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Abstract 

The interactions between nucleic acids and proteins are important in diverse biological processes. The 

high-quality prediction of nucleic-acid-binding sites continues to pose a significant challenge. Presently, 

the predictive efficacy of sequence-based methods is constrained by their exclusive consideration of 

sequence context information, whereas structure-based methods are unsuitable for proteins lacking 

known tertiary structures. Though protein structures predicted by AlphaFold2 could be used, the 

extensive computing requirement of AlphaFold2 hinders its use for genome-wide applications. Based 

on the recent breakthrough of ESMFold for fast prediction of protein structures, we have developed 

GLMSite, which accurately identifies DNA and RNA-binding sites using geometric graph learning on 

ESMFold predicted structures. Here, the predicted protein structures are employed to construct protein 

structural graph with residues as nodes and spatially neighboring residue pairs for edges. The node 

representations are further enhanced through the pre-trained language model ProtTrans. The network 

was trained using a geometric vector perceptron, and the geometric embeddings were subsequently fed 

into a common network to acquire common binding characteristics. Then two fully connected layers 

were employed to learn specific binding patterns for DNA and RNA, respectively. Through 

comprehensive tests on DNA/RNA benchmark datasets, GLMSite was shown to surpass the latest 

sequence-based methods and be comparable with structure-based methods. Moreover, the prediction 

was shown useful for the inference of nucleic-acid-binding proteins, demonstrating its potential for 

protein function discovery. The datasets, codes, together with trained models are available at 

https://github.com/biomed-AI/nucleic-acid-binding. 
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1. Introduction 

Interactions between nucleic acids and proteins are essential in numerous biological processes, which affect the protein function, 

transcription[1], and genetic material. To address this issue, many experimental methods[2, 3] have been proposed. However, 

these methods can’t be widely used because of the costly and time-consuming properties. Therefore, there is an urgent need to 

develop the computational methods. 

Depending on the data used, two computational methods are divided as follows: sequence-based and structure-based 

methods. For sequence-based methods[4, 5], the nucleic-acid-binding characteristics are derived from sequence-derived features. 

For instance, by using the evolutionary information, solvent accessibility, and predicted secondary structures, NCBRPred[6] 

learns local patterns for DNA and RNA-binding prediction through a sliding-window strategy. And DNAPred[7] identifies the 

DNA-binding sites with a two-stage algorithm. Although sequence-based methods can be applied to any protein, their predictive 

efficacy is constrained by their exclusive consideration of sequence context information. 

In contrast, structure-based methods are usually more accurate by inferring binding sites from known structures. Typically, 

template-based, machine learning based, and hybrid methods are included within the structure-based methods. Among them, 

template-based methods, like SPOT-Seq-RNA[8] and DR_bind1[9], obtain dependable templates for specified proteins using 

structural alignment, through which nucleic-acid-binding sites are identified. However, these methods don’t apply to proteins 

without known templates. To address this issue, machine learning based methods[10] build classifiers using features from protein 

structures. For instance, GraphBind[11] learns the patterns of structural characteristics based on encoding protein structures as 

graphs. By comparison, hybrid methods[12] are composed of the above two types of methods. Despite the good performance of 

structure-based methods, they are not suitable for proteins lacking experimental structures. 

Benefiting from the breakthroughs of AlphaFold2 in protein structure prediction, Yuan et al[13] demonstrated the predicted 

structures were worthwhile for the DNA-binding site identification. Unfortunately, the extensive computing requirement of 

AlphaFold2 hinders its use for genome-wide applications. To solve this problem, the pre-trained language model ESMFold[14] 

was constructed for fast and accurate structure prediction, achieving similar accuracy to AlphaFold2 but reducing the inference 

time by an order of magnitude faster than AlphaFold2. Such change enables better exploration of the structural space of the 

proteins in metagenomics[15]. On the other hand, the features obtained from protein sequences using unsupervised language 

models (ProtTrans[16] and ESM-1b[17]) were demonstrated to be useful for downstream tasks[18, 19]. However, these 

techniques haven’t been fully utilized for the prediction of nucleic-acid-binding sites. 

