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Abstract

Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of
over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein–
DNA or protein–RNA binding, only a few have a wider scope that covers both protein–protein and protein–nucleic acid bind-
ing. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility
(RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior
studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-,
protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and pro-
teins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is
higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher
RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and non-
binding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of
interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level pro-
pensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level inter-
actions will facilitate development of methods that accurately predict binding in the exponentially growing databases of
protein sequences.

Key words: protein–RNA interactions; protein–DNA interactions; protein–nucleic acid interactions; protein–protein inter-
actions; DNA-binding residues; RNA-binding residues

Introduction

Proteins carry out their cellular functions by interacting with
DNA [1], RNA [2], proteins [3] and a variety of other ligands [4–6].
Our understanding of these interactions and corresponding
functional annotations of proteins are primarily derived from
structural studies of protein–ligand complexes. These structural
data are used to categorize these interactions, characterize the

underlying physics and decipher patterns that define molecular
recognition and specificity of interactions [7–11]. These limited
in quantity data are also used to derive computational models
that predict DNA, RNA and protein interactions from protein
structures and sequences [12–15].

The characterization and prediction of these interactions
can be done at a few different levels [16]. At the lowest
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resolution level, we ascertain these interactions at the whole-
protein scale, e.g. predict whether a given protein binds RNA
without further details about this interaction. At the medium
resolution level, we additionally analyze and/or predict which
residues in the protein sequence interact with the ligand.
Finally, at the highest resolution level, we model or predict
these interactions at the atomic scale using the three-dimen-
sional (3D) structure of the protein and its ligand. The choice of
the resolution often depends on the availability of the corres-
ponding data. More specifically, whether only the sequence or
both sequence and structure of the protein are available. The
structure-based analysis and prediction of protein–ligand inter-
actions are limited to a relatively small number of proteins that
have 3D structures. As of August 2017, Protein Data Bank (PDB)
[17, 18], the main database of protein structures, holds 123 000
structures that cover close to 42 000 proteins. Alternatively, a
high-quality predicted structure can be used, but this inadvert-
ently reduces quality of the analysis/prediction, and it still sub-
stantially limits the coverage. For instance, a recent study found
that structures can be predicted for about 28% of human pro-
teins [19]. Another larger-scale study that considered about
1500 organisms across the three kingdoms of life has estimated
that the current structural coverage that includes known and
predicted structures ranges between a few to 30% [20]. In con-
trast, sequence-based approaches require only the widely avail-
able protein sequences. Based on the UniProt resource [21, 22],
the number of proteins with the known sequences currently
stands at about 88 million as of August 2017. Moreover, prote-
omes (i.e. set of proteins thought to be expressed by organisms
with genomes that were completely sequenced) are available
for 99.5 000 of unique organisms. The sequence-based analysis
is sometimes coupled with predicted or actual structural infor-
mation, typically at a lower level, such as secondary structure
or solvent accessibility, to improve the quality of the analysis
and prediction.

We review a comprehensive set of recent articles that ana-
lyze and/or predict protein–protein, protein–DNA and protein–
RNA interactions at all levels of resolution. Our first objective is
to delineate a set of commonly analyzed and used hallmarks of
these interactions, i.e. information concerning protein sequence
and/or structure that can be used to identify interacting pro-
teins and residues. Our second objective is to perform a compre-
hensive empirical analysis of these hallmarks. The novel and
particularly unique aspect of this review and analysis is the
wide-ranging scope. Unlike majority of previous studies, we
analyze interactions with proteins, DNA and RNAs, instead of
focusing on a single ligand. We are the first to analyze residues
that bind to both RNA and proteins, and to both DNA and pro-
teins, and to contrast and compare findings between the lig-
ands. Moreover, we investigate whether the commonly used
hallmarks are sufficient to predict binding residues in protein
sequences, and we also develop and comparatively assess the
first method that predicts residue-level propensity for protein–
ligand interactions over the three types of ligands: DNA, RNAs
and proteins.

Review of contributions that analyze and/or
predict protein–DNA, protein–RNA and
protein–protein binding

Based on manual analysis of PubMed queries, we found 52 stud-
ies, which were published over the past decade and that focus
on the analysis and/or prediction of protein–RNA, protein–DNA

and protein–protein interactions [23–74]. They are summarized
in Table 1. Most of these studies (32 of 52) focus on the inter-
actions with either DNA or RNA. More specifically, 12 works
concern DNA binding, 20 RNA binding and 12 protein binding.
In contrast, only five studies consider interactions with both
type of nucleic acids, and even fewer (three works) focus on
both protein–proteins and protein–nucleic acid interactions.
Two of the latter three articles use information generated from
protein sequences to build models to predict DNA-, RNA- and
protein-binding residues [73, 72]. In the third article, the authors
develop a predictor of protein-binding residues, and they ana-
lyze sequence- and structure-based hallmarks of protein-, DNA-
and RNA-binding residues [74]. Moreover, none of these works
consider investigating residues that interact with both nucleic
acids and proteins partners. We also acknowledge methods that
predict residues interacting with other types of ligands [15].
This family of predictors includes methods that predict binding
to nucleotides [75, 76], vitamins, [77, 78], calcium [79], metals
[80], as well as multiple types of small ligands [81, 82].

The 52 studies that focus on protein–RNA, protein–DNA and
protein–protein interactions include 36 that develop predictors
and 16 that analyze structural data, including 8 that use the
analysis to derive a predictor (see the ‘contributions’ column in
Table 1). Interestingly, most of these predictors are available as
Web servers, which allow even novice users to conveniently
perform predictions. Moreover, we observe a noticeable in-
crease in the number of protein chains used for the analysis or
the development of a given predictor with the time. The Person
correlation coefficient between the year of publication and the
average size of data sets used in a given year equals 0.6. This is
expected as gradually more structural data are released in PDB.

We found that these 52 works consider and combine various
types of information to characterize and/or predict the corres-
ponding binding residues. The most frequently used informa-
tion includes evolutionary conservation (ECO) (38 of 52), solvent
accessibility (32 of 52) and propensity of amino acids (AAs) for
binding (23 of 52 studies). The ECO is relevant, as binding resi-
dues are typically conserved across homologous protein se-
quences. The use of solvent accessibility is motivated by the
fact that binding occurs on the protein surface. Finally, these
studies also suggest that the type of the interacting AAs and
their immediate neighbors in the protein sequence can be also
used to determine propensity for binding. Each of the 52 studies
uses at least one of these three hallmarks of binding residues
and about half consider at least two hallmarks. Three articles
cover the three hallmarks in the context of RNA-binding pro-
teins [41, 42, 50] and one article for the protein binding [83].
A number of other factors that can be used to characterize bind-
ing residues were also considered. These include secondary
structure [29, 31, 37, 41, 45, 56, 69, 73, 74], area of the binding
sites [27, 35, 36, 56], regions of binding residues [27, 45], surface
patches in the binding sites [26, 47, 49, 56, 61], shape of binding
sites [29, 49, 56, 65] and their geometric similarity [25, 29, 60].
However, these factors were considered in a relatively small
number of articles, and they primarily focus on the characteris-
tics of the protein structure. This is in contrast to two of the
main hallmarks, propensity of AAs for binding and ECO, which
rely solely on the protein sequence.

While these studies contribute to improving our understand-
ing of the determinants of binding in protein structures and se-
quences and provide community with putative annotations of
binding, they also suffer a few shortcomings:

1. They use relative small data sets of chains that often cover
fragments of complete protein sequences and that may
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Table 1. Review of recent studies that focus on the analysis and/or prediction of protein–RNA, protein–DNA and protein–protein interactions

Type of
interaction1

Reference Year of
publication

Number of
chains used

Contributions2 Availability of
prediction tools3

Considered hallmarks of binding residues4

AAP ECO RSA

D [23] 2007 62 P W �
D [24] 2010 87 P W �
D [25] 2008 118 A �
D [26] 2012 126 A and P � �
D [27] 2008 140 A and P � �
D [28] 2013 206 P W � �
D [29] 2014 272 A and P � �
D [30] 2016 286 P W � � �
D [31] 2012 337 P W �
D [32] 2014 435 P W �
D [33] 2016 584 P W � �
D [34] 2016 605 P W �
R [35] 2008 81 A � �
R [36] 2012 81 P W �
R [37] 2008 86 A and P W � �
R [38] 2008 109 P W � �
R [39] 2014 116 P W � �
R [40] 2007 147 P W � �
R [41] 2010 147 A and P � � �
R [42] 2011 160 P W � � �
R [43] 2017 172 A and P W � � �
R [44] 2010 205 P S � �
R [45] 2011 211 A �
R [46] 2008 302 P �
R [47] 2010 316 P �
R [48] 2011 332 P S � �
R [49] 2015 344 P �
R [50] 2014 346 A and P W � � �
R [51] 2016 443 P S � �
R [52] 2011 569 P W �
R [53] 2014 952 P W �
R [54] 2011 4143 P S �
P [55] 2015 55 A � �
P [56] 2010 103 A � �
P [57] 2013 122 P � �
P [58] 2010 186 P W � �
P [59] 2014 186 P W � � �
P [60] 2015 193 P S �
P [61] 2016 302 P �
P [62] 2015 422 P S �
P [63] 2016 422 P S � �
P [64] 2016 422 P S � �
P [65] 2011 1496 A � �
P [66] 2016 1905 P S � �
D, R [67] 2007 147 P � �
D, R [68] 2014 149 A � �
D, R [69] 2014 1017 P W �
D, R [70] 2015 1950 P W � � �
D, R [71] 2017 4604 P W � � �
D, R, P [72] 2015 86 A and P W � �
D, R, P [73] 2015 315 P W �
D, R, P [74] 2011 446 A � �
D, R, P, DP, RP This work N/A 23458 A and P W � � �

