [32–34].
Inspired by these studies, we applied recurrent neural networks
to nucleic acid binding residue identification. In this study, two
kinds of sequence labeling models were tested, including models
based on Long Short-Term Memory (LSTM) [35] and models
based on Gated Recurrent Unit (GRU) [36]. GRU-based models
showed better performance for identifying nucleic acid binding
residues than LSTM-based models, and GRU-based models are
more efficient than LSTM-based models during training and test
processes. This is because GRU has a simpler network structure
with fewer parameters compared with LSTM, which is more
suitable for the task with fewer samples. The performance of
different models will be discussed in the ‘Results and Discussion’
section.

In order to reduce the complexity of the prediction model
and the risk of overfitting, we used the GRU to construct the
MSLM. It contains three layers (see Figure 1B), including two bidi-
rectional GRU layers (BiGRU) and a Time-Distributed MultiLabel

Fully-Connected Block (TDMLFCB) layer. The two BiGRU layers
measure the correlations among residues along the protein in
a global fashion so as to capture the long and short distance
dependencies among residues [37]. The output dimension of the
memory cell in the 1st BiGRU layer is 32, and it is 40 in the
2nd BiGRU layer, which were selected through grid search by
considering both predictive performance and calculating cost.
The TDMLFCB layer predicts DNA-binding residues and RNA-
binding residues based on the learned hidden features by the
former two BiGRU layers. The Multi-Label Fully-Connected Block
(MLFCB) in the 3rd layer contains two sublayers (see Figure 1C).
The 1st sublayer consists of 80 neurons using rectified linear unit
(ReLU) [38] as activation functions to learn potential patterns
or associations among hidden features, and takes both DNA-
binding resides and RNA-binding residues into consideration so
as to reduce the cross-prediction rate. The 2nd sublayer contains
two neurons with sigmoid function to identify DNA-binding
residues and RNA-binding residues, respectively. The dropout
strategy was employed between the two sublayers to further
avoid the overfitting problem. The dropout rate was 0.5. The
MLFCB shares its weights at each time step. The lightweight
structure of MSLM designed in current work makes it a multi-
layer neural network rather than a deep neural network, making
it suitable for analyzing the current data.

In this study, we used Keras and TensorFlow [39] to
construct the proposed model. To process proteins with various
lengths, the masking technique was employed by NCBRPred.
For sequences shorter than the longest protein in a dataset,
their corresponding context matrices were padded with zero
values. The padded parts were masked during subsequent
operations. Because the lack of coordinate information for
the residues in disordered regions, the disordered residues
were not annotated binding when constructing datasets [5,
8]. To utilize the complete sequence information of a protein,
the proposed model processes the whole protein sequence
including disordered residues. But the disordered residues were
not considered when calculating the loss during the training
process. The loss was calculated by:

loss = 1
N

2∑
i=1

N∑
j=1

li,j (5)

li,j =
{

yi,j × log
(
pi,j

) + (
1 − yi,j

) × log
(
1 − pi,j

)
yi,j ≥ 0

0 yi,j < 0
(6)

where N represents the total number of residues in the training
data; yi,j is the true label for the i-th label of the j-th residue; pi,j

is the predicted score for the i-th label of the j-th residue. For
the disorder residues in training datasets, the true labels were
set as −1.
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Prediction of nucleic acid binding residues 5

Figure 3. Comparison of six models for detecting DNA-binding residues and RNA-binding residues on training set of YK17 via 5-fold cross-validation. The MLSTM and

MGRU are multilabel sequence labeling models. The LSTM and GRU are similar as MLSTM and MGRU except that they are not multilabel classifiers but binary classifiers.

For SVM, the radial basis function (rbf) was employed as the kernel with optimal parameters of ‘C = 3, gamma = 0.001’. For RF, the optimal number of estimators was 250.

