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Abstract

The interactions between nucleic acids and proteins are important in diverse biological processes. The high-quality prediction of
nucleic-acid-binding sites continues to pose a significant challenge. Presently, the predictive efficacy of sequence-based methods is
constrained by their exclusive consideration of sequence context information, whereas structure-based methods are unsuitable for
proteins lacking known tertiary structures. Though protein structures predicted by AlphaFold2 could be used, the extensive computing
requirement of AlphaFold2 hinders its use for genome-wide applications. Based on the recent breakthrough of ESMFold for fast
prediction of protein structures, we have developed GLMSite, which accurately identifies DNA- and RNA-binding sites using geometric
graph learning on ESMFold predicted structures. Here, the predicted protein structures are employed to construct protein structural
graph with residues as nodes and spatially neighboring residue pairs for edges. The node representations are further enhanced through
the pre-trained language model ProtTrans. The network was trained using a geometric vector perceptron, and the geometric embeddings
were subsequently fed into a common network to acquire common binding characteristics. Finally, these characteristics were input
into two fully connected layers to predict binding sites with DNA and RNA, respectively. Through comprehensive tests on DNA/RNA
benchmark datasets, GLMSite was shown to surpass the latest sequence-based methods and be comparable with structure-based
methods. Moreover, the prediction was shown useful for inferring nucleic-acid-binding proteins, demonstrating its potential for protein
function discovery. The datasets, codes, and trained models are available at https://github.com/biomed-AI/nucleic-acid-binding.
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INTRODUCTION
Interactions between nucleic acids and proteins are essential in
numerous biological processes, which affect the protein func-
tion, transcription [1] and genetic material. To address this issue,
many experimental methods [2, 3] have been proposed. However,
these methods cannot be widely used because of the costly and
time-consuming properties. Therefore, there is an urgent need to
develop the computational methods.

Depending on the data used, two computational methods are
divided as follows: sequence-based and structure-based methods.
For sequence-based methods [4, 5], the nucleic-acid-binding
characteristics are derived from sequence-derived features.
For instance, by using the evolutionary information, solvent
accessibility and predicted secondary structures, NCBRPred [6]
learns local patterns for DNA- and RNA-binding prediction
through a sliding-window strategy. Also, DNAPred [7] identifies
the DNA-binding sites with a two-stage algorithm. Although
sequence-based methods can be applied to any protein, their

predictive efficacy is constrained by their exclusive consideration
of sequence context information.

In contrast, structure-based methods are usually more
accurate by inferring binding sites from known structures.
Typically, template-based, machine learning-based and hybrid
methods are included within the structure-based methods.
Among them, template-based methods, like SPOT-Seq-RNA [8]
and DR_bind1 [9], obtain dependable templates for specified
proteins using structural alignment, through which nucleic-
acid-binding sites are identified. However, these methods do
not apply to proteins without known templates. To address this
issue, machine learning-based methods [10] build classifiers
using features from protein structures. For instance, GraphBind
[11] learns the patterns of structural characteristics based on
encoding protein structures as graphs. By comparison, hybrid
methods [12] are composed of the above two types of methods.
Despite the good performance of structure-based methods, they
are not suitable for proteins lacking experimental structures.
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Benefiting from the breakthroughs of AlphaFold2 in protein
structure prediction, Yuan et al. [13] demonstrated that the pre-
dicted structures were worthwhile for the DNA-binding site iden-
tification. Unfortunately, the extensive computing requirement of
AlphaFold2 hinders its use for genome-wide applications. To solve
this problem, the pre-trained language model ESMFold [14] was
constructed for fast and accurate structure prediction, achieving
similar accuracy to AlphaFold2 but reducing the inference time
by an order of magnitude faster than AlphaFold2. Such change
enables better exploration of the structural space of the proteins
in metagenomics [15]. On the other hand, the features obtained
from protein sequences using unsupervised language models
(ProtTrans [16] and ESM-1b [17]) were demonstrated to be useful
for downstream tasks [18, 19]. However, these techniques have not
been fully utilized for the prediction of nucleic-acid-binding sites.