Note: Studies are sorted by the size of the data set they used and grouped by the type(s) of interactions that they cover.
1D, R, P, DP and RP stand for DNA binding, RNA binding, protein binding, DNA and protein binding, and RNA and protein binding, respectively.
2A and P stand for analysis and prediction, respectively.
3W and S correspond to the availability of the Web server and source code, respectively.
4AAP, ECO and RSA refer to the three main hallmarks of binding: AA type preferences, ECO and RSA, respectively.
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provide incomplete annotations of binding. Works that ana-
lyze DNA binding, RNA binding and protein binding use only
up to 605, 4143 and 4604 protein sequences in complex with
DNA, RNA and proteins, respectively. They were collected
from PDB [17], and thus, they may not provide complete
coverage of the underlying protein sequence. Moreover,
these data sets include chains that typically have limited
pairwise sequence similarity that were derived by selecting
one chain from a cluster of similar chains. While this pro-
vides a desired uniform sampling of the sequence space, it
also results in under-annotating binding residues. In other
words, when the same chain is found in multiple complexes,
only one of them is used to annotate binding, while in fact
this chain could bind to ligands of the same type (e.g. differ-
ent fragments of RNA) localized in different binding sites
across these complexes. Thus, the annotations of binding
should be transferred between these complexes to ensure
that they are more complete.

2. Most of these studies (44 of 52) focus on one type of ligand
and none consider residues that bind to multiple ligand
types, including residues that bind to both DNA and proteins
and to both RNA and proteins, which we name multi-ligand-
binding residues. Consequently, the hallmarks that charac-
terize binding were rarely compared between RNA, DNA and
protein binding and were never quantified and compared
with the multi-ligand-binding residues.

3. Most of the predictors of DNA, RNA and proteins binding use
difficult to comprehend inputs and intricate black-box mod-
els to produce predictions. Thus, factors that contribute to
their predictions are unclear diminishing ability of the users
to interpret the predictions, e.g. to understand why a given
residue is predicted as binding to RNA.

Motivated by this analysis, we perform first-of-its-kind com-
prehensive comparative analysis of the main hallmarks of pro-
tein, DNA and RNA binding. We develop a large data set of
complete protein sequences that includes annotations trans-
ferred from identical protein fragments in different complexes.
We use these data to analyze and compare the three hallmarks
between residues that bind RNA, DNA, proteins, both RNA and
proteins and both DNA and proteins. Additionally, we also
empirically test whether use of just these three hallmarks is
sufficient to predict binding residues in protein sequences. We
also develop, empirically test and deploy as a Web server scor-
ing functions that use hallmarks computed/predicted from a
protein sequence to predict residue-level propensity for DNA,
RNA and protein binding. We empirically compare these scoring
functions against existing methods for the sequence-based
prediction of DNA-, RNA- and protein-binding residues.

Setup of the empirical analysis
Data sets

We collect proteins, which were solved structurally in complex
from the BioLiP database in October 2015 [84]. BioLip stores
high-quality semi-manually curated annotations of biologically
relevant protein–ligand interactions extracted from PDB. It an-
notates a given residue as binding if the distance between an
atom of this residue and an atom of the ligand <0.5þ sum of
the Van der Waal’s radii of the two atoms [84]. BioLip includes
5913 DNA-binding, 20 731 RNA-binding, 163 589 protein-binding
and 112 797 ligand-binding chains, some of which are redun-
dant. In contrast to the other studies that typically consider one
complex per protein and which may cover a fragment of the

complete protein sequence, we use complete proteins that com-
bine annotations from potentially multiple complexes. We map
BioLiP sequences into UniProt [85] with SIFTS [86] to ensure that
we work with complete protein sequences and to transfer anno-
tations from multiple BioLiP/PDB protein chains that are linked
to the same UniProt protein. Next, we remove UniProt IDs that
correspond to protein fragments and combine annotations of
binding residues from all PDB structures that are mapped to the
same protein (UniProt ID). This way we annotate 27% more
binding residues when compared with the best case scenario of
how prior works annotate binding residues, i.e. when chains
with the highest number of binding residues are used to cover
the complete protein sequence. This enrichment is accom-
plished by transferring binding residues from BioLiP/PDB chains
that cover the same fragment of the UniProt sequence.
Supplementary Figure S1 summarizes the enrichment in the
annotations of binding residues for different types of ligands.
The final data set includes 23 458 proteins (817 DNA-binding,
1040 RNA-binding, 17 594 protein-binding and 14 327 ligand-
binding proteins) that were extracted from 303 030 chains from
BioLip and annotated using 294 447 structures of PDB chains
(Table 2). This means that besides providing a more complete
annotation of binding residues, our data set is at least five times
bigger than any of the data sets used in the prior studies (Table
1); this includes the data sets that we used in our recent articles
that address prediction of protein-binding residues [87] and as-
sessment and development of predictors of DNA- and RNA-
binding residues [71, 88]. We consider binding residues that
interact with DNA, RNA, proteins, DNA and proteins, RNA and
proteins and nonbinding residues, which lack annotations of
binding including binding to small ligands. This data set is used
to benchmark the hallmarks of DNA, RNA and protein binding
and to empirically compare predictive performance of different
combinations of these hallmarks. The comparison is performed
based on the 3-fold cross-validation test on this benchmark
data set. In this test, the proteins are divided at random into
three equally sized and disjoint subsets of the benchmark data
set. Models generated using proteins from two subsets are
tested on the third subset, and this is repeated three times to
use every subset once as the test subset.

We also compare predictive performance of these hallmarks
with the results obtained by current methods that predict DNA-,
RNA- and protein-binding residues from protein sequences.
This assessment is based on test data sets collected from recent
relevant studies. They include the DNA_T and RNA_T data sets
that were published as a part of a comparative review of meth-
ods that predict DNA- and RNA-binding residues [88] (Table 2).
Similar to our data set, these test data sets incorporate the
transferred annotations. We also use the test data set that was
introduced in [58] and which was used to assess several pre-
dictors of protein-binding residues [58, 83, 89, 90]. We enrich the
original test data set with the transferred annotations using the
abovementioned protocol, and we name the resulting data set
protein_T (Table 2). Moreover, we ensure that the proteins from
our large benchmark data set that are used to train our model
share low similarity with the proteins from these three test data
sets. We use BLASTCLUST (using default settings including
coverage -L 0.9) to remove proteins from the benchmark data
set that were annotated using at least one PDB chain that shares
30% or higher similarity with the proteins from a given test data
set. Only the remaining proteins are used to compute our mod-
els. We emphasize that the similarity is measured against PDB
chains that were used to annotate a given sequence collected
from UniProt, resulting in a stricter filter of similarity. We name
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the corresponding data sets training30_DNA, training30_RNA
and training30_protein. As the training data sets include pro-
teins that share <30% similarity to the proteins in the three cor-
responding test data sets, the annotations transferred into the
proteins in the test data sets could not originate from any of the
training proteins. The benchmark data sets, including a map-
ping of these proteins into the corresponding PDB chains and
the native annotations of binding residues; the training30_DNA,
training30_RNA and training30_protein training data sets; and
the DNA_T, RNA_T and protein_T test data sets, are all available
at http://biomine.cs.vcu.edu/servers/hybridNAP/.

Computation of the three hallmarks of binding residues

We analyze the three most commonly considered hallmarks of
binding: (i) propensity for binding of AAs in the sequence;
(ii) relative solvent accessibility (RSA) of residues in the struc-
ture; and (iii) ECO of residues in the sequences. They are
analyzed for each ligand type including the two types of multi-
ligand binding.

The AA propensity for binding is quantified as Relative dif-
ference in abundance of a given AA type (RAA) between binding
residues and the corresponding nonbinding residues located on
the protein surface. We focus on the surface to eliminate a con-
founding factor related to a bias in composition of AAs in the
protein core that typically is not involved in binding. RAA is
defined as the difference between fractions of a given AA type
among binding residues and among the surface nonbinding
residues divided by the fraction among the latter residues.
Positive (negative) values denote enrichment (depletion) among
binding residues compared with the nonbinding residues. We
compute the relative differences using Composition Profiler
[91]. We score these propensities by considering the binding
residues in the sequence. We use a weighted average, where a
weight¼ 0.5 was assigned to the residue that is scored and 0.25
to each of its neighbors.

The area of solvent accessibility (ASA) for each residue in a
protein was derived from the protein structure, based on the
corresponding PDB file, using the DSSP program [92]. Then, RSA
was calculated by dividing the native ASA by empirically
derived maximal value of ASA for a given AA type obtained
from [93]; these values are also used to annotate surface resi-
dues to compute RAA. Moreover, to consider proteins that do
not have structures and for which the native RSA cannot be

calculated, we use putative ASA generated with ASAquick [94]
from the sequences, and the corresponding putative RSA val-
ues. We empirically analyze whether these predictions can be
used to substitute native solvent accessibility for the purpose of
prediction the binding residues solely from the protein
sequence.