Table 2. Performance of NCBRPred based on different features and their combinations on the training set of YK17

Features DNA-binding residue prediction RNA-binding residue prediction

AUC AURC AUC AURC

One-hot 0.55 0.56 0.62 0.43
PSSM 0.82 0.25 0.81 0.30
HMM 0.82 0.31 0.79 0.39
PSSM + SA 0.82 0.28 0.81 0.32
PSSM + SS 0.83 0.25 0.82 0.25
PSSM + SS + SA 0.83 0.25 0.82 0.29
HMM + SS + SA 0.83 0.33 0.80 0.38
PSSM + SS + SA + HMM 0.85 0.22 0.84 0.24
PSSM +SS + SA + HMM + One-hot 0.84 0.22 0.82 0.27

Note: The best results are highlighted in bold type.

Performance evaluation

In this study, two evaluation metrics were used to evaluate the
performance of different methods, including the area under the
ROC curve (AUC) and the area under the cross-prediction rate–
true positive rate (CPR–TPR) curve (AURC). The CPR–TPR plot
uses the TPR on the x-axis and the CPR on the y-axis. CPR is
the ratio of DNA-binding residues incorrectly predicted as RNA-
binding residues or the ratio of RNA-binding residues incorrectly
predicted as DNA-binding residues [5, 8]. TPR is defined as the
fraction of DNA-binding residues correctly predicted as DNA-
binding residues or the fraction of RNA-binding residues cor-
rectly predicted as RNA-binding residues. The CPR–TPR curve
shows the dynamic change of CPR under different TPRs of a
predictor. Under the same TPR, the lower CPR is, the better the
predictive performance is. The AUC reflects the overall predic-
tive performance of a predictor. The higher the AUC is, the better
the predictive performance is. The AURC reflects the cross-
prediction problem of a predictor. The lower the AURC is, the
better predictive performance is.

Results and discussion
The predictive performance of NCBRPred based on
different features and their combinations

We explored the impact of different features and their combi-
nations on the performance of NCBRPred by using 5-fold cross-
validation on the training dataset of YK17. The corresponding
features and results were listed in Table 2. From it we can see

that the NCBRPred based on the combination of PSSM, SS, SA
and HMM achieved the best performance, and its performance
decreased when adding the one-hot encoding as an additional
feature. These results are not surprising because these four fea-
tures (PSSM, SS, SA and HMM) describe the protein sequences in
different aspects, and they are complementary. The information
of one-hot encoding is limited compared with PSSM or HHM
(refer to Table 2). As a result, performance improvement cannot
be observed when adding the one-hot encoding as an extra
feature.

Based on the above analysis, the final NCBRPred predictor
was constructed based on four features, including PSSM, SS,
SA and HMM. These features were also proven useful for pre-
dicting nucleic acid binding residues in some previous studies
[8, 10, 40, 41].

Impact of the window sizes on the predictive
performance of NCBRPred

As introduced in the section of protein representation, a sliding
window approach was employed to generate the context matrix,
which incorporates the features of the neighbor residues along
the protein sequences [42]. In this section, the impact of the
window size on prediction performance was investigated by
using 5-fold cross-validation on the training dataset of YK17.
Experimental results were shown in Figure 2. For the better
visualization, we used 1-AURC instead of AURC to show the trend
of the cross-prediction results of NCBRPred with different win-
dow sizes. We can see from Figure 2 that the proposed method
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Figure 4. Comparison of different predictors for detecting DNA-binding residues and RNA-binding residues on three datasets. (A) The results of different methods on

the test sets of YK17. (B) The results of different methods on the test sets of YFK16-3.5. (C) The results of different methods on the test sets of YFK16-5.

showed similar performance in terms of both AUC and 1-AURC.
The slight difference would be caused by random initialization of
the weights of neural networks. In general, NCBRPred achieved
relatively stable performance with different window sizes, and it
achieved the best performance with window size of 7. The reason
is that NCBRPred is based on the MSLM, which is a sequence
labeling framework to model the protein sequence in a global
fashion. Therefore, it is not sensitive with the window size.
Therefore, the window size was set as 7 considering both the
predictive performance and computational cost.

