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Abstract—Proteins are among the most important substances 

in the human body, and identifying protein-DNA binding sites is 

crucial for studying their interactions. Although traditional wet-

lab methods can accurately identify these sites, they are time-

consuming, labor-intensive, and expensive, making it challenging 

to keep pace with the rapid increase in protein sequence data. In 

this study, we propose the Memory Attention-Based Protein-DNA 

Binding Sites Prediction (MAPDB) model, which leverages multi-

head Memory Attention for predicting protein-DNA binding sites. 

Our model employs a pre-trained embedding module to generate 

numerical representations of protein sequences, followed by a 

feature extraction module that uses Memory Attention to capture 

both intra-sequence and inter-sequence relationships. Extensive 

experiments on five benchmark datasets show that our model 

outperforms other state-of-the-art methods, especially in 

improving MCC scores. These results indicate that MAPDB 

effectively captures complex relationships within protein 

sequences, leading to more accurate predictions of protein-DNA 

binding residues. 

Keywords—Protein-DNA Binding Sites, Bioinformatics, 

Attention Mechanism, Protein Language Model 

I. INTRODUCTION 

Proteins are essential components of cells, involved in 
various critical biological activities and processes within 
organisms. However, proteins do not function independently; 
they operate through interactions with other substances [1]. For 
example, proteins can bind with metal ions to carry out specific 
biological functions. The binding of Cu²⁺ ions with proteins can 
induce oxidative modification of aldose reductase, while the 
binding of Mn²⁺ ions with proteins can lead to the formation of 
an oxygen-evolving complex related to photosynthesis [2]. 
Proteins also interact with other biological molecules, such as 
DNA and RNA, which are fundamental to cellular functions. 
These interactions play crucial roles in gene transcription, 
replication, translation, and regulation of cell metabolism, as 
well as in the replication and transmission of genetic information 
and the transport of essential substances [3, 4]. Among these 
interactions, the interaction between proteins and DNA is 
particularly significant. It is essential for recognizing 
transcription sites, DNA transcription, and DNA splicing. 
Moreover, since protein-DNA binding depends on specific 
residues within the proteins, accurately identifying these binding 

residues is of great significance for understanding the 
mechanisms of protein-DNA interactions and for designing 
novel drugs [5]. 

Traditionally, protein-DNA binding residues are identified 
through wet-lab methods such as Fast ChIP, electrophoretic 
mobility shift assays, and X-ray crystallography. These methods 
provide highly accurate identification of protein-DNA binding 
residues and form the basis for understanding protein-DNA 
interactions and conducting subsequent analyses. However, 
traditional wet-lab methods are labor-intensive, costly, and often 
time-consuming [6]. Consequently, researchers have 
increasingly focused on computational approaches—
particularly the widely popular machine learning and deep 
learning methods in recent years—to identify protein binding 
residues. These computational methods approach the 
identification of protein binding residues as a binary 
classification problem for each residue and then train models on 
benchmark datasets to distinguish protein binding residues. 

To date, numerous methods using traditional machine 
learning or deep learning have been proposed to identify protein 
binding residues. Among traditional machine learning methods, 
Hu et al. introduced TargetDNA, which utilizes a linear kernel 
alignment algorithm to weight and combine the evolutionary 
information of proteins with predicted solvent accessibility, 
employing a support vector machine (SVM) as a classifier to 
predict protein-DNA binding residues [7]. To address the issue 
of imbalanced positive and negative samples in protein-DNA 
binding residue prediction, Zhu et al. proposed an SVM 
algorithm based on ensemble hyperplane distances [8]. Ding et 
al. used a graph-regularized k-local hyperplane distance nearest 
neighbor algorithm to tackle sample imbalance issues in protein-
nucleotide classification [9]. In the realm of deep learning 
methods, PredDBR is a sequence-based approach that uses three 
features—predicted secondary structure, position-specific 
frequency matrix, and predicted ligand-binding residue 
probability—as input features and employs a convolutional 
neural network (CNN) for feature extraction, resulting in more 
accurate protein-DNA binding residue predictions [10]. 
DeepCSeqSite utilizes seven features extracted from protein 
sequences as inputs and is constructed using a multi-stage 
convolutional neural network [11]. 

