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Abstract

Accurate prediction of nucleic binding residues is essential for the understanding of tran-

scription and translation processes. Integration of feature- and template-based strategies

could improve the prediction of these key residues in proteins. Nevertheless, traditional

hybrid algorithms have been surpassed by recently developed deep learning-based meth-

ods, and the possibility of integrating deep learning- and template-based approaches to

improve performance remains to be explored. To address these issues, we developed a

novel structure-based integrative algorithm called NABind that can accurately predict DNA-

and RNA-binding residues. A deep learning module was built based on the diversified

sequence and structural descriptors and edge aggregated graph attention networks, while a

template module was constructed by transforming the alignments between the query and its

multiple templates into features for supervised learning. Furthermore, the stacking strategy

was adopted to integrate the above two modules for improving prediction performance.

Finally, a post-processing module dependent on the random walk algorithm was proposed

to further correct the integrative predictions. Extensive evaluations indicated that our

approach could not only achieve excellent performance on both native and predicted struc-

tures but also outperformed existing hybrid algorithms and recent deep learning methods.

The NABind server is available at http://liulab.hzau.edu.cn/NABind/.

Author summary

Ten years ago we developed two hybrid algorithms (DNABind and RBRDetector) to pre-

dict nucleic acid binding residues by combining machine learning- and template-based

strategies. However, this kind of algorithms have been surpassed by recent deep learning

methods. Moreover, the interplay between deep learning- and template-based approaches

has yet to be explored. We thus designed a new generation hybrid algorithm termed

NABind, in which a deep learning module was established by using diversified sequence

and structural descriptors and edge-featured graph attention networks, while a template

module was created by exploiting the relationship between the query protein and its mul-

tiple templates for supervised learning. Afterward, a merging module based on the
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stacking strategy was adopted to integrate the above two modules, and a post-processing

module dependent on the random walk algorithm was utilized to correct the integrative

predictions. The new algorithm outperformed traditional hybrid methods by a large mar-

gin and showed better results than purely deep learning-based methods.

Introduction

Protein-nucleic acid interactions are fundamental to transcription and translation processes

[1,2]. For example, transcription factors that are specific DNA-binding proteins (DBPs) could

regulate gene expression by binding DNA fragments such as promoters and enhancers [3]. A

great number of translational regulators are RNA-binding proteins (RBPs), which regulate

translation initiation using the location of their binding sites on the mRNA [4]. Identification

of nucleic acid binding sites in proteins could be helpful in understanding the mechanisms

underlying these key biological processes. Different experimental techniques, such as X-ray

crystallography, nuclear magnetic resonance and electron microscopy, have been used to

determine the binding modes between proteins and nucleic acids, but these methods are costly

and time-consuming. Thus, there is a pressing need to develop computational algorithms for

predicting DNA- and RNA-binding residues (DBRs and RBRs).

Over the past two decades, a series of algorithms have been developed in this field and

could be classified into three categories based on the underlying strategies, namely feature-

based algorithms, template-based algorithms and hybrid algorithms [5–9]. Feature-based algo-

rithms could infer binding residues through customized scoring functions, machine learning

methods, or deep learning methods. Corsi et al. designed a scoring function that comprised

the circular variance features, sequence conservation, and physicochemical properties to iden-

tify DBRs [10]. Developers of DNAPred, RNABindR, and SVMnuc applied different machine

learning algorithms to nucleic acid binding residue prediction [11–13]. Xia et al. integrated

hierarchical graph neural networks with sequence and structural features (GraphBind) to pre-

dict DBRs and RBRs [14]. Yuan et al. proposed GraphSite which used representations gener-

ated by AlphaFold2 and graph transformers to yield a relatively higher accuracy for DBRs [15].

Li et al. combined protein surface topography with deep residue networks (PSTPRNA) to pre-

dict RBRs [16]. The primary advantage of feature-based algorithms is that they could provide

effective predictions for most query proteins.

Template-based algorithms identify nucleic acid binding residues by mapping binding

information from template proteins to query proteins. Based on sequence or structural infor-

mation, this kind of methods can use different techniques for searching templates. For

instance, Yang et al. developed S-SITE that adopted sequence profile-profile alignments to

detect templates [17]. The structure-based methods, such as TM-SITE and COFACTOR, used

TMalign as the search engine for retrieving the templates of DBPs and RBPs [17,18]. When the

reliable templates are available for query proteins, template-based algorithms could achieve

highly accurate prediction results. However, these approaches might become less effective if

the suitable templates are unavailable. To utilize the complementarity between feature- and

template-based methods, several hybrid algorithms have been developed in this field. For

instance, ten years ago we developed two algorithms, namely DNABind and RBRDetector,

which adopted a piecewise function in conjunction with the weighted combination to merge

machine learning- and template-based strategies for DBR and RBR predictions, respectively

[19,20]. Su et al. proposed NucBind which selected the output of feature- or template-based

module as the final result according to the template quality [13]. Although existing hybrid
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algorithms resulted in better performance compared with the previous state-of-the-art coun-

terparts, this kind of methods have been surpassed by recently developed deep learning-based

algorithms, such as GraphBind and GraphSite [14,15]. Furthermore, the possibility of merging

deep learning and template approaches to improve performance has yet to be explored. Collec-

tively, it is highly desirable to develop a new generation hybrid algorithm to address the above

limitations.

In this work, we designed a novel structure-based algorithm termed NABind to predict

DBRs and RBRs. In this algorithm, a deep learning module was created by using the diversified

sequence and structural features and edge aggregated graph attention networks (EGAT), while

a template module was constructed by transforming the relationship between the query and its

multiple templates for supervised learning. To further improve prediction performance, a

merging module based on the stacking strategy was adopted to combine the above two mod-

ules, and a post-processing module dependent on the random walk algorithm was used to cor-

rect the integrative results. Evaluated on both native and predicted structures, NABind not

only achieved better performance than traditional hybrid algorithms by a large margin but

also outperformed purely deep learning-based methods.