In addition, effective learning of protein structure is essen-
tial for model performance. Protein structure could be learned
through two types of techniques: graph neural networks (GNNs)
[20, 21] and convolutional neural networks (CNNs) [22–24]. The
relational reasoning, such as recognizing relationships of amino
acids based on structures [25], is well done by GNNs. By com-
parison, CNNs directly manipulate the geometry of the struc-
ture. Recently, the combination of two techniques is popular and
showing better performance, a typical representative is geometric
vector perceptron (GVP) [26]. GVP can combine the advantages of
the above two techniques by operating directly on both scalar and
geometric features. This inspires us to consider using this method
to achieve effective learning of protein structures.

In this work, a novel method GLMSite is developed, which uses
Geometric graph learning on Language Model predicted struc-
tures for nucleic-acid-binding-site identification. Specifically, the
predicted protein structures are employed to construct protein
structural graph with residues as nodes and spatially neighboring
residue pairs for edges. The node representations are further
enhanced through the pre-trained language model ProtTrans.
During training, the node and edge representations are used to
obtain the geometric embeddings, which are subsequently fed
into a common network to acquire common binding character-
istics. Then two fully connected layers are employed to obtain
specific binding patterns for DNA and RNA, respectively. Through
comprehensive tests on DNA/RNA benchmark datasets, GLMSite
was shown to surpass the state-of-the-art sequence-based meth-
ods and be comparable with structure-based methods. Moreover,
the prediction results can help identify nucleic-acid-binding pro-
teins, demonstrating its potential for protein function discovery.

MATERIALS AND METHODS
Datasets
From BioLiP [27] database, we downloaded 14 903 and 13 978
proteins (released on 30 March 2022) that bind to DNA and RNA,
respectively. The binding sites in this database were computed
depending on the experimental complex structures from the PDB
database [28]. A binding residue is defined by the minimum
atomic distance between it and the nucleic acid. Specifically, if
the distance minus 0.5 Å is less than the sum of Van der Waals’
radius of the two nearest atoms, the residue is considered to bind
the nucleic acid.

One protein may bind different DNA/RNA, which are deposited
in different PDB entries. To obtain the complete binding sites,
we clustered the binding proteins with 95% sequence identity
through MMseqs2 [29] and chose the longest chain as the rep-
resentative one. Following previous studies [30, 31], the binding

annotations were transferred from homology chains according to
sequence alignment by blastp [32], causing the number of DNA-
and RNA-binding sites to increase by 8.6% and 32.4%, respec-
tively. Then, the chains were removed through MMseqs2 at 30%
sequence identity, leading to the size of DNA- and RNA-binding
data sets being 915 and 719, corresponding to 22 866/261 955
and 23 045/219 297 binding residues, respectively. For a strict
evaluation, the proteins deposited before a specific date were used
for training and the afterwards for testing. We set the deposition
date as 18 December 2019 and 19 June 2019 for the DNA- and RNA-
binding data sets so that around 80% (735 and 577, respectively)
of proteins were used for the training. More details can be seen in
Table 1.

To verify the ability of GLMSite to infer nucleic-acid-binding
proteins from residue-level prediction, we constructed a new
dataset PDB2770 from PDB [28] database (released after 1 Jan-
uary 2020). The homologous proteins were removed against the
training set through MMseqs2 (30% sequence identity), resulting
in 761 positive samples (nucleic-acid-binding proteins) and 2009
negative samples (non-nucleic-acid-binding proteins).

Protein representations
According to the predicted structure from ESMfold, we view each
protein as a graph G = (U, E). The U represents the nodes in the
graph, where each node ui ∈ U is assigned a node represen-
tation hu

(i). Similarly, the edges are represented as E, which are
constructed by the nearest 30 neighbors based on the distance
between Cα atoms. Specifically, the edge ej→i ∈ E is an edge from

uj to ui, and its corresponding representation is he
(j→i).

Node representations
(i) Node vector features. Three unit vectors in different direc-

tions, including Cαi−1 − Cαi , Cαi+1 − Cαi and Cβi − Cαi .
(ii) Structural properties. The DSSP [33] program was used to

extract structure features, including (a) dihedral information{
sin, cos

} × (Φ, ψ , ω), (b) solvent accessible surface area and
(c) nine one-hot secondary structure profile.