To generate ECO scores, we compute multiple sequence
alignment (MSA) by running HHBlits [95] against the redun-
dancy reduced UniProt20 database ver. 2015_06 using the de-
fault parameters. MSA is used to generate n� 20 matrix of
position-specific frequencies pc where c¼ 1, 2, . . . 20 represents
the 20 AA types, and n is the length of the protein chain. Based
on [96], we calculate ECO scores from this matrix as follows:

ECO ¼ log
Pi¼20

i¼1 p2
c ið Þ=p0ðiÞ

log
Pi¼20

i¼1 pcðiÞ=p0ðiÞ
;

where i is position of a residue in the sequence, and p0(i) is the
BLOSUM62 background distribution for ith position [97]. We use
the hidden Markov model-based scores rather than the position
specific scoring matrix (PSSM)-based scores, as they are faster to
compute and were shown to provide a better measure of ECO [50].

Selection of physicochemical properties of AAs that
explain their propensity for binding

We investigate whether propensities of AAs to bind a given lig-
and are related to their physicochemical properties. We use the
AAindex database [98] that includes a comprehensive set of 544
indices that quantify physicochemical properties of AAs. First,
the 20 AAs were split into two groups: those with large relative
difference (enrichment or depletion) between binding and the
surface nonbinding residues and the remaining AAs. Details
how the corresponding cutoffs were established are given in
Supplementary Figure S2. Next, we assess whether the differ-
ence in the values of the AAindex between the two sets of resi-
dues is statistically significant. We evaluate each index
individually, and we assert that a given AAindex potentially ex-
plains propensity for binding if the difference is significant. We
use the Shapiro–Wilk test to check whether the data are normal,
and next we test significance with the Student’s t-test for nor-
mal data and with the Wilcoxon signed-rank test otherwise. For
the indices with the statistically significant difference

Table 2. Summary of the benchmark and test data sets used

Type of data set Data sets Number of
proteins

Number of
PDB chains

Number of
binding residues

Number of
nonbinding
residues

Total number
of residues

Benchmark All 23 458 294 447 1 070 757 5 070 108 6 140 865
DNA binding 817 19 152 19 987 153 475 199 881
RNA binding 1040 45 337 38 899 158 506 223 814
Protein binding 17 594 269 705 791 918 3 444 379 4 405 232
Small ligand binding 14 327 240 335 267 385 3 665 994 4 370 210
DNA and protein binding 386 13 703 2507 63 956 93 995
RNA and protein binding 686 39 412 5846 76 183 125 751

Test DNA_T 47 138 875 8231 9106
RNA_T 17 46 409 5448 5857
Protein_T 72 764 2452 15 688 18 140

Note: The sum of the number of binding residues is larger than the total listed in the ‘total’ column, as some residues bind to multiple ligands. The ‘number of PDB

chains’ column gives the number of structures of chains from PDB that were used to annotate binding for a given data set. The three test data sets were collected from

[58, 95].
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(P-value< 0.05), we calculate a correlation between their values
and the relative difference values. We use the point-biserial cor-
relation coefficient to quantify correlation between binary and
continuous/binary measurements, Spearman’s rank correlation
coefficient if at least one measurement is discrete and Pearson
correlation coefficient (PCC) when both measurements are con-
tinuous. One, most appropriate, correlation coefficient is com-
puted for each significant index. We pick the AA index with the
highest correlation coefficient to point to the corresponding
physicochemical property that best explains propensity for
binding to a given ligand type.

Statistical analysis of differences of hallmark values

We compare RAA, RSA and ECO values between residues that
bind different types of ligands and nonbinding residues based
on their cumulative distributions. We use the Kolmogorov–
Smirnov test, a nonparametric test, which quantifies a distance
between empirical cumulative distribution functions, to assess
whether pairs of cumulative distributions for the same hall-
mark are statistically different. We assume that two cumulative
distributions are significantly different when P-value< 0.001.

Sequence-based prediction of binding residues

Besides evaluating whether each of the three hallmarks can be
used to differentiate between binding and nonbinding residues,
we investigate whether combining them together would result
in a stronger discriminatory power that would be sufficient to
accurately identify binding residues. We use a simple linear
combination of the three hallmarks:

y ¼ w1 þw2 � RAAþw3 � RSAþw4 � ECO;

where y is the estimated propensity for binding, and w1, w2, w3

and w4 are coefficients that are determined empirically from a
training data set (training fold in the cross-validation) to minim-
ize error between y and the native annotation of binding. In par-
ticular, we use the least squares algorithm [99] implemented in
Matlab R2017a to estimate these coefficients. We develop five
such functions for DNA binding, RNA binding, protein binding,
DNA and protein binding and RNA and protein binding. They
are unlikely to overfit our benchmark data sets with over 6 mil-
lion residues, as they use only four parameters. We perform
cross-validation on the benchmark data sets to investigate
whether these linear functions could be used to accurately pre-
dict propensity for binding for proteins that were not used to de-
termine the four coefficients. Moreover, we also compare scores
computed with the linear functions build on our training data
sets with current methods that predict DNA-, RNA- and protein-
binding residues on the corresponding test data sets.

Evaluation of the sequence-based prediction of binding
residues

We empirically evaluate whether the propensity for binding
computed based on values of a given hallmark or outputs gener-
ated by the scoring functions can accurately discriminate bind-
ing from nonbinding residues. We compare the propensity
scores with the native annotation of binding by applying com-
monly used AUC [area under the receiver operator characteristic
(ROC) curve] to quantify the predictive performance [38, 41, 42,
46, 73, 88]. The ROC curve is a relation between TPrate (sensitiv-
ity) and FPrate (1-specificity) over the entire range of propensity

values. TPrate¼TP/(TPþ FN) and FPrate¼ FP/(FPþTN), where
TP and TN denote the numbers of correctly predicted native
binding and native nonbinding residues, respectively, FN is the
number of incorrectly predicted binding residues (native bind-
ing residues predicted as nonbinding) and FP is the number of
incorrectly predicted nonbinding residues (native nonbinding
residues predicted as binding). Inspired by [100], we also intro-
duce two additional measures: AULC (area under the ROC curve
for low range of the FPrate values) and AULCratio (ratio of
achieved AULC relative to AULC of a method that generates pre-
dictions at random). Motivated by the fact that binding residues
are infrequent compared with the nonbinding residues, AULC
focuses on predictions where the number of false positives is
equal or smaller than the number of native binding residues. In
other words, AULC is the area under the ROC curve for the low
FPrate values that correspond to the FP values ranging between
FP¼ 0 and FP¼TPþ FN (the number of native positives). This
range corresponds to the predictions, where the number of pre-
dicted binding residues does not exceed the number of native
binding residues. AULCratio> 1 indicates that the correspond-
ing predictor is better than a method that generates random
predictions.

We also assess binarized scores that indicate whether a
given residue binds. This assessment is based on commonly
used sensitivity¼TPrate¼TP/(TPþ FN) and specificity¼
1�FPrate¼TN/(TNþ FP). Sensitivity quantifies fraction of cor-
rectly predicted binding residues among the native binding resi-
dues. Specificity measures fraction of correctly predicted
nonbinding residues among the native nonbinding residues. To
ensure that results of multiple methods can be compared side
by side, we compute the sensitivity at a predefined specifi-
city¼ 0.95. This value of specificity corresponds to the
FPrate¼ 0.05. Finally, we also report values of the Matthews cor-
relation coefficient (MCC):

MCC ¼ TP� TN – FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p ;

to assess the binarized predictions. MCC¼ 0 denotes a random
prediction, while MCC¼ 1 corresponds to a perfect prediction.

Comparative empirical analysis of main
hallmarks of protein–DNA, protein–RNA and
protein–protein binding
Analysis of propensity of AAs for RNA, DNA and protein
binding

The propensity is determined with RAA that quantifies relative
difference in abundance of a given AA type between binding resi-
dues and surface nonbinding residues; positive/negative values
correspond to enrichment/depletion. RAA values for residues that
bind DNA-, RNA-, proteins- and the multi-ligand-binding residues
are given in Table 3. While majority of AAs have low absolute
RAA values, several are preferentially enriched or depleted with
the relative differences as high as over 200% (2.05 enrichment for
Arg in residues that bind both DNA and proteins) and as low as
�69% (0.69 depletion for Glu in DNA binding).

The DNA- and RNA-binding residues are enriched in posi-
tively charged Lys, Arg and His and depleted in negatively
charged Asp and Glu (Table 3). This pattern is because of stabi-
lizing ionic interactions between the positively charged residues
and phosphate group of DNA and RNA [9, 11, 50]. The other
strong pattern is the enrichment of the aromatic residues (Phe,
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Trp and Tyr) that was shown to be related to the p–p stacking
interactions in complexes with nucleic acids [101, 102]. RAA val-
ues for DNA- and RNA-binding residues are highly correlated,
with PCC¼ 0.91, and the difference between these values lacks
statistical significance (Supplementary Table S1). Consequently,
this hallmark is unlikely to accurately differentiate between
binding to RNA and DNA.