Comparison of different models

In order to investigate whether the sequence labeling models
are more suitable for nucleic acid binding residue identification

than the classification models, and whether the multilabel
learning strategy can reduce the cross-prediction rate or not,
we compared different machine learning models on the training
set of YK17 via 5-fold cross-validation, including classification
model based on SVM, classification model based on Random
Forest (RF), and the sequence labeling model based on LSTM,
sequence labeling model based on GRU, multilabel sequence
labeling model based on LSTM (MLSTM), and multilabel
sequence labeling model based on GRU (MGRU). The sequence
labeling model is similar as the MSLM except that it is not a
multilabel model but a binary model. The predictive results
of these six predictors were shown in Figure 3, from which
we can see the followings: (i) the four sequence labeling
models outperformed the two classification models (SVM and
RF), indicating that the correlations among residues along
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Prediction of nucleic acid binding residues 7

Figure 5. The CPR–TPR curves of NCBRPred and comparison with other competing methods. (A) DNA-binding residue prediction and RNA-binding residue prediction

on the test set of YK17. (B) DNA-binding residue prediction and RNA-binding residue prediction on the test set of YFK16-3.5. (C) DNA-binding residue prediction and

RNA-binding residue prediction on the test set of YFK16-5.

the protein sequences measured by the sequence labeling
models are useful for reflecting the patterns of nucleic acid
binding residues (clusters in the 3D structures of proteins);
(ii) the two MSLMs outperformed the two sequence labeling

models, especially in terms of AURC. These results are
not surprising because the MSLM employed the multilabel
framework to use the information of both the RNA-binding
residues and DNA-binding residues, and therefore, it avoids the
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Table 3. The experimental results of different methods on the independent dataset MW15

Type Method AUC AULC AURC AURLC

DNA-binding residue DRNApreda 0.72 0.010 0.48 0.136
SVMnucb 0.83 0.026 0.45 0.086
NucBindb 0.83 0.026 0.40 0.086
NCBRPred 0.81 0.027 0.31 0.048

RNA-binding residue DRNApreda 0.47 0.001 0.50 0.118
SVMnucb 0.79 0.005 0.41 0.071
NucBindb 0.79 0.005 0.34 0.041
NCBRPred 0.80 0.006 0.20 0.022

Note: The best results are highlighted in bold type.
aThe results were calculated by using the web-server of DRNApred.
bThe AUC and AULC were reported in [10], the AURC and AULRC were calculated by the web-server of NucBind.

Figure 6. The comparison of NCBRPred and other three competing methods on MW15.

cross-prediction problem; (iii) in general, GRU-based models
showed better prediction performance than LSTM-based
models. This indicates that GRU-based models are more suitable
for the identification of nucleic acid binding residues than
LSTM-based models. In addition, we also analyzed the training
efficiency of the MLSTM and MGRU models. The MGRU model
was 30 s faster than the MLSTM model for each training epoch
evaluated on the same data (training set of YK17). This is because
GRU has a simpler network structure with fewer parameters
compared with LSTM.

Considering the predictive performance and computational
cost, the GRU-based MSLM was finally used to identify nucleic
acid binding residues in this study.

Performance comparison of various computational
methods

The performance of NCBRPred was evaluated on the three widely
used benchmark datasets, including YK17 [8], YFK16-3.5 [5] and
YFK16-5 [5], and its performance was compared with 10 state-of-
the-art methods, including DP-Bind(klr) [12], DP-Bind(svm) [12],
DP-Bind(plr) [12], DBS_PSSM [13], Pprint [16], RNAbindR [14, 15],
BindN+ [24], DRNApred [8], SVMnuc [10] and NucBind [10].

The AUCs of different methods on the three datasets were
shown in Figure 4, from which we can see that NCBRPred out-
performed the other 10 methods by incorporating both DNA-
binding residue and RNA-binding residue into the predictive
model.