Additionally, effective learning of protein structure is essential for model performance. Protein structure could be learned 

through two types of techniques: graph neural networks (GNNs)[20, 21] and convolutional neural networks (CNNs)[22-24]. The 

relational reasoning, such as recognizing relationships of amino acids based on structures[25], is well done by GNNs. By 

comparison, CNNs directly manipulate the geometry of the structure. Recently, the combination of two techniques is popular and 

showing better performance, a typical representative is geometric vector perceptron (GVP)[26]. GVP can combine the 

advantages of the above two techniques by operating directly on both scalar and geometric features. This inspires us to consider 

using this method to achieve effective learning of protein structures. 

In this work, a novel method GLMSite is developed, which uses Geometric graph learning on Language Model predicted 

structures for nucleic-acid-binding site identification. Specifically, the predicted protein structures are employed to construct 

protein structural graph with residues as nodes and spatially neighboring residue pairs for edges. The node representations are 

further enhanced through the pre-trained language model ProtTrans. During training, the node and edge representations are used 

to obtain the geometric embeddings, which are subsequently fed into a common network to acquire common binding 

characteristics. Then two fully connected layers are employed to obtain specific binding patterns for DNA and RNA, respectively. 

Through comprehensive tests on DNA/RNA benchmark datasets, GLMSite was shown to surpass the state-of-the-art sequence-

based methods and be comparable with structure-based methods. Moreover, the prediction results can help identify nucleic-acid-

binding proteins, demonstrating its potential for protein function discovery.  
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2. Materials and methods 

2.1 Datasets 

From BioLiP[27] database, we downloaded 14903 and 13978 proteins (released on March 30, 2022) that bind to DNA and RNA, 

respectively. The binding sites in this database were computed depending on the experimental complex structures from the PDB 

database[28]. A binding residue is defined by the minimum atomic distance between it and the nucleic acid. Specifically, if the 

distance minus 0.5 Å is less than the sum of Van der Waal’s radius of the two nearest atoms, the residue is considered to bind the 

nucleic acid. 

One protein may bind different DNA/RNA, which are deposited in different PDB entries. To obtain the complete binding 

sites, we clustered the binding proteins with 95% sequence identity through MMseqs2[29], and chose the longest chain as the 

representative one. Following the previous studies[30, 31], the binding annotations were transferred from homology chains 

according to sequence alignment by blastp[32], causing the number of DNA and RNA-binding sites to increase by 8.6% and 

32.4%, respectively. Then, the chains were removed through MMseqs2 at 30% sequence identity, leading to the size of DNA and 

RNA-binding data sets being 915 and 719, corresponding to 22866/261955 and 23045/219297 binding residues, respectively. For 

a strict evaluation, the proteins deposited before a specific date were used for training, and the afterwards for testing. We set the 

deposition date as 18/12/2019 and 19/06/2019 for the DNA and RNA-binding data sets so that around 80% (735 and 577, 

respectively) proteins were used for the training. More details can be seen in Table 1. 

To verify the ability of GLMSite to infer nucleic-acid-binding proteins from residue-level prediction, we constructed a new 

dataset PDB2770 from PDB[28] database (released after January 1, 2020). The homologous proteins were removed against the 

training set through MMseqs2 (30% sequence identity), resulting in 761 positive samples (nucleic-acid-binding proteins) and 

2009 negative samples (non-nucleic-acid-binding proteins).  

 

2.2 Protein representations 

According to the predicted structure from ESMfold, we view each protein as a graph G = (U, E). The U represents the nodes in 

the graph, where each node 𝑢𝑖 ∈ 𝑈 is assigned a node representation ℎ𝑢
(𝑖)

. Similarly, the edges are represented as E, which are 

constructed by the nearest 30 neighbors based on the distance between Cα atoms. Specifically, the edge 𝑒𝑗→𝑖 ∈ E is an edge from 

𝑢𝑗 to 𝑢𝑖, and its corresponding representation is ℎ𝑒
(𝑗→𝑖)

. 

 

Node representations: 

 • Node vector features. Three unit vectors in different directions, including Cαi−1
− Cαi

, Cαi+1
− Cαi

 and Cβi
− Cαi

. 

 • Structural properties. The DSSP[33] program was used to extract structure features, including (i) dihedral information 

{𝑠𝑖𝑛, 𝑐𝑜𝑠} × (𝛷, 𝜓, 𝜔). (ii) solvent accessible surface area. (iii) nine one-hot secondary structure profile.  