(iii) Language model representations. A pre-trained language
model ProtT5-XL-U50 (ProtTrans [16]) was employed to
generate the protein embeddings to enhance the node
representations. ProtTrans is a transformer-based auto-
encoder called T5 [34], pre-trained on UniRef50 [35] to learn
to complete the prediction of masked amino acids. The node
representations were enhanced using the features computed
from the last layer of the ProtTrans encoder.

Edge representations
(i) Edge vector features. A unit vector between uj and ui in the

direction of Cαj − Cαi .
(ii) Distance encoding. The distance encoding of ‖Cαj − Cαi ‖2

according to the gaussian radial basis functions.
(iii) Positional embedding. The positional embedding indicates

the positioning of each neighbor j by using the sinusoidal
function of the gap j − i, where i represents the current node.

The architecture of GLMSite
As shown in Figure 1, GLMSite uses ESMFold to predict protein
structures while using ProtTrans to extract sequence embeddings,
which are used to generate the node and edge features. These
are then fed into a geometric vector perceptron-based graph
neural network (GVP-GNN). Also, the information is sent to two
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Table 1. Summary of training and test sets

Type Dataset Nprotein
a Npos

b Nneg
c PNratiod

DNA DNA-735-Train 735 18 611 178 125 0.104
DNA-180-Test 180 4255 60 964 0.070

RNA RNA-577-Train 577 18 564 143 019 0.130
RNA-142-Test 142 4481 53 233 0.084

aNumber of proteins. bNumber of binding residues. cNumber of non-binding residues. dPNratio = Npos/Nneg.

Figure 1. The protein sequence is input to ESMFold to predict protein structures while using ProtTrans to extract sequence embeddings, which are used
to generate the node features and edge features. These are then fed into a geometric vector perceptron-based graph neural network (GVP-GNN). Finally,
the information is sent to two individual networks respective for DNA- and RNA-binding-site predictions.

individual networks respective for DNA- and RNA-binding-site
predictions.

Geometric vector perceptron
For better learning the vector and scalar features, the geometric
vector perceptron (GVP) is used to combine the strengths of
CNNs and GNNs. It operates on scalars and vectors through a
series of linear and nonlinear operations. A linear operation is
first applied to the vector features to obtain processed features.
Then, on the one hand, the combination of scalar and L2 norm of
processed features is utilized for generating new scalar features.
On the other hand, multiple operations are performed on the
processed features and vector features to update vector features.
Specifically, the calculation process is as follows:

s′ = σ
(
Wmsh+n + b

)
(1)

V′ = σ+ (∥∥WμWhV
∥∥

2

) � (
WμWhV

)
(2)

where s ∈ Rn and V ∈ Rv×3 are original scalar and vector features,
and s′ ∈ Rm and V′ ∈ Rμ×3 are corresponding new features. Besides,
σ and σ+ are nonlinearities; Wm, Wh and Wμ are three separate
linear transformations; and b is the bias term. The sh+n ∈ Rh+n

represents the combination of s ∈ Rn and ‖WhV‖2 ∈ Rh, of which h
is the largest number of v and μ.

The GVP-based graph neural networks
The GVP-based graph neural networks (GVP-GNN) utilize message
passing [36] to updated node embeddings through the messages
from neighboring nodes and edges. For each graph propagation,
the protein graph defined above is fed into the architecture and
the propagation steps are as follows:

hm
(j→i) := g

(
concat

(
hu

(j), he
(j→i)

))
(3)

hu
(i) ← LayerNorm

(
hu

(i) + 1
k′ Dropout

(∑
j:ej→i∈ε hm

(j→i)
))

(4)

where g is a module consisting of GVPs, and the information
of node i and edge (j → i) is represented as hu

(i) and he
(j→i),

respectively. For the message passing from node j to node i, k′

represents the incoming message number, while hm
(j→i) denotes

the message. Meanwhile, for updating the node information, an
additional layer has been added as follows:

hu
(i) ← LayerNorm

(
hu

(i) + Dropout
(
g

(
hu

(i)
)))

(5)

Both the scalar features and vector features at each node will
be updated through these graph propagation and feed-forward
steps.

Nucleic-acid-specific fully connected networks
The output of the GVP-GNN is transmitted to the nucleic-acid-
specific fully connected networks to predict the DNA- and RNA-
binding sites. Since different tasks have specific properties, we
construct two independent fully connected networks for differ-
ent tasks. For a specific task, we only update the corresponding
network, while the remaining network keeps unchanged.