Analysis of results for the protein-binding residues points to
the enrichment in several AAs (Table 3), which is in agreement
with the literature. Enrichment in Cys was previously observed
and was linked to coupling of Cys residues in the protein–pro-
tein interfaces [103]. Similarly, enrichment in aromatic residues
(Phe, Trp and Tyr) was found in homodimeric protein com-
plexes [104], and preferred coupling between aromatic residues
was observed in protein–protein-binding interfaces [105]. The
latter study also noted depletion of the charged–charged pairs,
particularly for the residues of opposing charge, which could ex-
plain the negative values of RAA for Asp, Glu and Lys.
Preference of Met, Phe and Trp to be involved in protein–protein
binding was shown in [104, 106]. The enrichment of Ile and Leu
was pointed to correlate with the increased propensity for for-
mation of energetic protein–protein interaction hot spots [106,
107]. Interestingly, the RAA values for the protein binding are
modestly similar to the corresponding RAA values for DNA
binding (PCC¼ 0.43; P-value¼ 0.36) and RNA binding (PCC¼ 0.42;
P-value¼ 0.11) (Supplementary Table S1). This means that RAA
can be potentially used to separate protein- and nucleic acid-
binding residues.

The RAA values for the multi-ligand-binding residues follow
the values for the corresponding DNA- and RNA-binding

residues (Table 3). Supplementary Table S1 reveals that similar-
ity is high between the RAA values for the DNA binding and
each multi-ligand binding, and between the RAA values for
the RNA binding and each multi-ligand binding (PCC� 0.90;
P-value� 0.87). Analogously high similarity is true between the
binding to both DNA and proteins and to both RNA and proteins
(PCC¼ 0.95; P-value¼ 0.97). Interestingly, similarity between the
RAA values of the protein binding and the two types of the
multi-ligand binding is only modest (PCC� 0.44; P-value� 0.19)
(Supplementary Table S1). This means that the enrichment in
AAs for the multi-ligand-binding residues is driven by the bind-
ing to the nucleic acids. We also note the particularly high levels
of enrichment of Arg in the multi-ligand-binding residues for
both RNA and DNA.

Supplementary Figure S3 contrasts the RAA values with a
recently developed set of propensities for the DNA, RNA and
protein binding [74]. To the best of our knowledge, there are no
existing propensity scales for the multi-ligand-binding resi-
dues. The other propensities were also derived empirically
from protein–protein and protein–nucleic acid complexes.
However, they are based on a smaller set of 153 protein–pro-
tein, 81 protein–RNA and 212 protein–DNA complexes versus
17 594, 1040 and 817 that we use, respectively. Moreover, our
data set uses arguably more complete set of binding residues
that incorporates annotations transferred from multiple pro-
tein chains/complexes that are linked to the same UniProt pro-
tein. One immediately apparent difference is that the RAA
values are both positive (for AA that are enriched among the
binding residues) and negative (for the depleted residues),
while the other propensities are strictly positive where low
(high) values correspond to depletion (enrichment). We argue
that the RAA values are easier to interpret, as the value of 0 is a
clear breaking point. Moreover, the RAA values and the other
three sets of propensities are correlated. PCC between RAA and
the propensities from [74] equals 0.77 for the DNA binding, 0.71
for the RNA binding and 0.60 for the protein binding. The lower
correlation for the protein binding could be attributed to the
fact that the other AA index was derived using solely hetero-
dimers, while we use both homo and heterodimers. Among the
AAs with the five lowest and the five highest propensities,
seven are in common between the two indices for the RNA
binding and five are in common for the DNA and the protein
binding.

Using an approach described above, we find statistically sig-
nificant physicochemical properties of AAs that are the most
correlated with the RAA values. These are polarizability
(AAindex CHAM820101) for residues that bind DNA and that
bind both DNA and proteins, charge (AAindex KLEP840101) for
residues that bind RNA and that bind both RNA and proteins
and polarity (AAindex RADA880108) for the protein binding. We
visualize these selected properties in Supplementary Figure S4.
Given the high correlation of their RAA values, we combine
charge and polarizability to analyze DNA binding, RNA binding
and the two types of multi-ligand-binding residues. The scatter
plots demonstrate that these properties separate majority of
AAs with high absolute values of RAA (red markers) from the
AAs with low absolute values (green markers). We note that the
importance of polar residues for DNA and RNA binding was
shown in [11, 108] and for protein–protein binding in [106, 107].

Overall, our analysis in the context of the DNA, RNA and pro-
tein binding is in agreement with the literature, while we are
the first to contrast side by side the propensity of AAs for bind-
ing DNA, RNA and proteins and to provide insights for the
multi-ligand-binding residues.

Table 3. Propensity of AAs for binding to DNA, RNA, proteins and
multi-ligand binding to both DNA and proteins and both RNA and
proteins when compared with the surface nonbinding residues

AA Binding to a single ligand Multi-ligand binding

DNA RNA Protein DNA and
protein

RNA and
protein

Ala �0.40 �0.25 �0.08 �0.54 �0.40
Arg 1.40 1.33 0.12 2.06 1.87
Asn 0.09 �0.10 �0.15 �0.09 �0.22
Asp �0.63 �0.62 �0.33 �0.67 �0.64
Cys 0.06 0.17 0.76 0.10 �0.03
Gln �0.05 �0.17 �0.11 �0.00 �0.17
Glu �0.70 �0.64 �0.34 �0.58 �0.61
Gly �0.17 0.04 �0.25 �0.41 �0.26
His 0.52 0.54 0.18 0.51 0.64
Ile �0.09 0.11 0.71 �0.09 0.16
Leu �0.40 �0.18 0.61 �0.35 �0.10
Lys 0.49 0.51 �0.38 0.36 0.55
Met 0.40 0.55 0.92 0.36 0.55
Phe 0.51 0.41 1.18 0.64 0.48
Pro �0.46 �0.26 �0.17 �0.44 �0.23
Ser 0.23 �0.14 �0.13 0.04 �0.40
Thr 0.12 �0.10 �0.07 0.21 �0.17
Trp 1.14 0.30 0.95 0.95 0.77
Tyr 0.92 0.33 0.71 0.71 0.67
Val �0.27 0.06 0.37 �0.24 �0.10

Note: Positive (negative) value corresponds to enrichment (depletion) of a given AA

type in binding residues compared with its occurrence in all residues from the data

set. AAs characterized by large values of enrichment (>0.45) and depletion (<�0.45)

are shown in bold; details on these thresholds are given in Supplementary Figure

S2. The analysis was performed on the benchmark data sets.
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Analysis of the three hallmarks of RNA, DNA and
protein binding

We analyze differences in the values of the three hallmarks be-
tween residues that bind various ligands, residues that do not
bind ligands (nonbinding residues) and all residues. The source
data that includes values of the three hallmarks are available at
http://biomine.cs.vcu.edu/servers/hybridNAP/.

Supplementary Figure S5 shows distributions of the RAA val-
ues. The RNA- and DNA-binding residues (Supplementary
Figure S5A and B) have substantially higher values of RAA com-
pared with the nonbinding and all residues, while the distribu-
tions for the other types of ligand are similar to the
distributions for the nonbinding and all residues. This means
that RAA values can identify the DNA- and DNA-binding resi-
dues in a given protein sequence but not the protein-binding
residues.

Supplementary Figure S6 compares distributions of the RSA
values. As expected, residues that bind ligands have higher RSA
values than the nonbinding residues and the set of all residues
(Supplementary Figure S6A–E). Interestingly, the two types of
the multi-ligand-binding residues have higher RSA values than
the values for DNA-, RNA- and protein-binding residues
(Supplementary Figure S6F). This means that residues that bind
both proteins and nucleic acids are overall more exposed to
solvent. About 12% of all residues and 14% of nonbinding resi-
dues have RSA¼ 0, which means that they are buried in the core
of the protein. As expected, the corresponding fractions of
buried residues among the binding residues are nearly 0. Bars in
Supplementary Figure S6 that represent relative ratio of the
fractions of binding and nonbinding residues reveal that a
much larger proportion of binding residues is found among resi-
dues with RSA> 0.5. Moreover, majority of RNA-, DNA- and pro-
tein-binding residues have RSA values ranging between 20 and
70% (Supplementary Figure S6F). The multi-ligand-binding resi-
dues are substantially overrepresented among residues with
high solvent accessibility (tall white bars on the right-hand side
of Supplementary Figure S6D and E) and majority of them attain
RSA values in the 30–80% range.

Supplementary Figure S7 compares distributions of the
ECO values. Residues that bind RNA-, DNA- and the multi-
ligand-binding residues are more conserved then the nonbind-
ing residues (Supplementary Figure S7A and B, D and E). About
60% of these binding residues have ECO> 0.5, while only about
30% of the nonbinding residues have such high conservation
scores. Moreover, residues that bind DNA and that bind DNA
and proteins have the largest proportion of highly conserved
residues (white bars in Supplementary Figure S7A and D for
ECO> 0.9). In contrast, conservation of the protein-binding resi-
dues is on par with the nonbinding residues (Supplementary
Figure S7C). Our results agree with literature. DNA-binding resi-
dues were shown to be more conserved than other surface resi-
dues [109], while the sequence conservation of the protein-
binding residues was found to be similar to the conservation of
surface residues [110].