However, most existing methods typically use a sliding 
window technique to pre-extract features of protein residues, 
which means that only a portion of the residue sequence is 
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observed at a time [12]. Consequently, it is challenging for these 
methods to observe an entire protein sequence in one go. To 
address this issue, our previous work leveraged protein sequence 
features—including the Position-Specific Scoring Matrix 
(PSSM) and predicted secondary structure—and employed a 
deep learning model to hierarchically extract residue 
correlations across the entire protein sequence [13]. These 
extracted features were then used to predict binding residues. 
The drawback of this method is that the sequence features used 
are difficult to obtain, and the prediction accuracy still requires 
improvement. 

As described earlier, with the deepening exploration of deep 
learning in bioinformatics, an increasing number of studies are 
investigating the potential of deep learning for predicting protein 
binding residues, leading to improved predictive performance. 
However, existing deep learning methods often fail to fully 
capture inter-residue relationships and tend to rely on manually 
crafted features of protein residues. This approach contradicts 
the inherent feature-learning capability of deep learning, 
preventing these models from reaching their full potential. 
Consequently, the predictive performance of current deep 
learning models remains suboptimal. With advancements in 
natural language processing (NLP) and the development of pre-
trained models such as GPT [14] and BERT [15], researchers 
can now accurately represent input sequences by pre-training on 
large datasets. Drawing inspiration from these NLP models, we 
attempt to apply biological language processing, where protein 
sequences are analogized as natural text sequences and residues 
as tokens. To this end, we propose the Memory Attention-Based 
Protein-DNA Binding Sites Prediction (MAPDB) model. First, 
we use a pre-trained model to generate numerical 
representations of protein sequences. Additionally, to capture 

relationships both within each protein sequence and between 
different sequences in the dataset, we employ a Memory 
Attention (MA) deep learning model. This model can take the 
numerical representation of an entire protein sequence as input 
and extract inter-residue relationships within the same sequence. 
Furthermore, Memory Attention constructs a "knowledge base" 
to capture relationships across different protein sequences. 
Experimental results demonstrate that our model predicts 
protein-DNA binding residues more accurately than other state-
of-the-art methods. 

II. METHODOLOGY 

The overall architecture and workflow of the MAPDB model 
are illustrated in Fig. 1, highlighting its three primary modules: 
(A) the Pre-trained Embedding Module, (B) the Feature 
Extraction Module, and (C) the Classification Module. The 
workflow is as follows: Each protein sequence in the dataset is 
processed through the Pre-trained Embedding Module to obtain 
its numerical representation. Then, Module B (as shown in Fig. 
1B) further extracts features from the numerical representation 
of each protein. Since the multi-head Memory Attention model 
operates on the feature dimensions of individual residues, it 
imposes no requirements on the length of the input protein 
sequence. This enables us to input an entire protein sequence at 
once, without needing to use a sliding window technique to 
standardize the sequence length. Finally, the features extracted 
by Module B are passed to Module C, where a fully connected 
layer is used to classify and predict protein-DNA binding 
residues. Additionally, the model parameters in Module B and 
Module C are updated using backpropagation. However, the 
model parameters in Module A are frozen and not updated via 
backpropagation. The detailed description of each module will 
be provided in the following sections. 

Fig. 1. The Overall Framework of the MAPDB Model 
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A. Pre-trained Embedding Module 

To effectively represent protein sequences, we utilize the 
ESM pre-trained model to generate numerical embedding 
representations for each protein sequence [16]. The ESM model 
employs the Transformer encoder [17], treating each amino acid 
as a token in a manner similar to natural language processing, 
and completes training accordingly. The ESM model is pre-
trained on the UniParc dataset [18], which contains 250 million 
protein sequences and 86 billion amino acid tokens. The 
resulting ESM-1b model consists of 33 Transformer encoding 
layers and has approximately 650 million parameters. The ESM 
model accepts an entire protein sequence as input. And if the 
sequence length is L, it outputs a feature representation of 
dimension L*1280, where each residue is represented by a 1280-
dimensional feature vector. Since the ESM model treats each 
residue in a protein as a token and protein-DNA binding site 
prediction is also a residue-level classification task, the residue 
features obtained from the ESM model are highly suitable for 
predicting protein-DNA binding sites. 