Results

Overview of the NABind algorithm

As shown in Fig 1A, the proposed algorithm is composed of four parts: a deep learning-based

module, a template-based module, a merging module, and a post-processing module. Within

the deep learning phase, the protein structure was converted into a graph representation, the

structural context of each residue was learned by EGAT, and the binding probabilities of resi-

dues were assigned by the fully connected layer. Especially, diversified sequence and structural

descriptors, including embeddings from protein language models and other hand-crafted fea-

tures, were extracted and assigned to the nodes and edges of the graph (Fig 1B). Regarding the

template section, this module searched the query structure against the template library to

obtain suitable templates, generated template-related features for each residue based on query-

template pairs (Fig 1B), and predicted the binding probabilities of residues through machine

learning classifiers. Afterwards, the stacking strategy was adopted to integrate the deep learn-

ing and template modules (Fig 1C). Using the output results of the above two modules as fea-

tures, an ensemble classifier was established to generate the binding probabilities of residues in

the merging phase. Finally, the post-processing module was utilized to correct the outputs of

the merging module by performing random walks on networks comprising protein surface

residues (Fig 1D).

Coupling structural features with sequence features boosted predictions

Based on the training sets (DBR_573 and RBR_495), we assessed the performance of deep

learning module using 5-fold cross-validation. Unless noted otherwise, the performance repre-

sents the results of protein-based evaluations (see Methods). Because only limited structural

information was used in previous deep learning-based methods (e.g. GraphBind and Graph-

Site [14,15]), a group of novel structural descriptors were explored in this work. Moreover, we

compared the effectiveness of structural features and sequence features and investigated the

complementarity between these two types of features. Fig 2A and 2B combined with S1 Fig

and S1 Table shows the performances of different models on the training sets. By leveraging

powerful MSA embeddings, sequence features achieved favorable results. Structural features

yielded relatively worse performance than sequence features for both native and predicted

structures. For instance, the differences in the MCC, AUC and AUPR measures were
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approximately 0.10, 0.05 and 0.10 for DBRs. Meanwhile, a systematic comparison of structural

features between binding and non-binding residues was performed to check whether certain

binding patterns could be captured. Compared to non-binding residues, binding residues

tended to be surrounded by a denser context in terms of graph-based descriptors, be located in

pocket regions in terms of geometry-based descriptors, and be closer to the center of proteins

in terms of distance-based descriptors (Figs 2D and S2). Furthermore, compared to using

sequence features alone, the combination of structural and sequence features could achieve

better performance by approximately 5% in MCC, 2% in AUC, and 5% in AUPR for both

DBPs and RBPs. S1B Fig shows that the density curve of the AUC and AUPR of chains was

shifted toward higher values based on the merged features. The prediction results of a DBP

(PDB ID: 2DWM_C) are shown in Fig 2C. In this example, structural features recovered more

binding residues than sequence features, thus improving overall performance. S1C Fig shows

the number of binding residues in the whole datasets recovered by the two types of features. In

summary, although the utility of structural descriptors was relatively weaker, they could pro-

vide useful clues to binding residues that cannot be identified using sequence descriptors

individually.

Effectiveness of basic modules

In this section, we evaluated NABind on DBR_573 and RBR_495. The results of NABind and

its basic modules are shown in Table 1. For the native protein structures, the deep learning

Fig 1. Flowchart of NABind algorithm. (A) NABind comprising four basic modules (i.e. a deep learning-based module, a template-based module, a merging

module and a post-processing module). In the deep learning module, proteins were represented as graphs which were then fed into the EGAT layer and fully

connected layer for node classification. In the template module, multiple templates were retrieved for each query, and template-related features were generated

for supervised learning. (B) Features used in different modules. For deep learning, node features included sequence descriptors and structural descriptors,

while edge features included the distance and orientation between residues. The template features included overall alignment descriptors and residue-based

alignment descriptors. (C) Schematics of merging module. This module was implemented by the LGBM method, the inputs of which were the outputs of deep

learning and template modules. (D) Schematics of post-processing module. In this module, the random walk process was performed on the surface residue

network to optimize binding probabilities.

https://doi.org/10.1371/journal.pcbi.1011428.g001
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module outperformed the template module by approximately 0.10 in the MCC, AUC and

AUPR measures. Despite the overall advantage of the deep learning module, the binding sites

in a significant fraction of proteins were better predicted by the template module, as shown in

the scatter plots of Figs 3A and S3. By merging the two modules, the MCC, AUC and AUPR

measures were increased from 0.575, 0.931 and 0.695 to 0.595, 0.939 and 0.728 on DBR_573

and from 0.441, 0.880 and 0.581 to 0.473, 0.893 and 0.621 on RBR_495. The P-values of statisti-

cal significance tests are shown in S2 Table. The merging module could obtain more true posi-

tives, especially an increment of 880 residues for DBR_573 (Fig 3A). To further illustrate the

Fig 2. Comparison of deep learning models using different types of features and comparison of structural features of binding and non-binding residues.

(A) AUC measures for different types of features. Significance tests were performed as described in the Methods section. (B) MCC measures for different types

of features. (C) Scatter plots of AUC for native structures and an example with prediction results generated by different types of features. (D) Comparison of

partial structural features between DNA-binding and non-binding residues. The complete comparison is presented in S2 Fig. ORC: Ollivier Ricci curvature,

FRC: Forman Ricci curvature, MFD: multifractal dimension, MIR: minimum inaccessible radius, ASV: accessible shell volume, and USR: ultrafast shape

recognition. Significant differences were evaluated using Wilcoxon rank sum test. **** p< 0.0001, *** 0.0001� p< 0.001, ** 0.001� p< 0.01, * 0.01�

p< 0.05 and ns: p� 0.05.

https://doi.org/10.1371/journal.pcbi.1011428.g002

PLOS COMPUTATIONAL BIOLOGY Prediction of nucleic acid binding residues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011428 September 6, 2023 5 / 24

https://doi.org/10.1371/journal.pcbi.1011428.g002
https://doi.org/10.1371/journal.pcbi.1011428


impact of template module on the overall performance, we showed that the predictive strength

of this module was correlated with the quality of retrieved templates. As shown in Fig 3B, the