Implementation details
On the training data, the 5-fold cross-validation (CV) was per-
formed, where the data were randomly divided into five folds. Dur-
ing the training process, the model was trained on four folds and
validated on the rest of the data. After five identical operations,
the average validation performance was employed to optimize the
hyperparameters. By training on CV, we got five models, which
were used to predict when testing, and the final results were the
average prediction results.

Specifically, a five-layer GVP encoder module was used, which
contains 128 hidden units. Adam optimizer was used with a
weight decay of 10–5, β1= 0.9, β2= 0.99 and a learning rate of 4 ×
10−4. Also, the binary cross-entropy loss was employed in the
training process. To avoid overfitting, we set the dropout rate to
0.1. Meanwhile, an early-stopping rule was set as follows: the
training will be terminated if the validation performance does not
improve for 8 epochs consecutively.

Prediction of nucleic-acid-binding proteins
Here, the residue-level prediction was found useful for inferring
the nucleic-acid-binding proteins. Referring to previous work [37],
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Table 2. The performance of GLMSite on 5-fold CV and two independent test sets (DNA-180-Test and RNA-142-Test)

Type 5-fold CV Independent tests

AUCROC AUCPR AUCROC AUCPR

DNA 0.923 ± 0.008 0.634 ± 0.027 0.929 0.571
RNA 0.882 ± 0.011 0.545 ± 0.033 0.866 0.383

a score to identify nucleic-acid-binding proteins is computed as
follows:

α 1
n

∑n
i=1 pr (ri) + (1 − α) p

( n
N

)
(6)

where the pr (ri) is the ith highest binding probability of the
residues, N is the number of all residues in the protein, p is a
learned gaussian distribution obtained from the training set, α is
a weighting factor (α was set to 0.950 in this work) and n is chosen
to maximize this score.

Performance evaluation
The metrics used in this work include the area under the receiver
operating characteristic curve (AUCROC), the area under the pre-
cision–recall curve (AUCPR), accuracy (Acc), Matthews correlation
coefficient (MCC), recall (Rec), precision (Pre) and F1-score (F1).

Acc = TN + TP
TN + FP + FN + TP

(7)

MCC = TP × TN − FN × FP√
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

(8)

Rec = TP
TP + FN

(9)

Pre = TP
TP + FP

(10)

F1 = 2 × Precision × Recall
Precision + Recall

(11)

Here, TP, FP, TN and FN indicate the number of binding residues
classified accurately, non-binding residues classified wrongly,
non-binding residues classified accurately and binding residues
classified wrongly, respectively.

RESULTS
Consistent performance on two independent
tests
As shown in Table 2, GLMSite was evaluated through 5-fold CV
and two independent tests. For DNA, GLMSite obtains AUCROC of
0.923, as well as AUCPR of 0.634 on the 5-fold CV. Correspondingly,
the AUCROC and AUCPR are 0.929 and 0.571 on DNA-180-Test.

For RNA, the AUCROC and AUCPR of GLMSite on the 5-fold CV
are 0.882 and 0.545, which are 0.866 and 0.383 on RNA-142-Test,
respectively. On the 5-fold CV, the low standard deviations of
AUCROC and AUCPR indicate the stability of the model. Also, the
robustness of GLMSite is further demonstrated by the consistency
of CV and independent test results (Supplementary Tables S1
and S2 available online at http://bib.oxfordjournals.org/).

The geometric information is crucial for DNA- and RNA-
binding prediction. To prove it, BiLSTM was provided as a baseline,
which is geometrically agnostic. Table 3 shows that GLMSite
surpasses BiLSTM on two independent test sets. The AUCROC,

Figure 2. The MCC of GLMSite and BiLSTM on amino acids containing
different numbers of non-local contacts in RNA-142-Test.

AUCPR and MCC of GLMSite is 1.4%, 6.7% and 6.3% higher
than BiLSTM on DNA-180-Test, and the same is 2.9%, 8.2% and
11.0% higher than BiLSTM on RNA-142-Test. The results show
that the protein geometric knowledge is crucial and GLMSite
excels at extracting the geometric knowledge from the predicted
structures.