B. Feature Extraction Module 

After obtaining the protein embedding representations, 
further feature extraction is required to derive the final features 
of the protein sequence. Here, we introduce the Self-Attention 
Mechanism and the Memory Attention approach proposed in 
this study. 

(1) Self-Attention Mechanisms 

The self-attention mechanism provides an effective way to 
capture the contextual information of the input sequence through 
the triplet of (Q-query, K-key, V-value) [19]. In the self-
attention mechanism, the query Q, key K, and value V are all 
obtained from the same sequence through spatial mapping, with 
the formula as follows: 

Q=WqS                                       (1) 

K=WkS                                       (2) 

V=WvS                                       (3) 

Where 𝑆 ∈ ℝ𝑑×𝑁 represents the original sequence, with N and d 
denoting the sequence length and the embedding dimension of 

each token, respectively. 𝑊𝑞 ∈ ℝ𝑞×𝑑, 𝑊𝑘 ∈ ℝ𝑘×𝑑, 𝑊𝑣 ∈ ℝ𝑣×𝑑 

are the transformation matrices corresponding to Q, K, and V, 
respectively, where q, k, and v represent the dimensions of Q, K, 
and V. In general, 𝑞 = 𝑘 = 𝑣. 

After obtaining Q, K, and V, Q and K can be multiplied to 
obtain the self-attention matrix A: 

A=softmax(QKT)                               (4) 

where 𝐴 ∈ ℝ𝑁×𝑁 is the attention matrix composed of attention 
scores 𝑎𝑖,𝑗 , with 𝑎𝑖,𝑗  indicating the strength of the association 

between the i-th token and the j-th token. Then, by multiplying 
V with the self-attention matrix A, the final output can be 
obtained: 

Y=AV                                        (5) 

Although the self-attention mechanism can capture the internal 
correlations within the input sequence, it only functions within 

the input sequence and cannot link different sequence inputs 
together. To extract associations across all data in the dataset, 
we propose a Memory Attention. 

(2) Memory Attention 

Given that the self-attention mechanism can only find 
correlations within the input sequence, we propose Memory 
Attention. It can construct a knowledge base to store the 
associations between all the sequences that have been 
input.Specifically, the attention mechanism functions through 
the interaction of the (Q-query, K-key, V-value) triplet. Here, 
we change the way Q, K, and V are generated. For Q-query, we 
still use the spatial mapping of the input sequence: 

Q=WqS                                        (6) 

As for K-key and V-value, instead of using the input 
sequence as in the self-attention mechanism, we construct a 
global knowledge base to store key information from all 
sequences in the dataset. There are two specific implementation 
methods: (1) storing global information in the neurons of an 
MLP, and (2) constructing a global vector for K-key and V-
value, respectively. By using these methods to build the global 
knowledge base, we can obtain the final output of the input 
sequence through MA. The specific implementation processes 
of the two methods are detailed in Algorithm 1 and Algorithm 2. 

(3) Multi-head Memory Attention 

 Multi-head MA extends the basic MA by employing 
multiple independent MA mechanisms to obtain multiple 
independent spatial representations. This approach allows the 
model to focus on different positions, capturing relationships 
between different locations and across different layers. 

Similar to the multi-head self-attention mechanism, MA can 
also be divided across different input dimensions, forming a 
multi-head MA. Using multi-head MA can enhance model 
performance. On one hand, it allows the model to focus on 
different positions, thereby capturing relationships between 
different locations. Additionally, it helps avoid potential 
negative impacts that might arise from relying on a single 
knowledge base. Multi-head MA can be calculated as follows: 

MultiHead (Q, K, V)= Concat (head1, head2, …, headH)Ws                            
(7) 

Algorithm 2   Pseudo-code for method (2). 

# X — Input 

# K —The K-key that stores global information, K = torch.nn.Parameter() 

# V—The V-value that stores global information, V = torch.nn.Parameter() 

 
Q = torch.nn.Linear(X) 

attn = torch.bmm(Q, K) 

attn_score = softmax(attn) 
Y = torch.bmm(attn_score, V) 

Algorithm 1   Pseudo-code for method (1). 