Pearson correlation coefficients between the AUC of chains and the TMscore of the best tem-

plate were 0.543 and 0.564 for DBR_573 and RBR_495, respectively. Then, the chains in each

dataset were divided into two groups, namely those with good templates (TMscore > 0.7) and

those without good templates (TMscore < 0.7), to observe the increment in AUC by incorpo-

rating the template module. This analysis was performed on the whole datasets as well as on

the subsets where the deep learning module had poor performance. Here, if the AUC of a

chain was lower than the average AUC of all chains, this chain was considered to be a difficult

case for the deep learning method. Fig 3C displays that the merging module could clearly

improve the AUC measure of chains having high quality templates. This tendency was espe-

cially remarkable for the difficult cases. Meanwhile, the correlation coefficients between the

increment in AUC and the TMscore of the best template were 0.317 and 0.323 for DBPs and

RBPs, respectively. These results indicated that the template module could serve as a comple-

ment to the deep learning module. Fig 3D shows an example to illustrate this point. Compared

to the deep learning module that achieved only 4 true positives, the merging module recovered

8 binding residues by incorporating template information. Subsequently, the results of the

merging model were further corrected by the random walk algorithm on protein surface resi-

dues. Due to the post-processing procedure, the evaluation measures were slightly improved

on both DBR and RBR datasets (Table 1). As shown in S4 Fig, the major contribution of this

process could be the reduction of false positives generated by the merging module, which

would be useful in guiding biological experiments.

Furthermore, we evaluated our method using predicted protein structures. The deep learn-

ing module was still superior to the template module on the predicted structures, but the dif-

ferences in evaluation metrics were more remarkable. Regarding the template method, the

results for predicted structures were clearly worse than those for native structures. For

instance, the MCC, AUC and AUPR were decreased from 0.347, 0.768 and 0.481 to 0.255,

Table 1. Performance of different modules on training sets using 5-fold cross-validation.

Dataset Classifier Recall Precision F1 MCC AUC AUPR

DBR_573 NABindDL 0.748 0.549 0.606 0.575 0.931 0.695

NABindTL 0.610 0.479 0.502 0.455 0.831 0.561

NABindMer 0.812 0.538 0.622 0.595 0.939 0.728

NABind 0.754 0.587 0.634 0.606 0.940 0.729

DBR_573* NABindDL 0.713 0.532 0.581 0.545 0.918 0.658

NABindTL 0.490 0.405 0.404 0.349 0.774 0.464

NABindMer 0.759 0.510 0.582 0.549 0.920 0.666

NABind 0.740 0.524 0.584 0.550 0.920 0.666

RBR_495 NABindDL 0.697 0.454 0.516 0.441 0.880 0.581

NABindTL 0.539 0.427 0.420 0.347 0.768 0.481

NABindMer 0.723 0.482 0.541 0.473 0.893 0.621

NABind 0.733 0.474 0.538 0.470 0.894 0.622

RBR_495* NABindDL 0.677 0.430 0.492 0.410 0.864 0.548

NABindTL 0.495 0.356 0.352 0.255 0.719 0.405

NABindMer 0.725 0.416 0.493 0.413 0.870 0.561

NABind 0.662 0.459 0.500 0.424 0.871 0.563

* represents trRosetta-based predicted protein structures used for evaluation. DL denotes the deep learning-based module, TL denotes the template-based module, and

Mer denotes the merging module.

https://doi.org/10.1371/journal.pcbi.1011428.t001
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0.719 and 0.405 on RBR_495. S5 Fig displays that there was a negative correlation between the

similarity of predicted and native structures and the change in the performance of template

method on the two types of structures. In other words, as the structural similarity decreased,

the performance difference increased remarkably. In contrast, the deep learning method

exhibited promising reliability when applied to the predicted structures. This suggested that

the template method was more sensitive to structural changes than the deep learning method.

Additionally, the effectiveness of our merging module and post-processing module was further

evidenced by the predicted structures. Finally, NABind achieved the MCC, AUC and AUPR of

0.550, 0.920 and 0.666 on DBR_573 and 0.424, 0.871 and 0.563 on RBR_495, respectively.

Based on the native and predicted structures, the better results were observed on DBR_573

than RBR_495 for both NABindDL and NABindTL, which could be attributed to the following

reasons. First, compared with DNAs, RNAs possess more flexible and diversified structures,

which could lead to less conserved binding modes for RBPs than DBPs. The accurate

Fig 3. Usefulness of template-based module and merging module. (A) Performance comparison of the deep learning-based module, template-based module,

and merging module. (B) Relationship between the AUC of chains and the TM-score of the best template. (C) Increments in AUC by incorporating template-

based predictions and the relationship between the increment in AUC of difficult cases and the TM-score of the best template. Difficult cases denote those

chains in the deep learning phase with AUC values less than the average AUC of all chains. (D) An example with prediction results of NABindDL, NABindTL

and NABindMer.

https://doi.org/10.1371/journal.pcbi.1011428.g003
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prediction of RBRs thus becomes more challenging. Second, the structures of DBPs were more

abundant than those of RBPs in training sets. This may result in a more accurate deep learning

module for DBRs. Third, the template library of protein-DNA complexes could be more com-

plete than that of protein-RNA complexes. This resulted in a better template module for DBRs.

Merging the two basic modules, NABind performed more favorably on DBRs than RBRs.

Improvements over our previous hybrid methods

We adopted our previous algorithms, namely DNABind and RBRDetector [19,20], as baseline

methods, which also explored the hybrid strategy to predict DBRs and RBRs, respectively. A

head-to-head comparison of NABind and these two methods was performed on DBR_573 and

RBR_495 to elucidate the improvements in this study. Fig 4A shows the detailed differences in

designs for each module. For the feature-based module, the vast majority of features in

NABind were different from those used in previous methods and were newly used in this field.