To investigate why GLMSite achieved superior performance,
the performance of GLMSite and BiLSTM on different samples
was further analyzed. If the atomic distance between Cα atoms
of two residues is less than 12 Å, and there are more than 20
residues between them, then we define that there is a non-local
contact. As shown in Figure 2, GLMSite consistently outperforms
BiLSTM on RNA-142-Test, and more importantly, the advantage
grows while the non-local contact number increases. This illus-
trates that GLMSite can capture long-range contact information
well. Similarly, the same comparison was performed on DNA-
180-Test (Supplementary Figure S1 available online at http://bib.
oxfordjournals.org/).

We further visualize the raw embeddings (size 1040) and the
learned latent representations on DNA-180-Test. For raw embed-
dings, Figure 3 shows that these two types of residues are scat-
tered everywhere haphazardly, while the learned ones tend to
be clustered together. It can be seen from here that the latent
representations learned by GLMSite are more discriminative. The
same visualization on RNA-142-Test can be seen in Supplemen-
tary Figure S2 available online at http://bib.oxfordjournals.org/.

Feature analysis
For analyzing the features, we tested the model performance by
using different features. The ProtTrans features extracted from
the pre-trained language model are excellent, achieving a nice
performance with AUCROC of 0.928 on DNA-180-Test and 0.862
on RNA-142-Test (Table 4). When only the evolutionary profile
(PSSM+HMM, denoted as Evo) is used, the AUCROC of the model
on DNA-180-Test and RNA-142-Test are 0.915 and 0.858, which
are less than when using ProtTrans. This indicates that ProtTrans
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Table 3. The performance comparison of GLMSite and BiLSTM on two independent test sets DNA-180-Test and RNA-142-Test
according to AUCROC, AUCPR, MCC, Rec, Pre and F1

Dataset Method AUCROC AUCPR MCC Rec Pre F1 Acc

DNA-180-Test BiLSTM 0.916 0.535 0.479 0.546 0.485 0.514 0.919
GLMSite 0.929 0.571 0.509 0.606 0.490 0.542 0.933

RNA-142-Test BiLSTM 0.842 0.354 0.355 0.465 0.364 0.409 0.883
GLMSite 0.866 0.383 0.394 0.565 0.359 0.439 0.927

Figure 3. Visualization of the distributions of samples encoded by raw feature vectors (A) and latent feature vectors learned by GLMSite (B) on DNA-
180-Test using t-SNE.

Table 4. Ablation studies of GLMSite on DNA-180-Test and RNA-142-Test.

Feature DNA-180-Test RNA-142-Test

AUCROC AUCPR MCC AUCROC AUCPR MCC

Dssp 0.895 0.455 0.436 0.831 0.333 0.328
Evo 0.915 0.512 0.479 0.858 0.365 0.366
ProtTrans 0.928 0.559 0.503 0.862 0.377 0.375
Evo + Dssp 0.921 0.532 0.491 0.865 0.380 0.378
ProtTrans + Dssp (GLMSite) 0.929 0.571 0.509 0.866 0.383 0.394

Bold fonts indicate the best results.

has a strong expressive ability while taking less time than Evo.
ESM-1b was also tested, and its performance was lower than that
of ProtTrans, which was not shown in this paper. When only the
DSSP obtained from the predicted structure is used, the model
still has considerable performance with AUCROC of 0.895 on DNA-
180-Test and 0.831 on RNA-142-Test, indicating that ESMFold can
predict effective structures for downstream tasks. Besides, we
tested the model performance with different feature combina-
tions. We combined DSSP with traditional Evo and ProtTrans,
respectively. As expected, when DSSP and ProtTrans are combined,
the performance is slightly higher than when DSSP and Evo are
combined, with AUCROC of 0.929 on DNA-180-Test and 0.866 on
RNA-142-Test. This further proves the effectiveness of ProtTrans.