 • Language model representations. A pre-trained language model ProtT5-XL-U50 (ProtTrans[16]) was employed to 

generate the protein embeddings to enhance the node representations. ProtTrans is a transformer-based auto-encoder called 

T5[34], pre-trained on UniRef50[35] to learn to complete the prediction of masked amino acids. The node representations were 

enhanced using the features computed from the last layer of the ProtTrans encoder. 

 

Edge representations: 

• Edge vector features. A unit vector between 𝑢𝑗  and 𝑢𝑖in the direction of Cαj
− Cαi

. 

• Distance encoding. The distance encoding of ||Cαj
− Cαi

||2 according to the gaussian radial basis functions. 

• Positional embedding. The positional embedding indicates the positioning of each neighbor 𝑗 by using the sinusoidal 

function of the gap 𝑗 − 𝑖, where 𝑖 represents the current node. 

 

2.3 The architecture of GLMSite 

As shown in Figure 1, GLMSite uses ESMFold to predict protein structures while using ProtTrans to extract sequence 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.07.13.548862doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548862


embeddings, which are used to generate the node and edge features. These are then fed into a geometric vector perceptron-based 

graph neural network (GVP-GNN). And the information is sent to two individual networks respective for DNA and RNA-binding 

site predictions. 

 

2.3.1 Geometric vector perceptron 

For better learning the vector and scalar features, the geometric vector perceptron (GVP) is used to combine the strengths of 

CNNs and GNNs. It operates on scalars and vectors through a series of linear and nonlinear operations. A linear operation is first 

applied to the vector features to obtain processed features. Then, on the one hand, the combination of scalar and 𝐿2 norm of 

processed features is utilized for generating new scalar features. On the other hand, multiple operations are performed on the 

processed features and vector features to update vector features. Specifically, the calculation process is as follows:  

𝑠′ = 𝜎(𝑊𝑚𝑠ℎ+𝑛 + 𝑏) (1) 

𝑉′ = 𝜎+ (‖𝑊𝜇𝑊ℎ𝑉‖
2

) ⊙ (𝑊𝜇𝑊ℎ𝑉) (2) 

Where s  𝑅𝑛 and V  𝑅𝑣×3 are original scalar and vector features, s′ ∈ 𝑅𝑚 and V′ ∈ 𝑅𝜇×3  are corresponding new features. 

Besides, 𝜎 and 𝜎+ are nonlinearities, 𝑊𝑚, 𝑊ℎ and 𝑊𝜇 are three separate linear transformations and 𝑏 is the bias term. The 𝑠ℎ+𝑛 ∈

𝑅ℎ+𝑛 represents the combination of s  𝑅𝑛 and ‖𝑊ℎ𝑉‖2 ∈ 𝑅ℎ, of which ℎ is the largest number of 𝑣 and 𝜇. 

 

2.3.2 The GVP-based graph neural networks 

The GVP-based graph neural networks (GVP-GNN) utilize message passing[36] to updated node embeddings through the 

messages from neighboring nodes and edges. For each graph propagation, the protein graph defined above is fed into the 

architecture and the propagation steps are as follows: 

ℎ𝑚
(𝑗→𝑖)

: =  𝑔 (𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑢
(𝑗)

, ℎ𝑒
(𝑗→𝑖)

)) (3) 

ℎ𝑢
(𝑖)

 ← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (ℎ𝑢
(𝑖)

+  
1

𝑘′
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 ( ∑ ℎ𝑚

(𝑗→𝑖)

𝑗:𝑒𝑗→𝑖∈𝜖

)) (4) 

Where g is a module consisting of GVPs, and the information of node i and edge (𝑗 → 𝑖) is represented as  ℎ𝑢
(𝑖)

 and ℎ𝑒
(𝑗→𝑖)

, 

respectively. For the message passing from node j to node i, 𝑘′ represents the incoming message number, while ℎ𝑚
(𝑗→𝑖)

 denotes 

the message. Meanwhile, for updating the node information, an additional layer has been added as follows: 

ℎ𝑢
(𝑖)

 ←  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (ℎ𝑢
(𝑖)

+  𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑔(ℎ𝑢
(𝑖)

))) (5) 

Both the scalar features and vector features at each node will be updated through these graph propagation and feed-forward steps.  

 

2.3.3 Nucleic-acid-specific fully connected networks 

The output of the GVP-GNN is transmitted to the nucleic-acid-specific fully connected networks to predict the DNA and RNA 

binding sites. Since different tasks have specific properties, we construct two independent fully connected networks for different 

tasks. For a specific task, we only update the corresponding network, while the remaining network keeps unchanged. 