# X - Input 
# W_k-The K-key that stores global information, W_k = torch.nn.Linear(). 

# W_v-The V-value that stores global information, W_v=torch.nn.Linear() 

 

Q = torch.nn.Linear(X) 

attn = W_k(Q) 

attn_score = softmax(attn) 
Y = W_v(attn_score) 
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Where 𝑊𝑠  is the spatial mapping function, ensuring that the 
dimensions of the input sequence remain consistent before and 
after multi-head MA. The calculation of ℎ𝑒𝑎𝑑𝑖  differs 
depending on the implementation of MA. For Algorithm 1: 

headi = MA (QWq
i , Wk, Wv)                       (8) 

Here, 𝑊𝑞
𝑖 ∈ ℝ𝑑×𝑑′

 maps Q to different dimensions. The ℎ𝑒𝑎𝑑𝑖 

is then calculated using the shared 𝑊𝑘  and 𝑊𝑣  through the 
Algorithm 1. As for Algorithm 2: 

headi = MA (QWq
i , KWk

i , VWv
i )                     (9) 

Here, 𝑊𝑞
𝑖 , 𝑊𝑘

𝑖 , 𝑊𝑣
𝑖 are the mapping matrices for the i-th head. 

The ℎ𝑒𝑎𝑑𝑖 is then computed through the Algorithm 2. 

III. RESULT 

A. Dataset 

In this study, we used five benchmark datasets—PDNA-543 
[7], PDNA-41 [7], PDNA-335 [20], PDNA-52 [20], and PDNA-
316 [21]—for the prediction of protein-DNA binding sites. To 
comprehensively evaluate the classification performance of our 
model, we conducted experiments on all five datasets. Cross-
validation was performed on the PDNA-543, PDNA-335, and 
PDNA-316 datasets. Additionally, we trained the model on the 
PDNA-543 benchmark dataset and performed independent 
testing on the PDNA-41 dataset. Similarly, we trained the model 
on the PDNA-335 benchmark dataset and conducted 
independent testing on the PDNA-52 dataset. To prevent the 
influence of homologous sequences on the experimental results, 
all sequences were de-redundantized using CD-HIT [22]. In the 
PDNA-543 and PDNA-41 datasets, the similarity between any 
two protein sequences does not exceed 30%. In the PDNA-335 
and PDNA-52 datasets, the similarity between any two protein 
sequences does not exceed 40%, and in the PDNA-316 dataset, 
the similarity does not exceed 30%. Table I shows the detailed 
information for each dataset. 

B. Evaluation Metrics 

For binary classification problems, the most commonly used 
evaluation metrics are Matthews Correlation Coefficient (MCC), 
Accuracy (ACC), Specificity (SP), and Sensitivity (SN). In this 
study, we use these four metrics to assess the performance of our 
model. Their calculations are as follows: 

MCC=
TP×TN-FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
                (10) 

ACC=
TP+TN

TP+FN+TN+FP
                              (11) 

SP=
TP

TP+FN
                                     (12) 

SN=
TP

TN+FP
                                     (13) 

 

TABLE I. DETAILS OF THE EXPERIMENTAL DATASETS 

1：Number of Protein Sequences 

2：Number of Positive Samples (Protein-DNA Binding Residues) 

3：Number of Negative Samples (Non-Protein-DNA Binding Residues) 

4：Positive-to-Negative Sample Ratio 

 

Where TP, TN, FP, and FN represent the numbers of true 
positive, true negative, false positive, and false negative samples 
predicted by the model, respectively. Since protein-DNA 
residue binding site prediction is an extremely imbalanced task, 
MCC is a more reliable indicator of the model's predictive 
quality. Both MCC and ACC evaluate the overall performance 
of the model. SP measures the proportion of correctly predicted 
non-binding residues, while SN measures the proportion of 
correctly predicted binding residues. For all the above metrics, 
higher values indicate better model performance. 