Figure 1 shows cumulative distributions of the values of RAA,
RSA and ECO, which are used to analyze statistical significance
of differences in the values of these hallmarks between the
seven sets of residues (RNA binding, DNA binding, protein bind-
ing, RNA and protein binding and DNA and protein binding,
nonbinding and all). Distributions for each set of residues are
given in Supplementary Figures S8–S10. Table 4 summarizes the
analysis of significance, and Supplementary Table S2 provides
the corresponding statistics. Figure 1A reveals that RAA values

separate the various sets of residues into two clusters: DNA- and
RNA-binding residues that have similar and high relative AA
propensities for binding; the remaining sets that share lower val-
ues of RAA. Correspondingly, Table 4 demonstrates that the RAA
values are significantly different (P-value< 0.001) between RNA-
binding residues and the other residue sets and between DNA-
binding residues and the other residue sets, but not between
RNA- and DNA-binding residues and not between the other sets
of residues. Figure 1B suggests that use of RSA results in three
clusters: all and nonbinding residues; residues that bind to RNA,
DNA and proteins; and the two sets of the multi-ligand-binding
residues. Table 4 confirms that RSA of all five sets of binding
residues is significantly larger than RSA of nonbinding and all
residues (P-value< 0.001). RSA values of the multi-ligand-bind-
ing residues are also significantly larger when compared with
the RNA-binding, DNA-binding and protein-binding residues (P-
value< 0.001), while they are not significantly different between
the three latter sets of binding residues. Figure 1C shows that
values of ECO provide separation into two clusters: all, nonbind-
ing and protein-binding residues versus DNA-, RNA- and multi-
ligand-binding residues. Consequently, the conservation scores
are not significantly different between protein binding, nonbind-
ing and all residues, and between DNA-, RNA- and multi-ligand-
binding residues (Table 4). However, they are significantly differ-
ent between all residues/nonbinding residues/protein-binding
residues and the DNA-binding/RNA-binding/multi-binding resi-
dues (P-value<0.001). Finally, Table 4 reports that none of the
considered hallmarks is statistically different between DNA- and
RNA-binding residues and between the two types of the multi-
ligand-binding residues. Separation of these residues would
require other information.

To sum up, we characterize the three hallmarks for the DNA,
RNA and protein binding, and we are the first to contrast them
side by side, compute and contrast them for multi-ligand-bind-
ing residues and assess significance of their differences. Among
our novel findings, we empirically demonstrate that the multi-
ligand-binding residues are significantly more solvent exposed
than the residues that bind to DNA, RNA and proteins and sig-
nificantly more evolutionary conserved when compared with
the protein-binding residues.

Prediction of protein–DNA-, protein–RNA- and
protein–protein-binding residues using the
three hallmarks of binding
Combining hallmarks leads to improved and accurate
discrimination of binding residues

We evaluate and visualize relation between propensity for bind-
ing and the values each of the three hallmarks and their com-
binations. We combine hallmarks using linear regression,
which results in the following five linear functions:

yDNA binding ¼ �0:4139þ 0:4133� RAAþ 0:2097� RSA
þ 0:3115� ECO

yRNA binding ¼ �0:4661þ 0:4218� RAAþ 0:2788� RSA
þ 0:3842� ECO

yprotein binding ¼ �0:4932þ 0:4024� RAAþ 0:5596� RSA
þ 0:3018� ECO

yDNA and protein binding ¼ �0:5217þ 0:2648� RAAþ 0:4539� RSA
þ 0:4527� ECO

yRNA and protein binding ¼ �0:5066þ 0:2436� RAAþ 0:4642� RSA
þ 0:3891� ECO

:
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All coefficients are positive. This means that higher values
of RAA, RSA and ECO are associated with higher propensity for
binding. Differences in values of coefficients between functions
reflect relative predictive value of the corresponding hallmarks.
The highest coefficients for the RNA and DNA binding are for
RAA, while for the protein, DNA and protein and RNA and pro-
tein binding the highest are for RSA. This agrees with Figure 1
where these hallmarks are shown to provide the best separation

between the nonbinding and the corresponding binding
residues.

Supplementary Table S3 compares predictive quality of the
propensities for binding computed using RAA, RSA, ECO and
their regression-based combinations when compared with the
native annotations of binding; we report results from cross-
validation on the benchmark data set and results where mod-
eling was performed on the whole benchmark data set. The

Figure 1. Cumulative distributions of the values of RAA (A), RSA (B) and ECP (C) on the corresponding benchmark data sets. The y-axis shows the fraction of the values

below the number shown on the x-axis. Cumulative distributions for individual types of ligands are provided in the Supplementary Figures S8 (for Figure 1A), S9 (for

Figure 1B) and S10 (for Figure 1C) .

Table 4. Hallmarks of binding that offer statistically significant differences (P-value< 0.001) for a given combination of residue sets defined in
the table head and the first row

All residues Nonbinding DNA
binding

RNA
binding

Protein
binding

DNA and
protein
binding

RNA and
protein
binding

All residues N/A RAA RSA ECO RAA RSA ECO RSA RSA ECO RSA ECO
Nonbinding N/A RAA RSA ECO RAA RSA ECO RSA RSA ECO RSA ECO
DNA binding N/A RAA ECO RAA RSA RAA RSA
RNA binding N/A RAA ECO RAA RSA RAA RSA
Protein binding N/A RSA ECO RSA ECO
DNA and protein binding N/A
RNA and protein binding N/A

Note: For instance, ‘RSA ECO’ in the right top corner means that differences in RSA and ECO between RNA and protein-binding residues (column) are significant when

compared with all residues (row). The analysis was performed on the benchmark data sets.
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corresponding putative propensities for binding on the bench-
mark data set are available at http://biomine.cs.vcu.edu/servers/
hybridNAP/. RAA provides strong predictive quality for the DNA,
RNA and multi-ligand-binding residues (AULCratio> 2.9) and per-
forms poorly for protein binding (AULCratio< 1.8). The sensitivity
(TPrate) for the prediction of DNA, RNA and both multi-ligand-
binding residues is substantially higher (between 0.13 and 0.17)
compared with the FPrate that is set to equal 0.05. RSA provides
relatively accurate predictions for both types of multi-ligand-
binding residues (AULCratio> 3, and TPrate> 0.14 at FPrate¼ 0.05),
but its predictive quality for the RNA-, DNA- and protein-binding
residues is lower (AULCratio< 2.7). ECO is shown to be useful to
find the DNA-binding and DNA- and protein-binding residues
(AULCratio>3, and TPrate> 0.14 at FPrate¼ 0.05). Overall, residues
that bind nucleic acids are easier to detect with the three hall-
marks, while protein-binding residues are more elusive.
However, when the hallmarks are combined together protein-
binding residues can be predicted with reasonably high levels of
predictive quality (AULCratio¼ 3.83, and TPrate¼ 0.18 at
FPrate¼ 0.05). Overall, we found that combining two or more
hallmarks using our simple linear functions results in a large in-
crease of predictive performance for each type of binding when
compared with the use of individual markers of binding. The
DNA- and RNA-binding residues and the multi-ligand-binding
residues can be predicted with AULCratio> 5.8, AUC between 0.75
and 0.82 and TPrate between 0.25 and 0.36 at FPrate¼ 0.05, de-
pending on the ligand type (Supplementary Table S3). The results
of experiments based on cross-validation are virtually identical
with the modeling using the whole benchmark data set, which
means that as expected our linear functions do not overtif the
benchmark data sets. This is because our models rely on just
four parameters (coefficients in the linear function). To sum up,
our empirical results demonstrate that while some of the hall-
marks do not provide sufficient discriminatory power to accur-
ately predict some types of binding residues (e.g. RAA to predict
protein-binding residues), a simple linear combination of these
hallmarks provides accurate predictions across the five types of
binding residues.

Figure 2 visualizes relation between values of the three
hallmarks and native annotations of DNA binding expressed
with ratio of fraction of the binding residues to fraction of
nonbinding residues for a given range of RAA, RSA and ECO
values. Results for the other types of binding are given in
Supplementary Figure S11. In the 3D space defined by the val-
ues of RAA, RSA and ECO, outputs of the linear functions for
y> 0 and y< 0 correspond to two subspaces, where the resi-
dues are predicted to bind and not to bind, respectively. The
plane shown in Figure 2 is a boundary between these two sub-
spaces and is defined by the values of the three markers
where yDNA_binding¼0. The ball-shaped points that are color
coded to represent ratios of binding versus nonbinding resi-
dues [darker green (red) denotes higher ratio of binding
(nonbinding) residues] reveal that the native annotations of
binding agree with the placement of the plane that is based
on propensity for binding predicted from the three hallmarks.
The green (red) points are primarily above (below) the plane,
which means that the three hallmarks can be used to separ-
ate binding from nonbinding residues. Importantly, Figure 2
also illustrates how combining these hallmarks results in the
improved separation of the two types of residues. For in-
stance, residues with RAA<0.5 would be categorized as
nonbinding if only this marker would be used; this stems
from the one-dimensional (1D) plot shown in front of the RAA
axis. However, some of these residues are likely to bind DNA,

in particular these with high conservation and RNA values
(top, left and far corner of the 3D plot), and they can be found
using the 3D model.