 

2.3.4 Implementation details 

On the training data, the 5-fold cross-validation (CV) was performed, where the data was randomly divided into 5-folds. During 

the training process, the model was trained on 4 folds and validated on the rest of the data. After five identical operations, the 

average validation performance was employed to optimize the hyperparameters. By training on CV, we got five models, that 

were used to predict when testing, and the final results were the average prediction results. 

 Specifically, a 5-layer GVP encoder module was used, which contains 128 hidden units. Adam optimizer was used with a 
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weight decay of 10−5, β1 = 0.9, β2 = 0.99 and a learning rate of 4 × 10−4. And the binary cross entropy loss was employed in 

the training process. To avoid overfitting, we set the dropout rate to 0.1. Meanwhile, an early-stopping rule was set as follows: 

the training will be terminated if the validation performance does not improve for 8 epochs consecutively.  

 

2.3.5 Prediction of nucleic-acid-binding proteins 

Here, the residue-level prediction was found useful for inferring the nucleic-acid-binding proteins. Referring to previous 

work[37], a scores to identify nucleic-acid-binding proteins is computed as follows: 

𝛼
1

𝑛
∑ 𝑝𝑟(𝑟𝑖) + (1 − 𝛼)𝑝 (

𝑛

𝑁
)

𝑛

𝑖=1

 (6) 

where the 𝑝𝑟(𝑟𝑖) is the ith highest binding probability of the residues; 𝑁 is the number of all residues in the protein; 𝑝 is a learned 

gaussian distribution obtained from training set; 𝛼 is a weighting factor (𝛼 was set to 0.950 in this work); and 𝑛 is chosen to 

maximize this score. 

 

2.3.6 Performance evaluation  

The metrics used in this work include the area under the receiver operating characteristic curve (AUCROC), the area under the 

precision-recall curve (AUCPR), accuracy (Acc), Matthews correlation coefficient (MCC), recall (Rec), precision (Pre), and F1-

score (F1). 

𝐴𝑐𝑐 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
(7) 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃)
(8) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9) 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 

𝐹1 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
(11) 

Here, TP, FP, TN, and FN indicate the number of binding residues classified accurately, non-binding residues classified wrongly, 

non-binding residues classified accurately, and binding residues classified wrongly, respectively.  

 

3. Results 

3.1 Consistent performance on two independent tests 

As shown in Table 2, GLMSite was evaluated through 5-fold CV and two independent tests. For DNA, GLMSite obtains 

AUCROC of 0.923, as well as AUCPR of 0.634 on the 5-fold CV. Correspondingly, the AUCROC and AUCPR are 0.929 and 0.571 on 

DNA-180-Test.  

For RNA, the AUCROC and AUCPR of GLMSite on the 5-fold CV are 0.882 and 0.545, which are 0.866 and 0.383 on RNA-

142-Test, respectively. On the 5-fold CV, the low standard deviations of AUCROC and AUCPR indicate the stability of the model. 

And the robustness of GLMSite is further demonstrated by the consistency of CV and independent test results (Supplementary 

Tables S1 and S2).  

The geometric information is crucial for DNA and RNA-binding prediction. To prove it, BiLSTM was provided as a 

baseline, which is geometrically agnostic. Table 3 shows that GLMSite surpasses BiLSTM on two independent test sets. The 

AUCROC, AUCPR and MCC of GLMSite is 1.4%, 6.7% and 6.3% higher than BiLSTM on DNA-180-Test, and the same is 2.9%, 

8.2% and 11.0% higher than BiLSTM on RNA-142-Test. The results show that the protein geometric knowledge is crucial and 

GLMSite excels at extracting the geometric knowledge from the predicted structures. 
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To investigate why GLMSite achieved superior performance, the performance of GLMSite and BiLSTM on different 

samples was further analyzed. If the atomic distance between Cα atoms of two residues is less than 12 Å, and there are more than 

20 residues between them, then we define that there is a non-local contact. As shown in Figure 2, GLMSite consistently 

outperforms BiLSTM on RNA-142-Test, and more importantly, the advantage grows while the non-local contact number 

increases. This illustrates that GLMSite can capture long-range contact information well. Similarly, the same comparison was 

performed on DNA-180-Test (Supplementary Figure S1). 