In this study, geometric graph learning is performed on
ESMFold predicted structures. The structure quality can affect
the downstream prediction theoretically. For further analysis,
the global distance test (GDT) between the native and predicted
structures was calculated through SPalign [38]. As shown in
Figure 4, the structure quality of ESMFold measured by GDT
is positively correlated with GLMSite performance measured
by AUCPR on independent test DNA-180-Test. After sorting the
proteins according to GDT, the mean AUCPR of the top 20%
proteins and the bottom 20% proteins are 0.733 and 0.406, respec-
tively, showing an obviously large gap. To indicate the relation

Figure 4. Model performance (measured by AUC_PR) varies with struc-
tural quality (measured by GDT) on DNA-180-Test. The scatters represent
the GDT and AUC_PR of each protein, and the linerepresents the change of
the average AUC_PR with respect to the average GDT, which is calculated
by sorting the proteins by GDT and dividing them into eight bins.

between these two characteristics in a statistically correct way, we
analyzed the regression line (Supplementary Figure S4 available
online at http://bib.oxfordjournals.org/) and found a low positive
correlation between AUCPR and GDT. The above results prove
the relationship between the structure quality and DNA- and
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Table 5. Performance comparison of GLMSite with state-of-the-art methods on DNA-180-Test and RNA-142-Test.

Dataset Method AUCROC AUCPR MCC Rec Pre F1 Acc

DNA-180-Test COACH-D (predicted structure) 0.691 0.263 0.312 0.307 0.403 0.349 0.924
NucBind (predicted structure) 0.813 0.339 0.332 0.337 0.411 0.370 0.924
SVMnuc (predicted structure) 0.820 0.333 0.321 0.324 0.403 0.359 0.923
COACH-D (native structure) 0.685 0.266 0.318 0.311 0.410 0.354 0.924
NucBind (native structure) 0.812 0.342 0.338 0.342 0.418 0.376 0.925
SVMnuc (native structure) 0.820 0.332 0.320 0.323 0.402 0.358 0.923
DNAPred 0.824 0.399 0.334 0.357 0.411 0.382 0.909
GraphBind (predicted structure) 0.886 0.423 0.430 0.522 0.425 0.468 0.923
GraphBind (native structure) 0.905 0.463 0.466 0.598 0.429 0.500 0.922
GraphSite 0.917 0.521 0.483 0.557 0.484 0.518 0.932
GLMSite 0.929 0.571 0.509 0.606 0.490 0.542 0.933

RNA-142-Test COACH-D (predicted structure) 0.542 0.153 0.128 0.106 0.273 0.152 0.909
NucBind (predicted structure) 0.714 0.201 0.168 0.166 0.284 0.210 0.903
SVMnuc (predicted structure) 0.719 0.193 0.161 0.162 0.274 0.204 0.901
COACH-D (native structure) 0.543 0.155 0.128 0.107 0.270 0.153 0.908
NucBind (native structure) 0.714 0.200 0.168 0.167 0.285 0.210 0.903
SVMnuc (native structure) 0.719 0.193 0.162 0.163 0.274 0.205 0.901
GraphBind (predicted structure) 0.789 0.275 0.285 0.453 0.279 0.345 0.867
GraphBind (native structure) 0.854 0.396 0.385 0.560 0.353 0.433 0.886

GLMSite 0.866 0.383 0.394 0.565 0.359 0.439 0.927

Bold fonts indicate the best results.

Figure 5. The receiver operating characteristic curves given by GLMSite and other methods on DNA-180-Test (A) and RNA-142-Test (B).

RNA-binding prediction, which inspires us to enhance the model
by improving the structure quality in the future. For RNA, the
same trend can be seen in Supplementary Figures S3 and S4
available online at http://bib.oxfordjournals.org/.

Comparison with methods for DNA- and
RNA-binding prediction
We compared GLMSite with six methods on DNA-180-Test while
comparing it with four methods on RNA-142-Test. Supple-
mentary Table S5 available online at http://bib.oxfordjournals.
org/ shows the details of the methods studied in the work.
SVM, GNN and Graph Transformer are among the techniques
of these methods. As shown in Table 5, GLMSite significantly
surpassed the state-of-the-art sequence-based methods and was
comparable with structure-based methods. Figure 5 compares
the receiver operating characteristic curves on DNA-180-Test and
RNA-142-Test.