Hallmarks computed from sequence provide accurate
prediction of binding residues

While RAA and ECO are computed from the protein sequences,
RSA is obtained from the structures, thus constraining results of
our analysis to the structurally solved proteins. Given the rapid
growth of the protein sequence space and the fact that majority
of proteins lack structural coverage [20, 111], we analyze hall-
marks computed solely from the sequences. To this end, we use
putative RSA values predicted from the sequences with
ASAquick [94]. This predictor was empirically assessed to gener-
ate putative RSA with mean absolute error (MAE) of 11% and PCC
with the native RSA of 0.65 6 0.1 using an independent (from the
data used to develop this method) benchmark data set.
Evaluation of predictions from this method on our benchmark
data set shows that it is MAE¼ 11.4% and PCC¼ 0.64 6 0.05. This
slightly lower than originally estimated predictive quality sug-
gests that predictions generated by ASAquick do not overfit our
data set.

Figure 3 quantifies differences in the predictive performance
when the native RSA is replaced by the putative RSA (source
data are available in Supplementary Tables S3 and S4). The cor-
responding values of the putative RSA and propensities for
binding computed using our regressions that use the putative
values of RSA on the benchmark data set are available at http://
biomine.cs.vcu.edu/servers/hybridNAP/. Supplementary Figure
S12 shows side by side the ROC curves that correspond to mod-
els that use native versus putative RSA values. As expected, the

Figure 2. Likelihood of binding residues in 3D space defined by the three hall-

marks of binding and in the three 1D spaces defined by each hallmark (1D plots

at the edges of the 3D plot). Likelihood is estimated with ratio of fraction of bind-

ing residues to fraction of nonbinding residues for a given range of RAA, RSA

and ECO values. Darker green (red) ball-shaped points denote higher ratio of

binding (nonbinding) residues; their size corresponds to number of residues.

Plane separates the 3D space into two subspaces for y>0 and y<0 that corres-

pond to values of hallmarks for which residues are predicted to bind and not to

bind, respectively. Code to recreate this figure as an interactive plot is available

at http://biomine.cs.vcu.edu/servers/hybridNAP/ under the Datasets and

Supporting Information link.
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use of putative values results in a reduction of predictive qual-
ity. Our results reveal that the magnitude of this reduction is
modest. Importantly, combining putative RSA with the other
two hallmarks leads to models that provide accurate predic-
tions of binding residues. The DNA-, RNA- and multi-ligand-
binding residues are predicted with AULCratio> 5, AUC> 0.72
and TPrate> 0.22 at FPrate¼ 0.05. The prediction of the protein-
binding residues is less accurate (similar to when using the na-
tive RSA) but still provides useful clues to find these residues in
the input protein chain (AULCratio¼ 3.3, AUC¼ 0.66 and
TPrate¼ 0.15 at FPrate¼ 0.05). Our results agree with the fact
that these hallmarks are often used to build sequence-based
predictors of protein- and nucleic acid-binding residues (Table
1). The results also reveal that accurate prediction of the five
types of binding residues solely from the protein sequence is
possible with the use of the three hallmarks.

Motivated by the work in [112], we empirically investigate
whether and how the predictive performance varies when
applying the best regression models that rely on the three hall-
marks and putative RSA to predict proteins that carry out spe-
cific functions. We annotate molecular functions for proteins in
the benchmark data set using gene ontology (GO) terms that we
collect from the UniProt resource. To ensure that the sample
size is sufficiently large to obtain robust estimates, we evaluate
predictive performance for the molecular functions that include
at least 30 proteins. Supplementary Table S5 shows AUC and
AULCratio values for the resulting 8, 8, 31, 6 and 7 functions for
the proteins involved in DNA, RNA, protein, DNA and protein as
well as RNA and protein binding, respectively. Both AUC and
AULCratio values are significantly better than random (AUC> 0.5
and AULCratio> 1) for all considered functions. AULCratio exceed
3 for the functions of proteins that interact with DNA, RNA and
with both DNA and proteins, and is no smaller than 1.99 for the
protein- and RNA and protein-binding proteins. Binding resi-
dues for DNA repressors, DNA activators, hydrolases and trans-
ferases are predicted with AULCratio surpassing 5.

HybridNAP predictor of binding residues

The five scoring functions that are based on the three hallmarks
of binding are deployed as a Web server called hybridNAP

(hybrid prediction of Nucleic Acids and Protein binding). A flow-
chart that explains how predictions are performed is visualized
in Figure 4. The Web server is freely available at http://biomine.
cs.vcu.edu/servers/hybridNAP/. It accepts queries with up to 10
FASTA-formatted protein sequences and provides real-valued
propensities for RNA, DNA, protein, RNA and protein as well as
DNA and protein binding for each residue in the submitted se-
quences. This is the first method that provides predictions of
multi-ligand-binding residues. HybridNAP is also the first to
simultaneously provide predictions of DNA-, RNA- and protein-
binding residues. Results are stored in a parsable text file, which
is archived for at least 1 month on the server and which can be
accessed via URL provided in the browser window and sent to a
user-provided email address.

We empirically compare hybridNAP with a selection of rep-
resentative methods for the prediction of DNA-, RNA- and pro-
tein-binding residues on the corresponding three test data set:
DNA_T, RNA_T and protein_T. We could not identify any meth-
ods that predict multi-ligand-binding residues. As hybridNAP is
available as a Web server, we select methods that are also avail-
able as Web servers, and we use these Web servers to collect
their predictions. We include the methods that were assessed
in the recent comparative review of predictors of DNA- and
RNA-binding residues, where the same selection criteria were
applied [88]. They include BindNþ [24], DBS-PSSM [113] and DP-
Bind(klr) [23] for the prediction of DNA-binding residues and
BindNþ [24], RNABindR [40] and Pprint [37] for the prediction of
RNA-binding residues. We also compare the predictions of pro-
tein-binding generated by hybridNAP with two representative
methods that predict protein-binding residues: SPRINGS [83]
and PSIVER [58]. The hybridNAP models were generated using
the training30_DNA, training30_RNA and training30_protein
data sets that include proteins for which the PDB chains used to
annotate them share <30% similarity with the DNA_T, RNA_T
and protein_T test data sets, respectively. The three training
data sets and the predictions from all considered methods,
including hybridNAP, on the three test data sets are available at
http://biomine.cs.vcu.edu/servers/hybridNAP/.

The results in Figure 5A and Supplementary Table S6 show
that hybridNAP secures AUC¼ 0.69, TPrate¼ 0.17 at
FPrate¼ 0.05, MCC¼ 0.19 and AULCratio¼ 3.4 for the prediction of

Figure 3. The loss of predictive performance measured with AUC when using putative RSA predicted from the sequence instead of the native RSA computed from the

structure. The results include the use of putative RSA alone and the three regression models that combine putative RSA with the other two hallmarks of binding. Solid

and color coded by the type of binding bars show AUC when using the putative RSA, while hollow bars when using the native RSA. The analysis was performed based

on the cross-validation on the benchmark data sets. Source values are available in Supplementary Tables S3 and S4.
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DNA-binding residues on the DNA_T data set. These results are
lower when compared with the other methods. DP-Bind, DBS-
PSSM and BindNþobtain AUCs at about 0.8, TPrates between
0.28 and 0.30 at FPrate¼ 0.05 and MCCs at about 0.3. However,
their AULCratios are more similar to hybridNAP. This is also evi-
dent in Figure 5A, where the ROC curve of hybridNAP is rela-
tively close to the curves for the other three methods for the
low FPR values. This part of the curve is arguably more practical
given that this is where the number of false positives (nonbind-
ing residues predicted as DNA binding) is relatively low and is
kept below the number of native DNA-binding residues. Figure
5B and Supplementary Table S6 provide results for the predic-
tion of RNA-binding residues on the RNA_T data set.
HybridNAP’s results are similar to Pprint and somewhat lower
than the results of BindNþand RNABindR. HybridNAP’s
AUC¼ 0.67 and MCC¼ 0.15 compared with AUCs and MCCs of
the other methods that range between 0.68 and 0.74 and be-
tween 0.19 and 0.23, respectively. Similarly, hybridNAP’s
AULCratio¼ 4.2 as opposed to the corresponding values for the
other methods that are between 4.4 and 6.1. Finally, Figure 5C
and Supplementary Table S6 summarize results for the predic-
tion of protein-binding residues on the protein_T data set. The
predictive quality of hybridNAP is similar to PSIVER and lower
than SPRINGS. The three methods provide modest levels of pre-
dictive performance with AUCs between 0.59 and 0.63, MCCs be-
tween 0.1 and 0.14 and AULCratio between 1.6 and 2.3.

We observe that the results of hybridNAP on the three test
data sets (Supplementary Table S6) are lower than the results
on the benchmark data set (Supplementary Table S4), particu-
larly for the RNA and protein binding. To compare, AUC¼ 0.69
versus 0.72 for the DNA binding, 0.67 versus 0.73 for the RNA
binding and 0.59 versus 0.66 for the protein binding. We also
compared results of the representative predictors of DNA-bind-
ing residues (DP-Bind that secures largest values of AUC and
AULCratio in Supplementary Table S6), RNA-binding residues
(RNABindR that secures similar predictive performance to the
best performing BindNþ that was unavailable at the time of
these tests) and protein binding (SPRINGS that secures largest
values of AUC and AULCratio in Supplementary Table S6) be-
tween the test data sets and the corresponding benchmark data
sets (last row in the Supplementary Table S4). Similarly as for

hybridNAP, these results on the test data sets are lower when
compared with the results on the benchmark data sets for the
RNA and protein binding, i.e. AUC¼ 0.72 versus 0.80 for
RNABindR and AUC¼ 0.61 versus 0.63 for SPRINGS. The reason
is that these test data sets include only the proteins that bind a
given ligand type, e.g. the RNA_T test data set consists solely of
the RNA-binding proteins. These data sets do not include rela-
tively easier to predict nonbinding residues in the proteins that
do not bind this ligand. This is in contrast to the benchmark
data set that incorporates a much broader population of pro-
teins which interact with a variety of ligands.