We further visualize the raw embeddings (size 1040) and the learned latent representations on DNA-180-Test. For raw 

embeddings, Figure 3 shows that these two types of residues are scattered everywhere haphazardly, while the learned ones tend 

to be clustered together. It can be seen from here that the latent representations learned by GLMSite are more discriminative. The 

same visualization on RNA-142-Test can be seen in Supplementary Figure S2. 

 

3.2 Feature analysis 

For analyzing the features, we tested the model performance by using different features. The ProtTrans features extracted from 

the pre-trained language model are excellent, achieving a nice performance with AUCROC of 0.928 on DNA-180-Test and 0.862 

on RNA-142-Test (Table 4). When only the evolutionary profile (PSSM+HMM, denoted as Evo) is used, the AUCROC of the 

model on DNA-180-Test and RNA-142-Test are 0.915 and 0.858, which are less than when using ProtTrans. This indicates that 

ProtTrans has a strong expressive ability while taking less time than Evo. ESM-1b was also tested, and its performance was 

lower than that of ProtTrans, which was not shown in this paper. When only the DSSP obtained from the predicted structure is 

used, the model still has considerable performance with AUCROC  of 0.895 on DNA-180-Test and 0.831 on RNA-142-Test, 

indicating that ESMFold can predict effective structures for downstream tasks. Besides, we tested the model performance with 

different feature combinations. We combined DSSP with traditional Evo and ProtTrans, respectively. As expected, when DSSP 

and ProtTrans are combined, the performance is slightly higher than when DSSP and Evo are combined, with AUCROC of 0.929 

on DNA-180-Test and 0.866 on RNA-142-Test. This further proves the effectiveness of ProtTrans. 

 In this study, geometric graph learning is performed on ESMFold predicted structures. The structure quality can affect the 

downstream prediction theoretically. For further analysis, the global distance test (GDT) between the native and predicted 

structures was calculated through SPalign[38]. As shown in Figure 4, the structure quality of ESMFold measured by GDT is 

positively correlated with GLMSite performance measured by AUCPR  on independent test DNA-180-Test. After sorting the 

proteins according to GDT, the mean  AUCPR  of the top 20% proteins and the bottom 20% proteins are 0.733 and 0.406, 

respectively, showing an obviously large gap. To indicate the relation between these two characteristics in a statistically correct 

way, we analyzed the regression line (Supplementary Figure S4) and found a low positive correlation between AUCPR and GDT. 

The above results prove the relationship between the structure quality and DNA and RNA-binding prediction, which inspires us 

to enhance the model by improving the structure quality in future. For RNA, the same trend can be seen in Supplementary 

Figures S3 and S4.  

 

3.3 Comparison with methods for DNA and RNA-binding prediction 

We compared GLMSite with six methods on DNA-180-Test while comparing it with four methods on RNA-142-Test. 

Supplementary Table S5 shows the details of the methods studied in the work. SVM, GNN, and Graph Transformer are among 

the techniques of these methods. As shown in Table 5, GLMSite significantly surpassed the state-of-the-art sequence-based 

methods and was comparable with structure-based methods. Figure 5 compares the receiver operating characteristic curves on 

DNA-180-Test and RNA-142-Test.  

On DNA-180-Test, we compared GLMSite with COACH-D[39], NucBind, SVMnuc, DNAPred, GraphBind, and 

GraphSite[13]. As shown in Table 5, the AUCROC, AUCPR and MCC of GLMSite are 0.929, 0.571, and 0.509, outperforming the 

second-best method by 1.3%, 9.6%, and 5.4%, respectively. Meanwhile, GLMSite outperforms all other methods with Acc, recall, 

precision, and F1 of 0.933, 0.606, 0.490, and 0.542, respectively. Compared to structure-based methods, GLMSite (requires only 
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input sequences) outperforms GraphBind by 2.7% and 23.3% in AUCROC and AUCPR, respectively. This is expected because: (i) 

Compared to the features used by GraphBind, we have newly used the pre-trained language model ProtTrans to extract abundant 

information. (ii) The quality of ESMFold predicted structures is high. (iii) The geometric graph learning is proven to be powerful 

(shown in Table 3). Interestingly, the use of predicted structures will increase the difficulty of prediction by structure-based 

methods. For example, the AUCROC and AUCPR of GraphBind are reduced by 2.1% and 8.6% respectively, and the superiority of 

our method is more prominently reflected. When compared with GraphSite which was also developed by my group based on 

Alphafold2-predicted structures, GLMSite shows an improvement of 1.3% and 9.6% on the AUCROC and AUCPR, respectively. 