Then, the prediction engine was the deep learning model (i.e. EGAT) instead of the machine

learning model (i.e. SVM). Especially, the new model used the attention mechanism to learn

the graph representation of each residue, whereas the traditional models indiscriminately

adopted the features of neighboring residues. Combining the new features with the two types

of representations, the former got better performance (Fig 4B). The comparison of these three

feature-based modules showed that NABindDL remarkably outperformed DNABindML and

RBRDetectorML (Fig 4C). For the template-based method, the new module did not use the

training set as the template library but constructed a comprehensive independent library,

which allowed NABindTL to retrieve more high-quality templates (Fig 4D). Additionally, the

current template-based prediction no longer simply relied on the predicted complex inspired

by the best template, but took into account the alignment consistency between the query and

its multiple templates, which were then converted into template-related features for supervised

learning. Based on these updates, NABindTL achieved more favorable results than DNABindTL

and RBRDetectorTL (Fig 4E and S3 Table). For the integration module, the current method

used a stacking strategy rather than a piecewise function combined with the weighted combi-

nation used previously. As shown in S6C and S6D Fig, the use of stacking yielded slightly bet-

ter results compared to the traditional method. Finally, NABind included a post-processing

procedure which was neglected in the baseline methods. Fig 4F shows that NABind performed

better than the baseline methods on native structures. The similar trends were also observed

for predicted structures (S3 Table).

NABind outperformed existing state-of-the-art methods

To further demonstrate the advantages of our method, we evaluated NABind and other state-

of-the-art methods on the test sets (DBR_129, DBR_181, RBR_117 and RBR_106). As shown

in Table 2 and S4 Table, NABind generated the best performance on all these four datasets by

both protein- and residue-based evaluations, especially outperforming the traditional hybrid

methods (e.g. NucBind, DNABind and RBRDetector) by a large margin. Then, we closely

compared NABind with recently developed deep learning methods. For the native structures,

all the measures of NABind were better than those of GraphBind (the third best DBR predictor

and the second best RBR predictor) and GraphSite (the second best DBR predictor). In terms

of the MCC and AUPR, especially, NABind surpassed these two methods by approximately

0.100. For the trRosetta-based predicted structures, the performance difference between

NABind and GraphSite decreased, while the difference between NABind and GraphBind

increased. For example, the AUCs of NABind, GraphSite, and GraphBind were 0.946, 0.920,

and 0.914 for the native structures in DBR_129, while the measures were 0.925, 0.912, and
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Fig 4. Comparison between NABind and our previous methods (i.e. DNABind and RBRDetector). (A) Differences in the design strategy of

each module. The feature-based module adopted different feature representations and supervised learning models. The template-based module

utilized different approaches for constructing the template library and inferring binding residues based on retrieved templates. The integration

module used the stacking strategy instead of a piecewise function. A newly designed post-processing module was used in the updated method.

(B) Comparison of improved and traditional residue representations using random forest classifiers. (C) Performance comparison of
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0.879 for the predicted structures. Regarding the AlphaFold2-based predicted structures, as

shown in S5 and S6 Tables, our method still performed more favorably than the above two

approaches and other deep learning algorithms (e.g. NCBRpred, NucleicNet and PSTPRNA).

Furthermore, we compared NABindDL with the top-ranked deep learning methods, and our

models achieved generally better measures on the test sets (S7 Fig). Besides, the performance

of each module in our algorithm is provided in S7 Table. The superior performance of NABind

could be attributed to the following two factors: (a) we integrated multifaceted descriptors (e.g.

embeddings from protein language models and novel structural features) and EGAT to build a

powerful deep learning model and (b) we effectively incorporated the template-based predic-

tion results and designed a post-processing module to improve performance.

Case studies

From the DBR_181 and RBR_117 datasets, we selected two examples for case studies and dis-

played the prediction results of different methods. Fig 5A shows the complex of a DBP (PDB

ID: 7D7C_F) and its ligand DNA. This protein has a total of 137 residues, of which 28 are

binding residues. NABind obtained the highest measures (MCC: 0.528, AUC: 0.874, and

AUPR: 0.680) and achieved 16 true positives among 26 predicted binding residues. Despite

yielding a comparable number of true positives, both GraphSite and GraphBind had approxi-

mately twice as many false positives as NABind, resulting in their worse performance. For the

predicted structure of this protein, the performance of GraphSite was relatively stable, while

GraphBind whose performance was strengthened recovered 17 binding residues (Fig 5B). By

generating more true positives and fewer false positives, NABind obtained better results than

the competing methods (MCC: 0.519, AUC: 0.851, and AUPR: 0.608). Fig 5C and 5D shows

the prediction results for the native and predicted structures of an RBP (PDB ID: 5Y58_B).

This protein includes 568 residues, among which 15 are binding residues. For the native struc-

ture, NABind correctly predicted 10 binding residues, which was slightly less than the measure

of PSTPRNA (12 true positives). However, the false positives of PSTPRNA were approximately

two and a half times those of NABind. For the predicted structure, PSTPRNA was still inferior

to our method due to its greater number of false positives. Although GraphBind achieved the

largest number of true positives in this case, the greatest number of false positives also resulted

in its ordinary performance. In contrast, NABind yielded remarkably fewer false positives and

showed the best performance on both the native and predicted structures (MCC: 0.378 and

0.443, AUC: 0.940 and 0.914, and AUPR: 0.383 and 0.273).

Discussion

The primary innovation of our algorithm is the combination of deep learning- and template-

based methods for DBR and RBR predictions. NABind achieved excellent performance on

both native and predicted structures, which could be attributed to the interplay among our

four basic modules. In the deep learning module, embeddings from protein language models

and novel structural features were applied to edge-featured graph attention networks. Results

showed that sequence-based features were more effective than structure-based counterparts,

and the integration of them could lead to more favorable prediction accuracy. Moreover, the

structural context learned by EGAT was superior to the traditional residue representation.

Although the deep learning module played a major role in our algorithm, the improved

NABindDL, DNABindML and RBRDetectorML. (D) Statistics of best templates retrieved by current and previous methods. (E) Performance

comparison of NABindTL, DNABindTL and RBRDetectorTL. (F) Performance comparison of NABind and our previous methods.

https://doi.org/10.1371/journal.pcbi.1011428.g004
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Table 2. Comparison of NABind and existing methods on test sets.