Overall, our empirical analysis demonstrates that hybridNAP
offers modestly accurate results. Although they are not as good as
the results produced by some of the current predictors,
hybridNAP’s predictions are sufficiently accurate to offer practical
insights. This is especially evident, given the relatively high
AULCratio values for the prediction of DNA- and RNA-binding resi-
dues. HybridNAP’s TPrates¼ 0.17 for the DNA binding,¼ 0.18 for
the RNA binding and¼ 0.1 for the protein binding (Supplementary
Table S6) are between 2 and 3.6 times higher than the correspond-
ing FPrate¼ 0.05. Moreover, Figure 5 reveals that HybridNAP se-
cures TPrate¼ 0.3 at the FPrate¼ 0.11 for the DNA binding,¼ 0.12
for the RNA binding and¼ 0.18 for the protein binding. This means
that these results are substantially better than random. The lower
predictive performance of hybridNAP when compared with the
other methods is not surprising, as the other methods use sophis-
ticated predictive models (neural networks and support vector
machines) and a large number of predictive inputs [58, 83, 88].
This is in contrast to hybridNAP that uses a simple regression
with just the three inputs. Importantly, our intention is not to pro-
vide the most accurate method but to demonstrate that the three
hallmarks computed from the protein sequence are sufficient to
provide practical levels predictive performance. Moreover,
hybridNAP is the only method that simultaneously provides pre-
dictions of DNA-, RNA- and protein-binding residues. This is sub-
stantially more convenient and runtime efficient than having to
use multiple predictors. Importantly, our Web server is also the
first to predict multi-ligand-binding residues. Finally, our methods
and the reported predictive performance can be also used as a
benchmark in future works that will develop more advanced and
more accurate predictors.

Figure 4. A flowchart that summarizes the predictions with the hybridNAP method. We color coded the five predictive models that that are integrated into hybridNAP

that focus on the prediction of DNA binding (red), RNA binding (yellow), protein binding (blue), DNA and protein binding (green) and RNA and protein binding (violet).
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Two characteristics that can potentially affect predictive
quality of a given model that is measured on a test data set in-
clude similarity between proteins in the training and test data
sets and the size of the training data set. The predictors that we
consider in our empirical evaluation use training proteins that
share <30% similarity with the proteins in the test data sets
[58, 83, 88]. This is in agreement with the similarity for our train-
ing data sets. Next, we empirically investigate whether the size
of the data sets used to train our regression-based models im-
pacts the predictive performance. We reduce the size of our
training data set to be the same as the size of the smallest data
sets that were used to train the corresponding predictors of
DNA-, RNA- and protein-binding residues. We select at random
62 proteins from training30_DNA to train our model for the pre-
diction of DNA-binding residues, as the training data sets of
BindNþ, DBS-PSSM and DP-Bind are the same and include 62
proteins (we call this data set training30small_DNA). Similarly,
we select at random 86 proteins from training30_RNA to train
our model for the prediction of RNA-binding residues, as the
training data sets of BindNþ, RNABindR and Pprint have 86, 147
and 174 proteins, respectively (training30small_RNA data set).
Finally, we randomly pick 186 proteins from training30_protein
to build the predictor of protein-binding residues because both
PSIVER and SPRINGS use training data set with this number of

proteins (training30small_protein data set). We randomize the
selection of the training proteins 10 times (i.e. we create 10
training30small_DNA, 10 training30small_RNA and 10 train-
ing30small_protein data sets) to build 10 corresponding pre-
dictors. These data sets are available at http://biomine.cs.vcu.
edu/servers/hybridNAP/. Supplementary Table S6 reports the
averages and SDs of the corresponding ten tests for the predic-
tion of DNA-, RNA- and protein-binding residues for hybridNAP.
The results demonstrate that the predictive quality of
hybridNAP is similar irrespective of the sizes of the training
data sets. To compare, AUC values (AULCratio values) when
using the complete versus small training data set are 0.686 ver-
sus 0.685 (3.39 versus 3.31) for DNA binding, 0.668 versus 0.668
(4.18 versus 4.19) for RNA binding and 0.588 versus 0.588 (2.02
versus 2.00) for protein binding. Similarly, the MCC values are
virtually identical when comparing the two sets of results side
by side. This analysis suggests that the predictive performance
of hybridNAP can be compared side by side with the results of
the other methods on the test data sets that we use.

We also study whether the measured predictive quality is af-
fected by the imbalanced nature of the test data sets in which
the majority of residues are nonbinding. We undersample the
native nonbinding residues at random to match their number
to the number of native nonbinding residues. The randomized

Figure 5. ROC curves for hybridNAP and the existing predictors of DNA-binding residues on the DNA_T test data set (47 proteins) (A), predictors of RNA-binding resi-

dues on the RNA_T test data set (17 proteins) (B) and predictors of protein-binding residues on the protein_T test data set (72 proteins) (C). The corresponding values of

AUC and AULCratio are given in the figure legends.
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undersampling is repeated 10 times to create 10 balanced test
data sets. Supplementary Table S7 reports averages and SDs of
the corresponding 10 tests on the balanced DNA_T, RNA_T and
protein_T test data sets. The results are similar to the results on
the original test data sets (Supplementary Table S6) for all con-
sidered predictors including hybridNAP. For instance, AUCs of
hybridNAP for the prediction of DNA-binding residues on the
balanced versus imbalanced data set are 0.686 versus 0.686; for
the prediction of RNA binding, they are 0.668 versus 0.672; and
for the prediction of protein binding, they are 0.588 versus 0.589.
Similarly, the corresponding AUCs of BindNþare 0.794 versus
0.797 for the prediction of DNA-binding residues, and 0.731 ver-
sus 0.738 for the prediction of RNA-binding residues. One excep-
tion is the MCC values that are higher for the balanced test data
set. For instance, hybridNAP’s MCCs are 0.31 for the balanced
DNA-binding test data set versus 0.19 for the original DNA-bind-
ing test data set, 0.26 versus 0.15 for the RNA binding and 0.14
versus 0.11 for the protein binding. We observe similar in-
creases for the other methods. These differences stem from the
fact that the predictions on the original data sets include a
much larger number of false positives compared with the pre-
dictions on the balanced data set, while the number of true
positives remains the same. We argue that the higher MCCs on
the balanced data set could be misleading, as these predictors
will be ultimately applied on full protein chains that are imbal-
anced. This analysis reveals that the majority of the used meas-
ures of the predictive quality can be used to accurately assess
results on the original and balanced test data sets.

We also compare hybridNAP with regressions that use of
one or two hallmarks of binding on the same three test data
sets (Supplementary Table S8). This comparison reveals that
use of the three hallmarks provides improved predictive per-
formance when contrasted with the use of two or a single hall-
mark. The AULCratio (MCC) improves from 2.96 to 3.39 (from 0.16
to 0.19) for the prediction of DNA-binding residues, from 2.44 to
4.18 (from 0.12 to 0.15) for the RNA-binding residues and from
1.37 to 2.02 (from 0.07 to 0.11) for the protein-binding residues,
when comparing the best single hallmark with use of
hybridNAP. Similarly, when FPrate¼ 0.05, the TPrate (sensitiv-
ity) goes up from 0.135 to 0.167, from 0.131 to 0.176 and from
0.066 to 0.096 for the prediction of DNA-, RNA- and protein-
binding residues, respectively (Supplementary Table S8). This
demonstrates that the three hallmarks provide complementary
information for the sequence-based prediction of the nucleic
acid-binding residues.

To summarize, our analysis reveals that combining the three
hallmarks provides accurate prediction of DNA- and RNA-bind-
ing residues. We also note that hybridNAP is the first approach
that provides prediction of multi-ligand-binding residues.
Moreover, its predictions can be easily linked to the underlying
hallmarks of binding, providing easy-to-understand interpret-
ation of the results. The latter means that the hybridNAP’s users
would not only learn whether a given residue is likely to bind
DNA, RNA and/or proteins, but (s)he would also learn about
underlying factors that contribute to this prediction, such as
specific levels of conservation, RSA and/or RAA. We explore this
further in the next section.

Use of unexplored hallmarks leads to improved
predictive performance for the current predictors

Many of the current predictors do not use some of the three hall-
marks. Among the predictors that we compared with, BindNþ,
DBS-PSSM and DP-Bind do not use RSA and RAA values, and

RNABindR does not take advantage of any of the hallmarks,
while Pprint and PSIVER do not use RSA and RAA, respectively.
We empirically investigate whether addition of the missing hall-
marks would improve their predictive performance. We follow
two rules of thumb to augment the original propensities output
by these methods. First, as binding is unlikely for buried resi-
dues, we set the new propensity¼ (original_propensityþRSA)/2
for the residues with the putative RSA� 0.1. This effectively low-
ers the resulting propensity for these residues, given how low
the RSA values are. The second rule relies on an assertion that
residues that are highly conserved or have high RAA value are
more likely to bind, and thus, their propensity should be ampli-
fied. Thus, among the AAs on the surface (with putative
RSA> 0.1), we increase the binding propensity for the residues
that have ECO or RAA values in the top 5%. More specifically, we
use ECO and RAA values that are normalized to the unit range
and compute the new propensity¼ (original_propensityþECO or
RAA)/2. Figure 6 compares predictive performance measured
with AUC and AULCratio between the original predictors (black
bars) with the predictors that were augmented using these two
rules (gray bars). Figure 6A shows that the use of the two simple
rules improves the values of AULCratio for all considered meth-
ods. This means that the hallmarks can be used to more accur-
ately find binding residues among the predictions with high
propensities (when FPrate values are low). Figure 6B shows that
the overall AUC values also improve by a small margin across all
considered predictors. We hypothesize that this margin could be
further increased if the missing hallmarks were used as inputs
to optimize the predictive models instead of being used to
postprocess the predictions.