This may be attributed to the crucial ProtTrans embeddings and the multi-task learning where the common binding 

characteristics are learned through a common network. From these results, the superiority of GLMSite and the high quality of 

ESMFold predicted structures are further demonstrated. 

Similarly, we compared GLMSite with COACH-D, NucBind, SVMnuc, and GraphBind on RNA-142-Test. GLMSite 

surpasses all other methods using predicted structures, with AUCROC, AUCPR and MCC of 0.866, 0.383, and 0.394, outperforming 

the second-best method by 9.8%, 39.3%, and 38.2%, respectively. And the Acc, recall, precision, and F1 of GLMSite are 0.927, 

0.565, 0.359, and 0.439, respectively, all of which outperform other methods. For the template-based method COACH-D, the 

AUCROC, AUCPR and MCC are 0.542, 0.153, and 0.128, respectively, indicating lower performance than other methods. This may 

be due to the low similarity between the templates and the queries[40], demonstrating the necessity of developing machine 

learning based methods. When using native structures, the structure-based methods improve significantly, resulting in the AUCPR 

of GraphBind slightly outperforms our method, but the AUCROC and MCC is still 1.4% and 2.3% lower than our method. This 

indicates that the information extracted from the ProtTrans embeddings and predicted structures are crucial, and comparable to 

the information contained in native structures. Interestingly, we found that methods performing well on DNA-180-Test also show 

consistent performance on RNA-142-Test, such as GLMSite and GraphBind. This reflects the correlation between these two 

tasks, and further illustrates the rationale for using a common network to extract the common binding characteristics. 

Supplementary Figure S5 details the precision-recall curves of all methods on these two datasets. 

 

3.4 Residue-level prediction is meaningful for inferring protein-level function 

To test the ability of GLMSite to infer nucleic-acid-binding proteins from residue-level prediction, a score was generated through 

the predicted residue results and the percentage of binding residues[37] according to the prediction of GLMSite. For calculating 

this score, the binding-residue percentage distribution of each protein in the training set was fit by a gaussian distribution 

(Supplementary Figure S6). From the distribution (gaussian term), a tendency can be calculated to measure the likelihood that a 

protein is a binding protein. Then, the average probability of top-n residues and computed tendency are summed by weight to 

generate the final score (Equation 6).  

The score distribution of two types of proteins on PDB2770 was compared. As shown in Figure 6, the scores of nucleic-

acid-binding proteins are higher than those of other proteins (non-nucleic-acid-binding proteins) greatly, which demonstrates the 

ability of our method to identify nucleic-acid-binding proteins. Additionally, we also compared two methods for calculating 

scores: (i) using the average probability of all residues of a protein. (ii) using the average probability of top-n residues and 

gaussian term. The results show that when the gaussian term is used, the ability to identify nucleic-acid-binding proteins has been 

improved (Supplementary Table S3). The receiver operating characteristic and precision-recall curves of two different methods 

on PDB2770 were also compared in Supplementary Figures S7 and S8, which indicates the superiority of GLMSite. The above 

results suggest that the residue-level prediction is meaningful for inferring protein-level function. 

 

3.5 Case study 

As an example, one case (ID is 7KX9, chain is A) obtained from PDB database was visualized. The results of GLMSite (A) and 

baseline BiLSTM (B) are shown in Figure 7. This protein consists of 734 residues, of which 59 are RNA-binding residues. For 

GLMSite, the AUCROC, AUCPR and F1 are 0.967, 0.694, and 0.672 (Supplementary Table S4), which are 3.9%, 32.4%, and 20.4% 
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higher than BiLSTM, respectively. Another case (SMC complex, PDB ID: 7nyw, chain E) from the DNA-180-Test dataset can 

also be seen in Supplementary Figure S8. Although the predicted structure quality of this example is low (GDT = 0.198), the 

AUCROC and AUCPR of GLMSite are still 0.4% and 52.1% higher than BiLSTM (Supplementary Table S4), which demonstrates 

the stability of GLMSite. 