On DNA-180-Test, we compared GLMSite with COACH-D [39],
NucBind, SVMnuc, DNAPred, GraphBind and GraphSite [13]. As

shown in Table 5, the AUCROC, AUCPR and MCC of GLMSite are
0.929, 0.571 and 0.509, outperforming the second-best method
by 1.3%, 9.6% and 5.4%, respectively. Meanwhile, GLMSite out-
performs all other methods with Acc, recall, precision and F1 of
0.933, 0.606, 0.490 and 0.542, respectively. Compared to structure-
based methods, GLMSite (requires only input sequences) out-
performs GraphBind by 2.7% and 23.3% in AUCROC and AUCPR,
respectively. This is expected because (i) compared to the fea-
tures used by GraphBind, we have newly used the pre-trained
language model ProtTrans to extract abundant information. (ii)
The quality of ESMFold predicted structures is high. (iii) The geo-
metric graph learning is proven to be powerful (shown in Table 3).
Interestingly, the use of predicted structures will increase the
difficulty of prediction by structure-based methods. For example,
the AUCROC and AUCPR of GraphBind are reduced by 2.1% and
8.6%, respectively, and the superiority of our method is more
prominently reflected. When compared with GraphSite which
was also developed by my group based on Alphafold2-predicted
structures, GLMSite shows an improvement of 1.3% and 9.6% on

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad360/7306822 by guest on 17 April 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad360#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad360#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad360#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Identifying nucleic-acid-binding sites | 7

the AUCROC and AUCPR, respectively. This may be attributed to
the crucial ProtTrans embeddings and the multi-task learning
where the common binding characteristics are learned through a
common network. From these results, the superiority of GLMSite
and the high quality of ESMFold predicted structures are further
demonstrated.

Similarly, we compared GLMSite with COACH-D, NucBind, SVM-
nuc and GraphBind on RNA-142-Test. GLMSite surpasses all other
methods using predicted structures, with AUCROC, AUCPR and
MCC of 0.866, 0.383 and 0.394, outperforming the second-best
method by 9.8%, 39.3% and 38.2%, respectively. Also, the Acc,
recall, precision and F1 of GLMSite are 0.927, 0.565, 0.359 and
0.439, respectively, all of which outperform other methods. For
the template-based method COACH-D, the AUCROC, AUCPR and
MCC are 0.542, 0.153 and 0.128, respectively, indicating lower
performance than other methods. This may be due to the low sim-
ilarity between the templates and the queries [40], demonstrat-
ing the necessity of developing machine learning-based meth-
ods. When using native structures, the structure-based methods
improve significantly, resulting in the AUCPR of GraphBind that
slightly outperforms our method, but the AUCROC and MCC are
still 1.4% and 2.3% lower than our method. This indicates that
the information extracted from the ProtTrans embeddings and
predicted structures is crucial and comparable to the informa-
tion contained in native structures. Interestingly, we found that
methods performing well on DNA-180-Test also show consistent
performance on RNA-142-Test, such as GLMSite and GraphBind.
This reflects the correlation between these two tasks and further
illustrates the rationale for using a common network to extract
the common binding characteristics. Supplementary Figure S5
available online at http://bib.oxfordjournals.org/ details the pre-
cision–recall curves of all methods on these two datasets.

Residue-level prediction is meaningful for
inferring protein-level function
To test the ability of GLMSite to infer nucleic-acid-binding proteins
from residue-level prediction, a score was generated through the
predicted residue results and the percentage of binding residues
[37] according to the prediction of GLMSite. For calculating this
score, the binding-residue percentage distribution of each protein
in the training set was fit by a gaussian distribution (Supple-
mentary Figure S6 available online at http://bib.oxfordjournals.
org/). From the distribution (gaussian term), a tendency can be
calculated to measure the likelihood that a protein is a binding
protein. Then, the average probability of top-n residues and com-
puted tendency are summed by weight to generate the final score
(Equation (6)).

The score distribution of two types of proteins on PDB2770
was compared. As shown in Figure 6, the scores of nucleic-acid-
binding proteins are higher than those of other proteins (non-
nucleic-acid-binding proteins) greatly, which demonstrates the
ability of our method to identify nucleic-acid-binding proteins. In
addition, we also compared two methods for calculating scores:
(i) using the average probability of all residues of a protein; (ii)
using the average probability of top-n residues and gaussian term.
The results show that when the gaussian term is used, the ability
to identify nucleic-acid-binding proteins has been improved (Sup-
plementary Table S3 available online at http://bib.oxfordjournals.
org/). The receiver operating characteristic and precision–recall
curves of two different methods on PDB2770 were also compared
in Supplementary Figures S7 and S8 available online at http://bib.
oxfordjournals.org/, which indicates the superiority of GLMSite.