In order to evaluate the cross-prediction of different methods,
we plotted the CPR–TPR curve of NCBRPred, and compared it
with other methods as shown in Figure 5. We can see that
NCBRPred achieved the 2nd-best performance for predicting
RNA-binding residues on test set of YK17 (see the right panel
of Figure 5A), and it outperforms all the other competing
methods on other five subsets. Interestingly, among these 11
methods, five methods (BindN+, DRNApred, SVMnuc, NucBind
and NCBRPred) can predict both the DNA-binding residues
and RNA-binding residues, but only DRNApred and NCBRPred
were trained by using both DNA-binding resides and RNA-
binding residues in training processes. As a result, these two
methods outperformed the other nine methods in terms of
cross-prediction. This indicates that considering both the DNA-
binding residues and RNA-binding residues during the training
process is able to decrease the cross-prediction.

From the results of above three datasets, we can find that the
NCBRPred predictor is the only method achieves more accurate
prediction results with lower cross-prediction. All the results
indicate that the proposed MSLM is effective for nuclei acid
binding residue prediction.

Performance of various methods on the independent
dataset MW15

In order to further validate its performance, NCBRPred was
evaluated on the independent dataset MW15. The results of
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Prediction of nucleic acid binding residues 9

Figure 7. Analysis of the fraction of predicted nucleic acid binding residues shorter than a certain distance from the true nucleic acid binding residues. (A) The results

of different methods for DNA-binding residue prediction in terms of the position distance in protein sequences. (B) The results of different methods for RNA-binding

residue prediction in terms of the position distance in protein sequences. (C) The results of different methods for DNA-binding residue prediction in terms of the space

distance in the protein structures. (D) The results of different methods for RNA-binding residue prediction in terms of the space distance in the protein structures. The

fraction of predicted binding residues shorter than a certain distance from the true binding residues was defined as the count of predicted binding residues shorter

than a certain distance from the true binding residues divided by the total number of the predicted binding residues. The data for curves of DRNApred and SVMnuc

were obtained from their corresponding web-servers.

NCBRPred along with the other three best predictors (DRNApred,
SVMnuc and NucBind) were shown in Table 3 and Figure 6.

The results show that NCBRPred outperformed the other
three competing methods in terms of AURC, and it has lower CPR
than other methods under the same TPR. As we can see the AUC
value of NCBRPred is slightly lower than those of SVMnuc and
NucBind for predicting DNA-binding residues. The reason is that
MW15 is an imbalanced dataset and AUC usually overestimates
a prediction method on an imbalanced dataset. The AULC and
AURLC are the variants of AUC and AURC [8], which are more
suitable for evaluating a method on the imbalanced dataset.
In order to more objectively evaluate different methods, the
AULCs and AURLCs of four methods were calculated on the
independent dataset MW15, as listed in Table 3. The proposed
method achieved the best AULC and AURLC among four com-
peting methods. This demonstrates that NCBRPred outperforms
three existing methods, and is a useful method for solving cross-
prediction problem and predicting both DNA-binding residues
and RNA-binding residues.

Analysis of the predicted nucleic acid binding residues

We also analyzed and compared the nucleic acid binding
residues predicted by the top three predictors on the YK17
dataset, including NCBRPred, SVMnuc and DRNApred. Following
the previous study [8], two kinds of distances were considered,
including the number of amino acids between two residues in
the protein sequences (position distance), and the Euclidian
distance between two residues in the protein structures (space
distance). For each predictor, we calculated the fraction of
predicted nucleic acid binding residues shorter than a certain
distance from the true nucleic acid binding residues. The
fraction was defined as the count of predicted binding residues
shorter than a certain distance from the true binding residues
divided by the total number of the predicted binding residues.
The results of these three predictors under different distance
thresholds were shown in Figure 7. The results showed that
NCBRPred outperformed the other two competing methods
with distance shorter than 9, whereas DRNApred showed higher
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Figure 8. Visualization of the case study. (A) The prediction results of different methods in the DNA-binding protein 4GCK (PDB ID). (B) The prediction results of different

methods in the RNA-binding protein 3R2C (PDB ID).

fraction for larger distances. These results indicated that most of
the nucleic acid binding residues predicted by NCBRPred are near
the true binding residues. In contrast, most of the nucleic acid
binding residues predicted by the other two competing methods
are far away from the true binding residues. The reason is that
the sequence labeling model employed by NCBRPred is able to
capture the global characteristics of residues along the protein
(the nucleic acid binding residues prefer to occur in clusters in
protein 3D structures). As a result, the false positive samples
far away from the true nucleic acid binding residues obviously
reduce. This point will be further discussed in the next section.