 

4. Discussion 

The prediction of DNA and RNA-binding sites is essential for various biological activities. Presently, the predictive efficacy of 

sequence-based methods is constrained by their exclusive consideration of sequence context information, whereas structure-

based methods are unsuitable for proteins lacking known tertiary structures. Trained through the protein structures predicted by 

ESMFold and ProtTrans-based embeddings, GLMSite achieves excellent performance solely from protein sequences, solving the 

limitations of the above two types of methods simultaneously. Specifically, the node and edge representations are used to obtain 

the geometric embeddings, which are subsequently fed into a common network to acquire common binding characteristics. Then 

two fully connected layers are employed to obtain specific binding patterns for DNA and RNA, respectively. In general, the 

advantages of GLMSite are reflected in the following aspects: (Ⅰ) the high quality of the predicted structures by ESMFold. (Ⅱ) 

abundant information extracted from pre-trained language model ProtTrans. (Ⅲ) crucial geometric embeddings obtained through 

the GVP module. (Ⅳ) the binding characteristics of different nucleic acids learned from a common network. Through 

comprehensive tests on the two independent test sets, GLMSite was shown to outperform the state-of-the-art methods. 

 In this work, we have an interesting observation that the residue-level prediction is meaningful for inferring protein-level 

function. Based on the residue-level prediction, a score was computed using the average probability of top-n residues and 

gaussian term. The results have shown that the scores of nucleic-acid-binding proteins far exceed those of non-binding proteins. 

This inspires us that the residue-level prediction can be further extended to the protein-level function prediction. In the following 

work, we will also conduct more in-depth research on the interaction and promotion of the information between residue level and 

protein level. In this work, we mainly focus on predicting the nucleic-acid-binding residues, and we will try to predict the binding 

free energy in future. 

 While GLMSite has good performance, there are still some areas that can be improved. First, considering the impact of 

predicted structure quality, we can try to improve the structure quality or add other sequence features to enhance the model 

stability. Second, the significant efficacy of common networks inspires us to employ more types of molecules to promote mutual 

learning. These challenges will be explored in our future work. In general, we have developed a novel method GLMSite, that can 

perform fast and accurate prediction of nucleic-acid-binding sites.  

 

Key points 

⚫ GLMSite employs the abundant information extracted from pre-trained language model ProtTrans. 

⚫ Geometric graph learning is performed on ESMFold predicted structures. 

⚫ GLMSite integrates the binding characteristics of different nucleic acids learned from a common network. 

⚫ The results of GLMSite suggest that the residue-level prediction is meaningful for inferring protein-level function. 

 

Availability 

We provide the datasets, codes together with models at: https://github.com/biomed-AI/nucleic-acid-binding. 

 

Supplementary information 

We provide the supplementary at: https://academic.oup.com/bib.  
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Figure 

 
Figure 1. The protein sequence is input to ESMFold to predict protein structures while using ProtTrans to extract sequence 

embeddings, which are used to generate the node features and edge features. These are then fed into a geometric vector 

perceptron-based graph neural network (GVP-GNN). And the information is sent to two individual networks respective for DNA 

and RNA binding site predictions. 

 

Figure 2. The MCC of GLMSite and BiLSTM on amino acids containing different numbers of non-local contacts in RNA-

142-Test. 
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Figure 3. Visualization of the distributions of samples encoded by raw feature vectors (A) and latent feature vectors learned 

by GLMSite (B) on DNA-180-Test using t-SNE. 

 

 

Figure 4. Model performance (measured by AUCPR) varies with structural quality (measured by GDT) on DNA-180-Test. 

The blue scatters represent the GDT and AUCPR of each protein, and the red scatters represent the average GDT and AUCPR per 

bin after sorting the proteins by GDT and dividing them into eight bins. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.07.13.548862doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548862


 

Figure 5. The receiver operating characteristic curves given by GLMSite and other methods on DNA-180-Test (A) and 

RNA-142-Test (B) 

 

 
Figure 6. The score distribution of nucleic-acid-binding proteins and non-nucleic-acid-binding proteins (other proteins) on 

PDB2770. 
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Figure 7. Visualization of one example (PDB ID: 7KX9, chain A) from RNA-142-Test predicted by GLMSite (A) and the 

geometric-agnostic baseline method BiLSTM (B). TP, FP, and FN are colored in green, red, and blue, respectively. 