Case studies

We visualize predictions from hybridNAP for two proteins, one
that binds DNA and one that binds RNA and proteins. The AUCs
of the corresponding hybridNAP’s predictions are similar to the
average values based on the cross-validation. We also contrast
hybridNAP’s predictions with the predictions from BindNþ.

The native DNA-binding residues are at the N terminus of
the transcriptional repressor protein (Figure 7A; hollow boxes
below the horizontal axisþ). The hybridNAP’s scoring function
finds majority of these binding residues (black crosses), and its
predictions generally agree with the outputs of BindNþ (blue
crosses). Driven by the simplicity of its model, a substantial
benefit of hybridNAP is availability of values of the three hall-
marks that suggest the underlying factors that explain the pre-
diction. Generally, we note that if at least one hallmark has high
values (highlighted with solid green markers), the correspond-
ing residue is likely to bind. The end users of the hybridNAP’s
Web server can take advantage of the same annotations of high
(green) and low (red) values of hallmarks that are available
among Web server’s outputs generated online. Predictions of
RNA- and protein-binding residues for the ribosomal protein
S1A are shown in Figure 7B. The native binding residues are dis-
tributed oven the entire chain and include six multi-ligand-
binding residues that bind both RNA and proteins (solid black
boxes below the horizontal axis). BindNþ and hybridNAP are
relatively successful in finding the native RNA-binding residues
(hollow boxes below the horizontal axis); the former method
finds fewer binding residues but at a lower false-positive rate.
The hybridNAP method predicts protein-binding residues in
three of four clusters of native protein-binding residues (solid
gray boxes below the horizontal axis). It also correctly predicts
two residues that bind both RNA and proteins, for two more its
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Figure 6. Comparison of the predictive performance of the existing predictors of DNA- or RNA- or protein-binding residues (black bars) with these methods augmented

with the use of hallmarks (gray bars) on the DNA_T/RNA_T/protein_T test data sets. (A and B) show the values of AULCratio and AUC, respectively. The outputs of pre-

dictors are improved with the hallmarks that they do not use. BindNþ, DBS-PSSM and DP-Bind are augmented with the use RSA and RAA values; RNABindR is im-

proved with the use of RSA, ECO and RAA; Pprint and PSIVER are enhanced with the use of RSA and RAA, respectively.

Figure 7. Case studies that illustrate scores generated by hybridNAP and compare them with the native annotations of binding and predictions from BindNþ. (A) shows

results for the DNA-binding Redox-sensing transcriptional repressor Rex protein (UniProt ID: Q9X2V5). (B) is for the RNA- and protein-binding 40S ribosomal protein

S1A (Uniprot ID: P33442). The x-axis represents the protein sequence. The top part of the plot shows the scores generated by hybridNAP (red, yellow, dark blue and pur-

ple lines for the prediction of DNA binding, RNA binding, protein binding and RNA and protein binding) and by BindNþ (light blue line). The markers underneath the x-

axis line provide annotations of native and predictive binding residues. In (A), one cluster of three lines of markers shows results for DNA binding. In (B), there are three

clusters of three lines for the RNA, protein and RNA and protein binding. Squares denote the native binding residues where gray squares with black borders are for

DNA binding, hollow squares for RNA binding, solid gray for protein binding and solid black for residues that bind both RNA and proteins. Crosses denote predicted

binding residues, in black for hybridNAP and in blue for BindNþ. Triangles, diamonds and circles represent values of the three hallmarks: RAA, RSA and ECO, respect-

ively. Solid green markers indicate high values of these hallmarks, and while hollow red markers represent low values.
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predictions are just one residue away from the native annota-
tions, and for the last two its predictions are two and three resi-
dues away. Overall, hybridNAP’s predictions are on par with
BindNþ for the prediction of RNA- and DNA-binding residues.
However, hybridNAP also predicts protein-binding residues as
well as multi-ligand-binding residues, and has the advantage of
informing end users of the factor(s) that drive its predictions.

Conclusions

We substantially expand our recent related studies that concern
prediction of protein–nucleic acid interactions [71, 88] or pro-
tein–protein interactions [87], use smaller data sets and focus
on the assessment of predictions instead of characterizing bind-
ing residues. Here, we review a comprehensive set of over 50
recent studies that predict and/or characterize protein–nucleic
acids and protein–protein interactions with the goals of analyz-
ing main hallmarks of binding using a large data set and build-
ing a first-of-its-kind method that predicts RNA-, DNA- and
protein- binding residues.

We found that most of the 50 surveyed studies concern ei-
ther protein–DNA or protein–RNA binding, while only a few con-
sider both protein–protein and protein–nucleic acid binding.
While different works may contemplate different characteris-
tics that can be derived from protein sequences and structures
to investigate and predict binding residues, they generally agree
on three main hallmarks of binding: ECO, RSA and propensity of
AAs for binding (RAA). We also found that these articles share a
few deficiencies. They use relative small data sets with incom-
plete annotations of binding, typically focus on one type of
ligand and rarely compare between RNA-, DNA- and protein-
binding, and never studied the multi-ligand-binding residues.

Motivated by the conclusions from the review, we present a
comprehensive and large-scale comparative analysis of propen-
sity of residues to bind proteins, RNAs, DNA, proteins and RNAs
and proteins and DNA in the context of their RSA, ECO and RAA
values. We use substantially larger data sets with markedly
more complete annotations of binding when compared with the
prior studies. Our analysis suggests that propensities of AAs for
binding depend on the ligand type, and in case of the multi-lig-
and-binding residues, they are driven by the binding to the nu-
cleic acids. We found that this hallmark is not suitable to
differentiate between binding to RNA and DNA but can be suc-
cessfully used to separate protein-binding and nucleic acid-
binding residues. The residues that interact with nucleic acids
are significantly more conserved in the sequence when com-
pared with the protein-binding and nonbinding residues.
Moreover, residues that interact with proteins have conserva-
tion values that are similar to the nonbinding residues. While
all binding residues are generally biased to be more solvent
exposed, we found that this bias is stronger for the multi-lig-
and-binding residues. Interestingly, we also discovered that
none of the three hallmarks is statistically different between
DNA- and RNA-binding residues and between the two types of
the multi-ligand-binding residues. We empirically show that
merging the information coming from the three hallmarks leads
to improved ability to predict binding residues in protein se-
quences. We also demonstrate that predictive performance of
these predictions is sufficient to relatively accurately find DNA-,
RNA-, protein-, RNA- and protein- and DNA- and protein-bind-
ing residues in protein sequences and structures.

We combine the three hallmarks, using predicted from se-
quence RSA, to develop sequence-based hybridNAP predictor of
propensities for protein, DNA, RNA and multi-ligand binding.

This method is freely available at http://biomine.cs.vcu.edu/
servers/hybridNAP/. We empirically show that hybridNAP
provides modest predictive performance compared with the
current sequence-based predictors of DNA- and RNA-binding
residues. Although it is outperformed by some of the predictors,
particularly for the prediction of DNA-binding residues,
hybridNAP has several unique advantages. This is the first
method that concurrently provides predictions of DNA-, RNA-
and protein-binding residues in contrast to the other methods
that predict binding to a single type of ligand (DBS-PSSM, DP-
Bind, RNABindR, Pprint, PSIVER, SPRINGS and SSWRF) and to
DNA and RNA (BindNþ). Moreover, hybridNAP is the first
method that provides predictions of the multi-ligand-binding
residues, including residues that bind both DNA and proteins,
and both RNA and proteins. It also offers arguably easy to
understand interpretation of the putative propensities for bind-
ing, which are derived based on the values of the three hall-
marks. The hybridNAP’s Web page provides access to the data
sets, values of the three hallmarks of binding and predictions
from all considered methods on the data sets used in this pro-
ject. These resources can be used in future studies to bench-
mark and develop more accurate predictors.

Key Points

• We review over 50 studies that focus on the analysis
and/or prediction of protein–RNA, protein–DNA and
protein–protein interactions.

• Three main hallmarks of DNA-, RNA- and protein-binding
residues include relative solvent accessibility, evolution-
ary conservation and propensity of AAs for binding.

• Residues that bind both nucleic acids and proteins are
more conserved and have higher solvent accessibility
than residues that bind one type of ligands.

• Merging the information coming from the three hall-
marks leads to improved ability to predict binding resi-
dues in protein sequences when compared with using a
single hallmark.

• Linear combinations of the three hallmarks can be used
to accurately predict DNA-, RNA- protein-, protein- and
DNA- as well as protein- and RNA-binding residues in
protein sequences.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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