Predictive results visualization

The nucleic acid binding residues in a DNA-binding protein
(PDB ID: 4GCK [43]) and an RNA-binding protein (PDB ID: 3R2C
[44]) predicted by the top three predictors were visualized in
Figure 8, including NCBRPred, SVMnuc and DRNApred. Both the
two proteins were selected from the test set of YK17. From the
figure we can see the followings: (i) the nucleic acid binding
residues occur in clusters in the 3D structures of the proteins so
as to interact with DNA sequence or RNA sequence; (ii) NCBRPred
identified fewer false positives and false negatives than those
predicted by SVMnuc and DRNApred; (iii) the false positives
predicted by SVMnuc and DRNApred are far away from the true
nucleic acid binding residues. In contrast, the false positives
predicted by NCBRPred are obviously closer to the true positive

samples, which is fully consistent with the results shown in the
prior section.

Conclusion
In this study, we proposed a new computational predictor NCBR-
Pred to predict both DNA-binding residues and RNA-binding
residues in proteins by using multilabel learning framework
and sequence labeling model. The NCBRPred predictor achieved
the state-of-the-art predictive performance and overcame the
cross-prediction problem suffered by many existing methods.

Different from traditional predictor, in this study, the nucleic
acid binding residue prediction was treated as a multilabel
sequence labeling task, and the NCBRPred is the 1st method
to use multilabel learning framework to consider both DNA-
binding residues and RNA-binding residues simultaneously
during training process. As a result, the proposed predictor
is able to reduce the cross-prediction between DNA-binding
residues and RNA-binding residues. The sequence labeling
model can measure the global dependencies among residues
along a protein, ignored by traditional classification model.
NCBRPred employed the sequence labeling model based on GRU
with few parameters and simple structures, making it suitable
for small-scale data analysis. Besides, we refined the traditional
binary cross-entropy loss function to filter out of the disordered
residues when calculating loss during the training process so as
to utilize the precise sequence information of a protein.
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Experimental results on three benchmark datasets and an
independent dataset demonstrated the feasibility and effective-
ness of the proposed method for identifying nucleic acid bind-
ing residues. The corresponding web-server and stand-alone
package of NCBRPred are freely available at http://bliulab.net/
NCBRPred. Besides, the new framework used in NCBRPred would
also be applied to solve other tasks in bioinformatics, such as
the prediction of the functional sites in protein intrinsic disorder
region, the identification of the small ligand binding residues in
proteins, the detection of DNA mutations, and etc. It is antici-
pated that NCBRPred will become a useful tool for identifying
nucleic acid binding residues.

Key Points
• Interactions of proteins and nucleic acids are playing

various crucial roles in cellular activities. Accurate
identification of nucleic acid binding residues in pro-
teins is significant for characterizing the interactions
between proteins and nucleic acids.

• Most of the existing nucleic acid binding residue pre-
dictors are suffering from cross-prediction problem.
As a result, some DNA-binding residues and RNA-
binding residues were incorrectly predicted. There-
fore, new computational predictors should be investi-
gated so as to solve the cross-prediction problem and
improve the predictive performance.

• A new computational method called NCBRPred was
proposed to predict the nucleic acid binding residues
in proteins, which considers both DNA-binding
residues and RNA-binding residues, and the global
distance dependencies among residues by using the
multilabel sequence labeling model.

• Experimental results on three widely used benchmark
datasets and an independent dataset showed that
NCBRPred outperformed 10 existing state-of-the-art
predictors.
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