 

Table 

Table 1. Summary of training and test sets 

Type Dataset Nprotein
a Npos

b Nneg
c PNratiod 

DNA 
DNA-735-Train 735 18611 178125 0.104 

DNA-180-Test 180 4255 60964 0.070 

RNA 
RNA-577-Train 577 18564 143019 0.130 

RNA-142-Test 142 4481 53233 0.084 

a Number of proteins; b Number of binding residues; c Number of non-binding residues; d PNratio = Npos/Nneg. 

 

Table 2. The performance of GLMSite on 5-fold CV and two independent test sets (DNA-180-Test and RNA-142-Test). 

Type 
5-fold CV Independent tests 

AUCROC AUCPR AUCROC AUCPR 

DNA 0.923±0.008 0.634±0.027 0.929 0.571 

RNA 0.882±0.011 0.545±0.033 0.866 0.383 

 

Table 3. The performance comparison of GLMSite and BiLSTM on two independent test sets DNA-180-Test and RNA-142-

Test according to AUCROC, AUCPR, MCC, Rec, Pre, and F1. 

Dataset Method AUCROC AUCPR MCC Rec Pre F1 Acc 

DNA-180-Test 
BiLSTM 0.916 0.535 0.479 0.546 0.485 0.514 0.919 

GLMSite 0.929 0.571 0.509 0.606 0.490 0.542 0.933 

RNA-142-Test 
BiLSTM 0.842 0.354 0.355 0.465 0.364 0.409 0.883 

GLMSite 0.866 0.383 0.394 0.565 0.359 0.439 0.927 

 

Table 4. Ablation studies of GLMSite on DNA-180-Test and RNA-142-Test 

Feature 
DNA-180-Test RNA-142-Test 

AUCROC AUCPR MCC AUCROC AUCPR MCC 

Dssp 0.895 0.455 0.436 0.831 0.333 0.328 

Evo 0.915 0.512 0.479  0.858  0.365  0.366 
ProtTrans 0.928 0.559 0.503 0.862 0.377 0.375 

Evo+Dssp 0.921 0.532 0.491 0.865 0.380 0.378 

ProtTrans+Dssp (GLMSite) 0.929 0.571 0.509 0.866 0.383 0.394 

 

Table 5. Performance comparison of GLMSite with state-of-the-art methods on DNA-180-Test and RNA-142-Test 
Dataset Method AUCROC AUCPR MCC Rec Pre F1 Acc 

DNA-180-Test 
 

COACH-D (predicted structure) 0.691 0.263 0.312 0.307 0.403 0.349 0.924 

NucBind (predicted structure) 0.813 0.339 0.332 0.337 0.411 0.370 0.924 
SVMnuc (predicted structure) 0.820 0.333 0.321 0.324 0.403 0.359 0.923 

COACH-D (native structure) 0.685 0.266 0.318 0.311 0.410 0.354 0.924 
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NucBind (native structure) 0.812 0.342 0.338 0.342 0.418 0.376 0.925 

SVMnuc (native structure) 0.820 0.332 0.320 0.323 0.402 0.358 0.923 

DNAPred 0.824 0.399 0.334 0.357 0.411 0.382 0.909 

GraphBind (predicted structure) 0.886 0.423 0.430 0.522 0.425 0.468 0.923 
GraphBind (native structure) 0.905 0.463 0.466 0.598 0.429 0.500 0.922 

GraphSite 0.917 0.521 0.483 0.557 0.484 0.518 0.932 

GLMSite 0.929 0.571 0.509 0.606 0.490 0.542 0.933 

RNA-142-Test 

 

COACH-D (predicted structure) 0.542 0.153 0.128 0.106 0.273 0.152 0.909 

NucBind (predicted structure) 0.714 0.201 0.168 0.166 0.284 0.210 0.903 

SVMnuc (predicted structure) 0.719 0.193 0.161 0.162 0.274 0.204 0.901 

COACH-D (native structure) 0.543 0.155 0.128 0.107 0.270 0.153 0.908 

NucBind (native structure) 0.714 0.200 0.168 0.167 0.285 0.210 0.903 

SVMnuc (native structure) 0.719 0.193 0.162 0.163 0.274 0.205 0.901 

GraphBind (predicted structure) 0.789 0.275 0.285 0.453 0.279 0.345 0.867 

GraphBind (native structure) 0.854 0.396 0.385 0.560 0.353 0.433 0.886 

GLMSite 0.866 0.383 0.394 0.565 0.359 0.439 0.927 
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