C. Ablation Study 

In the self-attention mechanism, the multi-head self-
attention mechanism can capture multiple spatial features 
compared to the single-head self-attention mechanism. This 
often leads to better experimental results with multi-head 
attention [23]. Similarly, to verify whether multi-head MA has 
a positive impact on protein-DNA binding site prediction 
compared to single-head MA, we conducted experiments on 
three cross-validation datasets. The experimental results are 
shown in Table II. From Table II, it is evident that the training 
performance using multi-head MA outperforms single-head MA 
in all aspects. Specifically, we compared the experimental 
results of the single-head MA model with the 4-head MA model. 
The results on the three datasets show a significant improvement 
in MCC, along with noticeable improvements in ACC, SN, and 
SP. On the PDNA-543 dataset, the MCC of the 4-head MA 
model reached 0.4341, a 2.42% improvement compared to the 
single-head model (0.4099). Similarly, the multi-head MA 
model's MCC on the PDNA-316 dataset (0.4913) and the 
PDNA-335 dataset (0.4583) improved by 2.06% and 3.37%, 
respectively, compared to the single-head model. Therefore, 
using a multi-head MA model can effectively enhance 
predictive performance, with MCC improving by over 2% 
across all tested datasets. 

Dataset 
No. 
Sequences1 

Experiment 
Type 

No. 
positive2 

No. 
negative3 

RDNABR
4 

(%) 

PDNA-
543 

543 Ten-fold 
Cross-
Validation 

9549 134995 7.07 

PDNA-
316 

316 5606 67109 8.35 

PDNA-
335 

335 
Five-fold 
Cross-
Validation 

6443 70768 9.11 

PDNA-
52 

52 
Independent 
Testing 

967 10621 6.03 

PDNA-
41 

41 734 14021 5.24 
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TABLE II. EXPERIMENTAL COMPARISON BETWEEN MULTI-HEAD MA AND 

SINGLE-HEAD MA 

Dataset 
Num. of 
head 

MCC ACC SN SP 

PDNA-543 
1 0.4099 93.54 54.79 95.36 

4 0.4341 93.86 57.06 95.66 

PDNA-316 
1 0.4707 93.09 58.78 95.24 

4 0.4913 93.24 59.35 95.54 

PDNA-335 
1 0.4246 91.37 48.45 95.07 

4 0.4583 91.73 51.40 95.41 

 

TABLE III. EXPERIMENTAL COMPARISON BETWEEN MULTI-HEAD MA AND 

MULTI-HEAD SELF-ATTENTION MECHANISM 

Dataset Method MCC ACC SN SP 

PDNA-
543 

Self-attention 0.4142 93.46 53.71 95.46 

Memory 
attention 

0.4341 93.86 57.06 95.66 

PDNA-
316 

Self-attention 0.4783 94.91 54.12 96.95 

Memory 
attention 

0.4913 93.24 59.35 95.54 

PDNA-
335 

Self-attention 0.4454 91.74 50.89 95.22 

Memory 
attention 

0.4583 91.73 51.40 95.41 

 

MA is a crucial part of this study. To explore its effectiveness, 
we compare it with the traditional self-attention mechanism 
model. In these experiments, we set the number of heads for both 
the multi-head MA model and the multi-head self-attention 
mechanism model to 4. The number of heads in the self-attention 
mechanism model must be a divisor of 1280 due to dimensional 
requirements, so it is set to 4 for the comparative experiments. 
The results on the three cross-validation datasets are shown in 
Table III. The MA method generally outperforms the self-
attention mechanism in SN and MCC, particularly on the 
PDNA-543 and PDNA-316 datasets, where sensitivity shows a 
significant improvement. This indicates that MA is better at 
identifying positive samples. Although the differences in ACC 
and SP are minimal, MA has a slight edge in specificity. 
Therefore, the MA method performs better in balancing overall 
performance while enhancing positive sample identification. 