Dataset Method Recall Precision F1 MCC AUC AUPR

DBR_129 COACH-D* 0.300 0.251 0.256 0.213 0.652 0.276

COACH-D 0.339 0.291 0.291 0.253 0.679 0.313

NCBRPred 0.590 0.268 0.331 0.300 0.817 0.360

SVMnuc 0.595 0.282 0.352 0.320 0.821 0.364

NucBind* 0.590 0.286 0.357 0.327 0.816 0.378

NucBind 0.600 0.282 0.352 0.333 0.824 0.376

DNABind* 0.689 0.322 0.405 0.383 0.864 0.456

DNABind 0.683 0.383 0.455 0.438 0.885 0.476

GraphBind* 0.614 0.377 0.420 0.403 0.879 0.484

GraphBind 0.660 0.417 0.472 0.458 0.914 0.549

GraphSite* 0.566 0.423 0.441 0.425 0.912 0.536

GraphSite 0.584 0.471 0.466 0.455 0.920 0.560

NABind* 0.708 0.420 0.494 0.482 0.925 0.560

NABind 0.700 0.504 0.541 0.535 0.946 0.637

DBR_181 COACH-D* 0.254 0.199 0.203 0.171 0.637 0.222

COACH-D 0.297 0.209 0.225 0.198 0.660 0.239

NCBRPred 0.441 0.238 0.264 0.240 0.798 0.296

SVMnuc 0.545 0.216 0.282 0.260 0.802 0.285

NucBind* 0.544 0.222 0.286 0.265 0.802 0.288

NucBind 0.540 0.227 0.290 0.269 0.802 0.290

DNABind* 0.626 0.230 0.304 0.295 0.839 0.342

DNABind 0.598 0.290 0.349 0.339 0.871 0.351

GraphBind* 0.465 0.289 0.312 0.297 0.836 0.346

GraphBind 0.566 0.331 0.379 0.370 0.895 0.421

GraphSite* 0.454 0.343 0.345 0.332 0.892 0.413

GraphSite 0.488 0.362 0.372 0.360 0.914 0.455

NABind* 0.632 0.330 0.405 0.400 0.909 0.464

NABind 0.658 0.432 0.484 0.481 0.937 0.550

RBR_117 COACH-D* 0.167 0.107 0.116 0.093 0.568 0.147

COACH-D 0.223 0.133 0.150 0.132 0.602 0.186

NCBRPred 0.262 0.133 0.143 0.118 0.665 0.200

NucBind* 0.543 0.155 0.219 0.180 0.721 0.230

NucBind 0.407 0.204 0.238 0.200 0.725 0.243

SVMnuc 0.406 0.202 0.237 0.192 0.725 0.241

aaRNA* 0.339 0.208 0.221 0.172 0.725 0.239

aaRNA 0.475 0.209 0.249 0.206 0.759 0.267

NucleicNet* 0.405 0.181 0.222 0.174 0.660 0.198

NucleicNet 0.461 0.286 0.315 0.286 0.740 0.306

PSTPRNA* 0.544 0.198 0.259 0.224 0.763 0.274

PSTPRNA 0.644 0.222 0.293 0.278 0.809 0.343

RBRDetector* 0.527 0.232 0.277 0.248 0.790 0.318

RBRDetector 0.545 0.274 0.313 0.291 0.818 0.359

GraphBind* 0.470 0.224 0.257 0.229 0.780 0.285

GraphBind 0.536 0.305 0.324 0.312 0.848 0.386

NABind* 0.546 0.280 0.330 0.311 0.852 0.383

NABind 0.659 0.306 0.377 0.368 0.882 0.457

RBR_106 COACH-D* 0.215 0.132 0.152 0.127 0.598 0.209

(Continued)
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template method provided complementary information by using relevant features extracted

from multiple high-quality templates for supervised learning. Accordingly, when the two mod-

ules were merged through a stacking strategy, we observed a beneficial effect on the overall

performance. The correction of the integrative results by the post-processing module further

improved the prediction accuracy. Because of the contribution of each module, NABind not

only outperformed conventional hybrid algorithms by a large margin but also surpassed recent

deep learning-based approaches.

Although the progress was achieved, our algorithm still had several limitations. We noticed

that the utility of our template-based module remarkably decreased when NABind was applied

to predicted protein structures, indicating that this module was very sensitive to structural

changes. Therefore, the robustness of the template-based method should be enhanced. Because

DNA- and RNA-binding regions share many similarities, most existing predictors of DBRs

could cross-predict many RBRs as DNA-binding, and vice versa. In other words, the discrimi-

nation between DBRs and RBRs is difficult. To check whether our method suffered from this

issue, the cross-prediction was performed by training the model on the DBR (RBR) set and

testing the model on the RBR (DBR) set. As seen in S8 Table, the prediction results were very

close to those of canonical tests, probably due to the similar binding patterns shared by DBRs

and RBRs (S2 Fig). Accordingly, we need to design specific features for discriminating between

these two types of binding residues. In conclusion, we present NABind, an accurate algorithm

for predicting nucleic acid binding residues, and the proposed strategies could be applied to

other types of protein functional sites in the future.