Figure 6. The score distribution of nucleic-acid-binding proteins and non-
nucleic-acid-binding proteins (other proteins) on PDB2770.

The above results suggest that the residue-level prediction is
meaningful for inferring protein-level function.

Case study
As an example, one case (ID is 7KX9, chain is A) obtained from PDB
database was visualized. The results of GLMSite (A) and baseline
BiLSTM (B) are shown in Figure 7. This protein consists of 734
residues, of which 59 are RNA-binding residues. For GLMSite, the
AUCROC, AUCPR and F1 are 0.967, 0.694 and 0.672 (Supplemen-
tary Table S4 available online at http://bib.oxfordjournals.org/),
which are 3.9%, 32.4% and 20.4% higher than BiLSTM, respectively.
Another case (SMC complex, PDB ID: 7nyw, chain E) from the DNA-
180-Test dataset can also be seen in Supplementary Figure S8
available online at http://bib.oxfordjournals.org/. Although the
predicted structure quality of this example is low (GDT = 0.198),
the AUCROC and AUCPR of GLMSite are still 0.4% and 52.1%
higher than BiLSTM (Supplementary Table S4 available online at
http://bib.oxfordjournals.org/), which demonstrates the stability
of GLMSite.

DISCUSSION
The prediction of DNA- and RNA-binding sites is essential for
various biological activities. Presently, the predictive efficacy of
sequence-based methods is constrained by their exclusive con-
sideration of sequence context information, whereas structure-
based methods are unsuitable for proteins lacking known ter-
tiary structures. Trained through the protein structures predicted
by ESMFold and ProtTrans-based embeddings, GLMSite achieves
excellent performance solely from protein sequences, solving
the limitations of the above two types of methods simultane-
ously. Specifically, the node and edge representations are used
to obtain the geometric embeddings, which are subsequently
fed into a common network to acquire common binding char-
acteristics. Then, two fully connected layers are employed to
obtain specific binding patterns for DNA and RNA, respectively.
In general, the advantages of GLMSite are reflected in the fol-
lowing aspects: (I) the high quality of the predicted structures
by ESMFold; (II) abundant information extracted from pre-trained
language model ProtTrans; (III) crucial geometric embeddings
obtained through the GVP module; (IV) the binding characteris-
tics of different nucleic acids learned from a common network.
Through comprehensive tests on the two independent test sets,
GLMSite was shown to outperform the state-of-the-art methods.

In this work, we have an interesting observation that the
residue-level prediction is meaningful for inferring protein-
level function. Based on the residue-level prediction, a score
was computed using the average probability of top-n residues
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Figure 7. Visualization of one example (PDB ID: 7KX9, chain A) from RNA-142-Test predicted by GLMSite (A) and the geometric-agnostic baseline method
BiLSTM (B).

and gaussian term. The results have shown that the scores of
nucleic-acid-binding proteins far exceed those of non-binding
proteins. This inspires us that the residue-level prediction can
be further extended to the protein-level function prediction. In
the following work, we will also conduct more in-depth research
on the interaction and promotion of the information between
residue level and protein level. In this work, we mainly focus on
predicting the nucleic-acid-binding residues, and we will try to
predict the binding free energy in the future.

While GLMSite has good performance, there are still some
areas that can be improved. First, considering the impact of
predicted structure quality, we can try to improve the structure
quality or add other sequence features to enhance the model
stability. Second, the significant efficacy of common networks
inspires us to employ more types of molecules to promote mutual
learning. These challenges will be explored in our future work. In
general, we have developed a novel method GLMSite, which can
perform fast and accurate prediction of nucleic-acid-binding sites.

Key Points

• GLMSite employs the abundant information extracted
from pre-trained language model ProtTrans.

• Geometric graph learning is performed on ESMFold pre-
dicted structures.

• GLMSite integrates the binding characteristics of differ-
ent nucleic acids learned from a common network.

• The results of GLMSite suggest that the residue-level pre-
diction is meaningful for inferring protein-level function.
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