D. Comparative Study 

To numerically evaluate the predictive performance of 
MAPDB, we compared it against other state-of-the-art methods 
across five datasets: PDNA-543, PDNA-41, PDNA-335, 
PDNA-52, and PDNA-316, as described in the dataset section. 
For the PDNA-543 dataset, we conducted ten-fold cross-
validation and compared the results with TFDSite [13] and 
PredDBR [10], both of which have also been evaluated on this 
dataset. On the PDNA-316 dataset, we performed ten-fold cross-
validation and compared the results with DISIS [24], DP-Bind 
[25], MetaDBSite [21], BindN-rf [26], and PredDBR, all of 
which have been evaluated on this dataset. For the PDNA-335 
dataset, we conducted five-fold cross-validation and compared 

the results with TargetS [20], EC-RUS [27], and PredDBR. On 
the PDNA-52 dataset, we first trained the model on the PDNA-
335 dataset and then performed independent testing on the 
PDNA-52 dataset. The results were compared and analyzed with 
TargetS, DNAPred, COACH [28], and PredDBR. For the 
PDNA-41 dataset, we first trained the model on the PDNA-543 
dataset and then conducted independent testing. The results were 
compared with DP-Bind, DNABind, COACH, TFDSite, and 
PredDBR.  

The experimental details and results are shown in Table IV. 
The reason for using different comparison methods across 
datasets is the unavailability of certain methods' online servers 
or downloadable code, which limits the experimental results to 
specific datasets.As shown in Table IV, our method outperforms 
other existing predictors on 4 out of the 5 datasets, with only 
slightly lower performance on the PDNA-52 dataset. 
Specifically, compared to the next best predictor, PredDBR, our  

TABLE IV. COMPARATIVE EXPERIMENTS WITH OTHER METHODS 

Dataset Method MCC ACC SN SP 

PDNA-
543 

TFD-Site 0.352 92.83 45.20 95.38 

PredDBR 0.415 91.43 45.35 95.50 

Ours 0.4341 93.86 57.06 95.66 

PDNA-
316 

DISIS 0.250 92.00 19.00 98.00 

DP-Bind 0.290 78.00 69.00 79.00 

MetaDBSite 0.320 77.00 77.00 77.00 

BindN-rf 0.320 82.00 67.00 83.00 

PredDBR 0.489 92.30 53.08 95.82 

Ours 0.4913 93.24 59.35 95.54 

PDNA-
335 

TargetS 0.362 89.90 41.70 94.50 

EC-RUS 0.378 92.60 48.70 95.10 

PredDBR 0.390 90.96 42.59 95.34 

Ours 0.4583 91.73 51.40 95.41 

PDNA-
521 

TargetS 0.377 93.30 41.30 96.50 

DNAPred 0.405 92.50 51.80 94.90 

COACH 0.420 91.55 59.91 93.45 

PredDBR 0.451 93.46 53.85 95.83 

Ours 0.4140 92.43 38.25 97.13 

PDNA-
412 

DP-Bind 0.241 81.40 61.72 82.43 

DNABind 0.264  79.78 70.16 80.28 

COACH 0.352 92.67 46.19 95.10 

TFDSite 0.357 94.87 47.57 96.44 

PredDBR 0.359 93.93 39.10 96.79 

Ours 0.3925 94.75 46.50 96.78 

1：Trained on the PDNA-335 dataset and then independently tested on the 

PDNA-52 dataset. 

2：Trained on the PDNA-543 dataset and then independently tested on the 

PDNA-41 dataset. 
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model achieved an average MCC improvement of 3% across all 
datasets. Notably, on the PDNA-335 and PDNA-41 datasets, the 
MCC of our method (PDNA-335: 0.4583, PDNA-41: 0.3925) 
was 6.83% and 3.35% higher, respectively, than that of the next 
best method, PredDBR (PDNA-335: 0.390, PDNA-41: 0.359). 

IV. CONCLUSION 

The MAPDB model introduced in this study provides a 
novel approach to predicting protein-DNA binding sites by 
integrating the strengths of pre-trained embeddings and Memory 
Attention. This approach effectively captures both local and 
global relationships within and between protein sequences, 
resulting in improved predictive accuracy. The ability of the 
model to process entire protein sequences without the need for 
truncation or padding simplifies preprocessing and enhances 
predictive power. Our experiments on five benchmark datasets 
show that MAPDB outperforms existing methods on four of the 
five datasets, with significant improvements in MCC and overall 
prediction accuracy. These findings underscore the potential of 
Memory Attention in capturing complex sequence relationships 
and suggest that MAPDB could become a valuable tool for 
protein-DNA interaction studies. Future work will focus on 
further enhancing the model's accuracy and exploring its 
applicability to other types of protein interactions. 
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