Materials and methods

Dataset collection

Here, we derived three DBR datasets and two RBR datasets from previous studies. Based on

the number of proteins, the five datasets were named DBR_573, DBR_129, DBR_181,

Table 2. (Continued)

Dataset Method Recall Precision F1 MCC AUC AUPR

COACH-D 0.235 0.185 0.189 0.162 0.618 0.239

NCBRPred 0.233 0.224 0.171 0.145 0.673 0.255

NucBind* 0.515 0.209 0.277 0.211 0.718 0.275

NucBind 0.439 0.223 0.276 0.207 0.717 0.275

SVMnuc 0.546 0.212 0.285 0.213 0.728 0.276

aaRNA* 0.432 0.236 0.280 0.206 0.727 0.277

aaRNA 0.425 0.275 0.303 0.238 0.762 0.324

NucleicNet* 0.367 0.237 0.265 0.193 0.647 0.231

NucleicNet 0.501 0.327 0.365 0.314 0.728 0.353

PSTPRNA* 0.341 0.118 0.164 0.082 0.589 0.173

PSTPRNA 0.627 0.334 0.406 0.363 0.840 0.418

RBRDetector* 0.549 0.254 0.313 0.254 0.771 0.339

RBRDetector 0.387 0.363 0.334 0.288 0.796 0.380

GraphBind* 0.412 0.284 0.294 0.243 0.748 0.325

GraphBind 0.489 0.379 0.378 0.341 0.818 0.436

NABind* 0.507 0.391 0.393 0.357 0.854 0.452

NABind 0.638 0.443 0.479 0.449 0.884 0.542

* represents trRosetta-based predicted protein structures used for evaluation.

https://doi.org/10.1371/journal.pcbi.1011428.t002

PLOS COMPUTATIONAL BIOLOGY Prediction of nucleic acid binding residues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011428 September 6, 2023 12 / 24

https://doi.org/10.1371/journal.pcbi.1011428.t002
https://doi.org/10.1371/journal.pcbi.1011428


RBR_495 and RBR_117, respectively (S9 Table). Among these datasets, DBR_181 was collected

by GraphSite, and the other four datasets were prepared by GraphBind. This could be benefi-

cial to a fair comparison of our method and other state-of-the-art deep learning models

[14,15]. As suggested by previous works, DBR_573 and RBR_495 were utilized as the training

sets to develop DBR- and RBR-related prediction models, respectively, and the remaining

Fig 5. Prediction results of several examples generated by NABind and other state-of-the-art methods. (A) Results for the native structure of a DBP (PDB

ID: 7D7C_F). (B) Results for the trRosetta-based predicted structure of this DBP. (C) Results for the native structure of an RBP (PDB ID: 5Y58_B). (D) Results

for the trRosetta-based predicted structure of this RBP.

https://doi.org/10.1371/journal.pcbi.1011428.g005
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datasets were treated as the corresponding test sets. Note that the sequence identities within

the training set and those between the training and test sets were less than 30% by using

CD-HIT. All the entries in these datasets were collected from the BioLiP database [21]. A resi-

due was considered to be a binding residue if the distance between any atom of this residue

and any atom of the nucleic acid molecule was less than 0.5 Å plus the van der Waal’s radius of

these two atoms. As suggested by GraphBind, the data augmentation procedure was applied to

the training sets to alleviate the data imbalance problem of binding and non-binding residues

[14]. Briefly, the creators of DBR_573 and RBR_495 transferred the binding annotations from

other protein chains in BioLiP with high sequence and structural similarities (sequence

identity> 0.8 and TMscore > 0.5) to the representative chain in these two datasets. As a result,

the percentages of DBRs and RBRs were increased by 30.7% and 24.3%, respectively. Addition-

ally, based on the latest BioLiP database (version: 2023-04-13), we constructed another non-

redundant test set of 106 RBPs (termed RBR_106). The sequence identities between RBR_106

and the other two RBR-related datasets were less than 30%. For each dataset, in addition to the

native structure of proteins, the predicted structures were generated by trRosetta. Regarding

the test sets, AlphaFold2-based predicted structures for DBPs were provided by GraphSite,

while those for RBPs were retrieved from the AlphaFold database (S1 Text) [15,22,23].

Feature extraction

Sequence-related features. MSA embedding. Trained on a huge number of single

sequences or multiple sequence alignments (MSA), unsupervised protein language models are

able to learn the structure and function of proteins [24–26]. Among existing protein language

models, the ESM-MSA-1b, which takes an MSA as input and adopts row and column atten-

tions, has shown excellent performance on various protein-related tasks [26]. The MSA

embedding of each sequence was generated using ESM-MSA-1b with the input of 128

sequences achieving the maximum Hamming distance in an MSA.

Position specific scoring matrix. To yield the position specific scoring matrix (PSSM), each

sequence was searched against the UniRef90 database using PSI-BLAST with three iterations

and an E-value of 0.001 [27]. The values in the matrix were normalized using the sigmoid

function as follows:

y ¼
1

1þ e� x

Hidden Markov models profile. Different from PSI-BLAST, HHblits utilizes Hidden Markov

Models (HMM) to find remote homologs [28]. The HMM profile was generated using HHblits

with default parameters to search against the UniClust30 database. The original profile was

composed of emission frequencies, and the inverse transformation was thus conducted as fol-

lows:

y ¼ 2� 0:001x

Structure-related features. Structural embedding. ESMIF, one of the state-of-the-art algo-

rithms for protein design, is adopted to recover sequences from backbone structures [29]. In

this study, the structural embedding of each residue was translated from the backbone struc-

ture by ESMIF for the prediction of binding residues.

Graph-based descriptors. Each protein can be represented as a graph, where residues are

treated as nodes and the edges are identified according to our previous studies [19,20]. As sug-

gested by Cha et al.’s work, the Ollivier Ricci curvature (ORC) and Forman Ricci curvature
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(FRC) were used to measure the geodesic path complexity of nodes based on Riemannian

geometry [30–33]. ORC could be interpreted by the optimal transport theory, in which edges

with positive measures form communities, whereas edges with negative measures are treated

as bridges between communities. The formula can be presented as follows:

ORC xð Þ ¼
X

y2eðx;yÞ

ORCeðx; yÞ ¼
X

y2eðx;yÞ

1 �
Wðmx;myÞ

dðx; yÞ

where e(x, y) is the set of edges formed by nodes x and y, mx and my are density distributions,

and W(mx, my) is the Wasserstein distance used to measure the minimum cost for transform-

ing mx into my. Unlike ORC, FRC is dependent on the framework of CW complexes and can

be calculated as follows:

FRC xð Þ ¼
X

y2eðx;yÞ

FRCeðx; yÞ ¼
X

y2eðx;yÞ

we
wx

we
þ
wy

we
�
X

x;y2eðx;yÞ

wx
ffiffiffiffiffiffiffiffiffiffiffiwewex
p þ

wy
ffiffiffiffiffiffiffiffiffiffiffiwewey
p

" # !

where we, wx and wy are the weights of edge e, node x and node y. wex and wey are the weights

of edge e incident on nodes x and y. Edge-based curvatures, namely ORCe(x, y) and FRCe(x, y),

were computed using the GraphRicciCurvature python package.

Besides, the node-based multifractal dimension (MFD) is an indicator to measure the net-

work complexity in multifractal analysis [30,34,35]. A higher MFD value indicates a higher

degree of complexity. Using the box-covering method, we estimated this measure by investi-

gating the power-law behavior between the mass distribution and the size of the box centered

on the target node as follows:

y ¼ log
MðlÞ
l

� �

where l is the maximum value of the shortest paths between the target node and other nodes in

the box, and M(l) is the mass distribution that is the number of nodes in the box. The graph-

based descriptors were transformed into Z-scores based on the mean and standard deviation

of all samples in the training set.

Geometry-based descriptors. Three local structural descriptors, including the minimum

inaccessible radius, accessible shell volume and pocketness, were used to evaluate the extent of

depth and exposure of a given residue. These measures were generated by the pocket detection

software called GHECOM [36–38]. The geometry-based descriptors were also converted into

Z-scores.

Distance-based descriptors. Referring to Xia et al.’s work, we adopted the distance-based fea-

tures that measure the relative position of a residue in the protein structure at different scales

[39]. To this end, the centroids of different fragments in the protein were treated as reference

points, and the distances from the target residue to reference points were calculated as features.

A smaller distance implies that the residue is closer to the center of a given context. The num-

ber of desired fragments determines the dimension of the feature vector, which could be pre-

sented as follows:

Pref ¼
2m

N

X

v2V
g� 1ð Þ N

2m½ �: g N
2m½ �
v g 2 1; 2; . . . 2mf g

y ¼ kt � pk p 2 Pref

where 2m (m2{0,1,2}) represents the number of desired fragments, N represents the sequence
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length, V
ðg� 1Þ N

2m½ �: g N2m½ �
represents a contiguous fragment of the protein, and t represents the

coordinates of target residue.

Additionally, the distance descriptors that are dependent on the ultrafast shape recognition

(USR) method were used to capture the topological relationship between the target residue

and the global structure [40]. The topological properties of each residue could be characterized

by the distance sets relevant to three reference residues, namely the target residue r, the residue

b that is farthest from r, and the residue g that is farthest from b. Thus, the USR features can be

calculated as follows:

ur ¼
1

L

X

1�i�L

jjr � aijj

ub ¼
1

L

X

1�i�L

jjb � aijj

ug ¼
1

L

X

1�i�L

jjg � aijj

8
>>>>>>>>><

>>>>>>>>>:

where L is the sequence length and ai is the coordinates of the ith residue.

Distance and orientation between residues. The distance between two residues is defined as

the shortest distance between their heavy atoms. The relative orientation between residues is

defined as the absolute value of the angle between the surface normals of the planes for the two

residues, and the plane is determined by the alpha carbon atom, the carbon atom of the car-

boxyl group, and the nitrogen atom of the amino group. These two descriptors were used as

edge features in EGAT.

Template-related features. Based on each query-template pair, the overall alignment fea-

tures and the residue-based alignment features were calculated. The first category included the

sequence identity between the query and template proteins provided by NWalign and the

structure alignment score output by TMalign [41]. The second category included the BLO-

SUM62 alignment score, secondary structure alignment score (S11 Table), distance between

aligned residues, and binding probability [42–44]. To achieve the last two features, the query

protein was superimposed onto the template structure. If the target residue was within 4.5 Å of

the nucleic acids, its binding probability was 1; otherwise, the binding probability was 0

[19,20].

Deep learning-based module

The protein structure was represented as a graph in which the nodes are residues and the

edges indicate a contact between two residues if the distance between any atoms of the residues

is less than 10Å. As shown in Fig 1B, subsequently, a variety of features were extracted and

assigned to nodes and edges. Edge features included the distance between two residues and the

relative orientation of two residues, while node features included all the sequence- and struc-

ture-related descriptors mentioned above. The constructed graph was fed into the graph neu-

ral network, which could update the representation of each residue. EGAT, an extension of the

graph attention network (GAT) by incorporating edge features, was adopted to implement the

graph neural network [45]. GAT computes the attention scores mainly based on node features,

whereas EGAT estimates the weights using both node and edge features. Given the initial fea-

ture hi, the update of node i can be presented as follows:

h0i ¼Whi þ b

where h0i is the updated node feature, W is the parameter matrix, and b is the bias. The
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attention score was derived from the formula:

aij ¼
expðeijÞ

P
k2Ni

expðeikÞ

where aij denotes the attention score, and Ni denotes the neighbors of node i. eij is the unnor-

malized weight, which was calculated by the following equations:

eij ¼ Ff 0ij

f 0ij ¼ LeakyReLUðA½h0ijjfijjjh
0

j�Þ

where fij and f 0ij denote the edge features before and after the update, respectively. F and A are

learnable parameter matrices. The node messages output from the EGAT layer were calculated

as follows:

h00i ¼
X

k2Ni
aikh

0

k

In this work, the node features derived from the last layer together with the initial node fea-

tures were passed through the fully connected layer to yield the binding probabilities:

Y ¼ SigmoidðW2ðReLUðW1½HkH
00� þ b1ÞÞ þ b2Þ

whereW1,W2, b1 and b2 are learnable parameters. H andH00 are the original and updated node

features, respectively. This framework included one EGAT layer and one fully connected layer.

We combined PyTorch and DGL to implement the prediction model, which was trained for 50

epochs [46,47]. The loss function was the weighted cross-entropy loss in which the weight of posi-

tive samples was set to 50 [48]. The Nesterov accelerated gradient was used in the model with the

momentum factor of 0.9, the L2 penalty of 1e-6, and the learning rate of 1e-4. To avoid overfitting,

dropout with a ratio of 0.5 was applied to the fully connected layer [49]. By choosing different ran-

dom seeds, we trained five models to enhance the robustness of our prediction results.

Template-based module

To construct the template library, we retrieved all entries with the ligand ID of NUC from the Bio-

LiP database [21]. Then, we classified these entries into DBP- and RBP-related libraries using an

in-house script. After scanning a query structure against the template library, we eliminated struc-

turally irrelevant alignments and highly similar structures. Accordingly, reserved templates should

satisfy the following constraints: the TMscore was greater than 0.3, and the sequence identity was

less than 0.3 [41]. Considering the sequence redundancy among the retained templates, we further

divided them into different clusters using CD-HIT with 90% sequence identity [50]. In each clus-

ter, the template with the highest TMscore was chosen. These representatives were ranked accord-

ing to their TMscores, and the top 20 templates were finally reserved. For each residue in the

query, template-related features were generated based on the selected templates (see Feature

extraction). If the number of templates was less than 20, the values of corresponding features were

set to 0. Based on these features, three classifiers were trained to identify binding residues using

the random forest, extreme gradient boosting and light gradient boosting machine [51–53].

Merging module

To fully make use of the interplay between the deep learning and template modules, we con-

structed a meta-classifier by using a stacked generalization strategy [54]. Briefly, the five deep
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learning-based classifiers and the three template-based classifiers were treated as lower-level

models, and their prediction scores for each residue were used as the input features of a light

gradient boosting machine, which served as the higher-level model and generated the integra-

tive predictions. All the hyper-parameters of classifiers are summarized in S12 Table.

Post-processing module

Inspired by our previous work for predicting binding sites in nucleic acids, we developed a

post-processing module based on the random walk with restart (RWR) algorithm [55]. Note

that only protein surface residues were involved in this procedure. To this end, the protein sur-

face should be converted into a residue network. The RWR is a diffusion process that allows

information (i.e. binding probabilities) to be transferred between residues in the network, so

that the binding probabilities of residues could be repeatedly optimized until the network

achieves a stable state. The weight matrix W representing the probability of moving from resi-

dues to their neighbors was calculated as follows:

wij ¼

d � dij
d

if dij < d; rsai > 0:1 and rsaj > 0:1

0 otherwise

8
<

:

where δ is the distance cutoff for generating residue networks (i.e. 10 Å), dij is the distance

between residues i and j, and rsaiand rsaj are the relative solvent accessibility of residues i and

j, which were calculated by NACCESS [56]. The distance threshold is identical to the con-

straint of graph representations in our deep learning module, while the rsa cutoff is derived

from our previous algorithms. The column-wise normalization was conducted on this matrix,

and then the RWR algorithm was implemented as follows:

ptþ1 ¼ ð1 � bÞptW þ bp0

where pt+1 and pt denote the probability vector of surface residues at t+1 and t steps, respec-

tively. p0 denotes the initial probability vector which is the result of the merging module. β is

the restart probability which denotes the probability of the walker going back to the source

node and was set to 0.9. When |pt+1−pt|<1e−2, the RWR process was terminated and pt was

seen as the final probability vector.

Performance evaluation

We performed 5-fold cross-validation on the training sets and independent testing on the test

sets. Six widely used measures were adopted to evaluate the effectiveness of the proposed

model. Recall, precision, F1 and Matthews correlation coefficient (MCC) were calculated as

follows:

Recall ¼
TP

TPþ FN

Precision ¼
TP

TP þ FP

F1 ¼
2∗Recall∗Precision
Recallþ Precision
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MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTP þ FPÞðTN þ FNÞðTN þ FPÞ

p

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and

false negatives, respectively. In addition, the area under the receiver operating characteristic

curve (AUC) and area under the precision-recall curve (AUPR) were calculated. The MCC,

AUC and AUPR were used as major measures. Here, we used both protein- and residue-based

evaluations. For the first strategy, the measures were calculated for each protein, and the aver-

age results were reported for each dataset. For the second strategy, the measures were com-

puted by concatenating the predictions of all residues in each dataset. Because the first strategy

is more rigorous, it was chosen as the major method. Notably, regarding the deep learning and

template modules, the mean score of the outputs of multiple classifiers was applied to perfor-

mance evaluation.

Statistical test

Statistical tests were performed to evaluate significant differences in performance between dif-

ferent models. For a given dataset, 70% of the proteins were randomly selected, and the mean

values of AUC and AUPR were calculated. This procedure was repeated ten times. The Ander-

son-Darling test was then used to assess whether these values obey normal distribution. Based

on the normality assumption, the paired t-test or Wilcoxon rank sum test was selected for sta-

tistical tests.
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S1 Text. Extraction of predicted structures for RBPs from AlphaFold database.
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S1 Fig. Comparison of deep learning models using different types of features on training

sets. (A) AUPR measures for different types of features. Statistical tests were performed as

described in the Methods section. **** p< 0.0001, *** 0.0001� p< 0.001, ** 0.001�

p< 0.01, * 0.01� p< 0.05 and ns: p� 0.05. (B) Density curves of AUC and AUPR for native

structures using different types of features. (C) Numbers of binding residues retrieved by dif-

ferent types of features for native structures and predicted structures (*). (D) ROC and preci-

sion-recall curves for native and predicted structures using different types of features.
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S2 Fig. Comparison of structural features of binding and non-binding residues in training

sets. (A-C) Graph-based descriptors. (D-F) Geometry-based descriptors. (G-P) Distance-
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p< 0.0001, *** 0.0001� p< 0.001, ** 0.001� p< 0.01, * 0.01� p< 0.05 and ns: p� 0.05.
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Comparison of these two modules in terms of the AUPR measure.
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S6 Fig. Comparison of merging strategies in our previous and current algorithms (i.e.

weighted combination and stacking, respectively). (A) Searching optimal parameters for

previous methods on DBR_573. (B) Searching optimal parameters for previous methods on
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